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Overview

* Present recent examples of NEPP program sponsored memory IC
activities
— Reliability analysis
— Radiation analysis
— Technology review
— Document/guideline generation

* Provide roadmaps for technology understanding and future activities
— Complexity issues — convolution of a variety of failure mechanisms
— Practical experimental concerns
— Fault identification
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Memory Technology Covered by NEPP Program

o« Commercial technology (COTS) focused

— Rad hard space qualified memory technology essentially is focused on mid density SRAMs (4-
64Mb level)

— Well documented and researched

 Volatile and Non-volatile
— DRAM and the progression to SDRAM, DDR2, DDRS3, etc...

— Flash
* NAND predominately

— Alternative NV technologies
* Anything but floating gate
* Mostly individual memory devices but...
— Things are changing quickly
— Embedded memory with processor
— High density memory as part of large sub system
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ISSCC 2015 Non-Volatile Memory Roadmap
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The dominance of NAND Flash
— Floating gate based devices
— Single level cell (SLC) devices in the 1990’s
— 2 bits per cell (MLC) appear early 2000’s
—  Triple Level cell (TLC) appear 2008
Unique charge storage mechanisms
- FeRAM and MRAM
— Scaling is very difficult
Resistive based technologies
— Scaling concerns minimized
— Yield is main limiter
Any non-floating gate based memory
cell is by definition rad hard
—  The underlying CMOS, maybe...
NEPP has tested all these types of
non-volatile memory
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Bit Error Rates for NAND Flash

Bit Error Rate (BER)

Bit Error Rate (BER) Vs. E/P/R Cycles
Micron NAND Flash
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NAND Flash has two types of reliability
degradation concerns

— Cycling

— Data Retention (Storage)
Tunnel oxide thickness DOES NOT scale as
pass transistor gate length shrinks

— Must remain constant (6-7 nm)

— Prevent B-B tunneling and TDDB oxide

breakdown

Multiple bits per cell = different #'s of
electrons stored

— Changes read current

Scaling area of cell shrinks number of
electrons
— <50 electrons for 25nm cell for 100mV shift

Increasing program/erase:
— Nearest neighbor interactions

— Defect generation increased sensitivity
6 jpl.nasa.gov



Number of electrons per bit, N

Number of Electrons per bit NAND Flash
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Hundreds of electrons to
represent per bit data values
=> great risk to upset in
space environment and
degradation due to total
lonizing dose conditions
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SEE Testing SLC NAND Flash

Cross Section (cm?/bit)

Micron Technology SLC NAND Flash
Floating Gates

1E-09
{E-10 N
1 E-1
1E-12
1E13 M
{,E-14
1645 §
1E-16
1EAT o

1E-18
0 10 20 30 40 50 60

LET (MeV-cm?)/img

8 s 8

Dy

¢ 1Gb 120nm
B4Gb 72nm .
¢8Gb 51nm
4 32Gb 26nm

70 80

F. Irom “Nonvolatile Flash Memory Tests”

March 3, 2016 NEPP ETW 2012

D. Sheldon — ESCCON 2016

Extremely low threshold for errors

Saturation also occurs at relatively low
values of LET (<30 MeV-cm2/mg)

NAND flash will experience large
numbers of Single Event induce errors
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SEE Error Modes

Static mode
1012 e Single bit upset
o ® — Memory cell charge leakage
S 1011 : :
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NEPP NAND Radiation Guidelines

Radiation Effects Test Guideline Document for
Nonvolatile Memories: Lessons Learned

Prepared by:

1. Previously with Dell services Federal Government, Inc. in
support of NASA Goddard Space Flight Center

2. NASA Goddard Space Flight Center
3. Naval Research Laboratory

For:
NASA Electronic Parts and Packaging (NEPP) Program

And
Defense Threat Reduction Agency

Timothy R. Oldham?, Dakai Chen?, Stephen P. Buchner?, and Kenneth A. LaBel’.

March 3, 2016
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Specific experimental information
& guidance

— Sample size

— Pattern sensitivity

— Test modes

— Angular effects

Laser and Proton testing
— Beam parameters
— Data analysis

TID testing

— Functional and destructive failures
Error Correction
Displacement Damage testing

https://nepp.nasa.gov/files/24671/0Oldham_2013 NVM_Guideline.pdf
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Individual Part vs

. Solid State Drives (SSD)

E * Individual parts simply not offered, data sheets
not provided.

* In SSD, the NAND performance is carefully
managed via controller chip and DRAM cache
chip with error correction code, wear leveling
techniques, spare blocks, data mapping and
write buffering.

Accelerated cycling endurance test shows 9% wear after writing *  SSD Key Metrics
72TB in 3 weeks. — Endurance is specified by total bytes written

T (TBW)
4 — Uncorrectable bit error rate (not accessible to the
3 4 user)

* NAND Key Metrics

— Endurance is specified by Program/ Erase cycles
for each block

— Raw bit error rate
— Data retention

BLLILLLLL]
L
miiiilll

Jean Yang-Scharlotta “Nonvolatile Memory

Reliability Update”, NEPP ETW 2015 .
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Alternative Non-Volatile Memory Technologies - ReRAM
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NEPP has tested:

Panasonic — TaO,
Adesto Ag/GeS,/W

Embedded with microcontroller
and stand alone memory
devices

TID >300krad
Very small density (<1Mb)
Complex metallurgy

Limited P/E cycles
100 to 10,000 cycles

on-Volatile Memory Technologies - ReRAM
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ISSCC 2015 Volatile (DRAM) Bandwidth Scaling

Data Bandwidth (GB/s)
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NEPP DDR2 Reliability and Radiation Analysis

Pre vs. Post Stress Retention Curves
(1.8v/125C Stress) - DUT 1 (36)
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» High resolution testing of refresh bit
failures before and after long term life
stress

— No changes in distributions 25C and 85C
— Strong indicator of long term quality

e« Parametric vs. Functional failures
demonstrated in TID testing
— Difference can be 100’s of krad

— Mission specific failures modes can be
cultivated

S. Guertin, “DDR2 Device Reliability
Update”, NEPP ETW 2012

D. Sheldon — ESCCON 2016 15 jpl.nasa.gov



SER in DDR2 and implications for SSR

0.01
Samsung DDR2 Single-Event Effect Modes .
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The 3D Revolution is here
Silicon and Packaging
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Close-up image of V-NAND flash array
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Xilinx Virtex 7

D. Sheldon

- ESCCON 2016

Moore’s law now goes
vertical

NAND devices now
have 32-48 different
layers of transistors

Packaging use of
Interposers are 65nm
wafer technology

Orders of magnitude
Improvement
throughput
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3D is accepted norm in modern COTS

APPLE A7 PROCESSOR

+ 1GB LPDDR3 as PoP (64-bit) « 10.3 x 9.9mm die, 95 ym thick

- 3GHz - 150/170um Sn bump pitch
- Top package has 456 balls @0.35mm pitch

- 65um bump height, 75um bump diameter

« 2-2-2 substrate

« ~14x155x 1.0mm PoP

_ ~1330 balls @ 0.4mm pitch

March 3, 2016 D. Sheldon - ESCCON 2016

High throughput
memory now can be
tens of microns away
from processor

Number of I/O
connections increases
by 1000X

Aftermarket (NASA) -
To test one you must
test both

Ability to de-process is
extremely challenging
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High Bandwidth Memory (HBM) vs. Hybrid Memory Cube
(HMC)

RRORRRRRRRRRRRRRRRRN)  NEPP is beginning to
iInvestigate
« HMC = chip to chip
SERDES

« HBM = wide parallel
multichannel, DDR
signaling

 HMC requires special
controller and cross bar
switch die

e 256 vs. 240 GB/s
— (HBM vs. HMC)

N = -
1888202088880202020000000008/6 4
XYY YN NN Y Y YN Y Y YN Y Y Y Y Y Y W
88388200000 R0SRRR0BRROE B 4

www.techdesignsforums.com
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Concerns for Space Application of 3D

« Extreme sophistication of 3D devices mean technology qualification and possible
failure analysis requires significant increase in practitioner skills and related tools
and hardware

* Failure modes have been compounded and confounded
 Many parts are integrated into sub-systems, not available as individual packages
» Radiation interactions with multiple layers of silicon and metal layers

March 3, 2016 D. Sheldon - ESCCON 2016 20 jpl.nasa.gov



NEPP Memory Roadmap

<

Other
MRAM

FeRAM,

Resistive
- CBRAM (Adesto)

ReRAM (Tezzaron)

DDR 3/4

cell twinning)

FLASH

March 3, 2016

ReRAM (Panasonic)

- TBD (HP Labs, others)

Intelligent Memory (robust

Micron 16nm DDR3
TBD — other commercial

- Samsung VNAND (gen 1 and 2)
Micron 16nm planar

Micron Hybrid memory Cube
- TBD - other commercial

Commercial Memory Technology

- collaborative with Navy Crane

TBD — (track status)

Radiation and Reliability Testing
Radiation and Reliability Testing

Radiation and Reliability Testing
TBD — (track status)

>

Radiation Testing

5
Radiation Testing Reliability Testing
TBD — (track status)

Radiation and Reliability Testing
Radiation and Reliability Testing
Radiation and Reliability Testing
FY14 FY15 FY16
. FY17

D. Sheldon - ESCCON 2016
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Conclusions

« NASA's NEPP Program actively monitors, characterizes and analyses the
continual evolution of EEE parts memory technology.

« Memory devices remain a fundamental part of any electronics design

 Density and bandwidth now available will have enormous impacts on
spacecraft architectures and capabillities.

 The revolution in 3D memory technologies is here now and presents
fundamental and gaming chaining challenges to heritage risk assurance

methods and processes.

. Approval, verification, validation, etc. all must evolve to comprehend the changes in the
technologies

Collaboration on gualification is an important means to leverage knowledge and
capability
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