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1. Overview of AM at JPL
• Processes
• Machines
• Materials

2. Flight Insertion & Qualification Opportunities
• OCO-3/Ecostress
• Cold Shaft Encoder
• Cubesats

3. Qualification Approach
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Additive Manufacturing at JPL, briefing
Additive Manufacturing Technologies Overview
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Additive Manufacturing at JPL, briefing
Additive Manufacturing Materials, Metallics

Aluminum and titanium alloys comprise 85% of flight structural 
components

Ti-6Al-4V produced via EBM (Arcam) process is baseline for flight use due to 
robust database
JPL primary aluminum alloys are Al 2024, 6061, 7050, 7075

Current AM offering, AlSi10Mg (SAE 4032), doesn’t correspond to
existing alloy classes
Challenge to integration due to lack of familiarity

Challenges
Manned spaceflight and Class A missions require A-basis for primary 
structure, B-basis for secondary structure

Database for AlSi10Mg is not publicly available and is expensive for 
limited part set

JPL’s missions are generally single build, so total cost cannot be amortized 
over a single part or part-family



Additive Manufacturing at JPL, briefing
Qualification Methodology

• Mechanical Testing
– Detailed testing required for applications
– Testing incorporates a wide range of 

parameters (-150 °C < T < 200 °C) for 
standard systems

– Typical minimum data set shown at right
– Expensive (~$0.5 – 2M per alloy)

• Proof Testing
– Additional expensive and potential risk if 

test isn’t properly designed or executed
– Can act as a schedule reduction
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Additive Manufacturing at JPL, briefing
Heat treatment effects
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Instron 1331 #395182
Strain-controlled, 0.005 in/in/min
ASTM E8

As-built, 
EOSM280

JPL HT

Standardized heat treatment
6 hrs at 538 °C (Ar)
Quench (H2O) to 25 °C
158 °C, 2 – 4 hrs

Alexopoulos and Pantelakis, Materials & Design, 25 (2004) 419-430.
Rometsch and Schaffer, Materials Science & Engineering A, A325 (2002) 424-434.
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Additive Manufacturing at JPL, briefing
Heat treatment microstructure
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Additive Manufacturing at JPL, briefing
Surface finish effects

Test 
Temperature

Specimen 
Number
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e 

Stress 
(ksi)

Ultimat
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22 ˚ C 

1 10.34
0.048

1 0.0361 24.89 10.07
1390.2

1 28.90 41.02
1973.3

7

2 14.26
0.048

3 0.0358 25.89 10.78
1220.2

0 25.26 37.13
1793.5

9

3 13.11
0.048

1 0.0335 30.39 10.34
1208.1

8 25.11 36.93
1776.5

1

4 14.90
0.048

5 0.0333 31.28 10.97 913.57 18.84 30.99
1503.0

3

5 13.65
0.048

5 0.0325 32.94 10.62 1131.64 23.33 35.35
1714.6

2

Average 13.253 0.048 0.034 29.076 10.558
1172.75

8
24.28

8 36.283
1752.2

23

STDEV. 1.761 0.000 0.002 3.507 0.357
172.96

0 3.657 3.620
169.35

3

COV % 13.286 0.403 4.698 12.061 3.385 14.748
15.05

7 9.978 9.665
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Tensile behavior of AlSi10Mg
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Instron 1331 #395182
Strain-controlled, 0.005 in/in/min
ASTM E8

Testing performed with JPL standard heat treatment
Bemco thermal control chamber
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Additive Manufacturing at JPL, briefing
Additively Manufactured Aluminum Insertion (cont.)

Data courtesy A.J. Mastropietro & D. Forgette (353K)
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Additive Manufacturing at JPL, briefing
Additively Manufactured Aluminum Insertion

Using industry base for production of parts
Generation of thermophysical and mechanical 
property data from suppliers
Developed internal heat treatment process

Initial targeted flight opportunities
Orbital Carbon Observatory – 3 (OCO-3)
ECOSTRESS
Development SEP electronics chassis (NASA LaRC)

Selection process
Initial parts are electronics enclosures; low risk, low structural requirements
Data sets are limited and parts are not fracture critical
Class D missions

OCO-3, ECOSTRESS 
Common Electronics Chassis
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Additive Manufacturing at JPL, briefing
Qualification Approach

1. Organic development of mechanical properties based upon program need.
1. Require all projects to build standard geometry specimens and perform 

limited testing.
2. Aim for common property needs (e.g. thermal conductivity, stress vs. 

strain, etc.)
3. Programs requiring non-standard properties pay for testing (e.g. fatigue)

2. Focus on a limited set of alloys.
1. AlSi10Mg is a potential replacement for some Al alloys
2. Ti-6Al-4V can be utilized as a drop in (ELI version for specialty needs).

3. Materials & Processes focused on informed decisions for AM insertion onto 
flight programs.
1. Avoiding improper usage (e.g. flat plate)
2. Understanding complete process flow for post-build challenges (e.g. 

joining, surface finish, etc.)
3. Understand nature of desired component

4. Non-destructive evaluation investigation.
1. Building sample targets with engineered defects
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