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Asteroid 2006 RH120 Temporary Capture

= Discovered 14 September 2006 Sky & Telescope
= ~5 m Diameter Path of 6R10DB9,
) Earth's “Other Moon”
= Orbited Earth 3 times Jan 3,
2007 Mar25——_
= Closest perigee ~0.7 Lunar Distances June 14

= Perhaps an L; to L, heteroclinic
connection that happens to have
multiple Earth revolutions

= Analysis of this segment deferred to
a future paper

= Minimoon: Granvik et al. 2012

Data Source: JPL Horizons

© 2007 Sky & Telescope
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Minimoons: Prime Targets for
Rendezvous & Retrieval

=Asteroid 2006 RH120 first observed temporary moon of Earth

=Numerical studies indicate that they may be abundant
= Granvik et al. 2012: Minimoon
= Astronomers working to verify this NEO population

=Prime targets for potential asteroid rendezvous or retrieval
= Minimoons have low relative speed during Temporary Capture

= Would require less AV, time, cost for rendezvous or capture into long-term
orbit

=*We do not fully understand the dynamicsinvolvedin Temporary
Capture

= How to identify & locate potential Minimoons inNEO population?
= What controls capture & escape of Minimoons?
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“Circular Restricted Three Body Problem (CRTBP)
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Invariant Manifolds Transit Dynamics

Forbidden
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Invariant Manifolds Transit Dynamics

Forbidden
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Invariant Manifolds Transit Dynamics
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Invariant Manifolds Transit Dynamics
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Analysis of Asteroid 2006 RH120

-3.001 ¢

=Convert DE431 Ephemeris data to CRTBP
= Variable Method

= Fixed Method
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=Estimate Jacobi constant for Pre- and Post-
Capture Phases
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=Match Asteroid trajectory toinvariant
manifolds of periodic CRTBP orbits

ESTIMATED JACOBI CONSTANT, C
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Pre-Capture Resonance

EARTH ORBIT

=july 1, 1979 — May 23, 2006
= Asteroid captured 5/23/2006
= Crossed L1 plane

0.5

=29 heliocentricorbits
=27 years
=29:27 mean motion resonance

=Previous encounter close enough to
switch resonance

=2-body period indicates 43:40 mean
1 | <7 , motion resonance
-1 -0.5 0 0.5 1 = unlikely

X [INONDIMENSIONAL UNITS]
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Post-Capture Resonance

=July 28, 2007 — November 1, 2028

L N = /I ~~~~~~~~~ = Asteroid escaped 7/28/2007
g = Crossed L2 plane
EARTH ORBIT
0.5 =20 heliocentricorbits
" =21 years
> o—| . o N Y
=20:21 mean motion resonance
-0.5 "Future encounter close enough to
, switch resonance
At N | 1 =2-body period also indicates 20:21
-1 -0.5 0 0.5 1 mean motion resonance
X [NONDIMENSIONAL UNITS]
02/15/15 Brian D. Anderson,
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Resonance Hopping

=mResonances approximated 1950-
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Earth Approach L, North Halo Orbit

"Estimated C~=3.000228226120707
0.2
Zo1 z 002 \ sExamined everal L, periodicorbits
N O 5 0 = Planar Lyapunov
02 Zz = \ertical Lyapunov
1.2 . 1.0 -
1 o’ oo ems  Kow North/South Halo
XINON] -0.2
T =Visually compared stable manifolds

STABLE MANIFOLD NORTH L1 HALO ORBIT

to Asteroid trajectory

=“Best” match to Northern Halo
orbit

sSelected single trajectory on
manifold to match Asteroid
et trajectory
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Earth Escape L, South Halo Orbit
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Conclusions

sTemporary Capture of Asteroid 2006 RH120 seems to be controlled by the
invariant manifolds of periodic orbits in the CRTBP

= Approach through stable manifold of L; North Halo Orbit
= Escape through unstable manifold of L, South Halo Orbit

"Resonance cycles between repeated Earth encounters are long with mean
motion resonances near 1:1

=Repeated mean motion resonance transitions near 1:1 resonance
= This allows fortrajectories with low energy levels near libration orbits
= This enables temporary captures by Earth

= Asteroid had several near encounters in the past and is predicted to have
more in the future.

= Each encounter raises the heliocentric semimajor axis
= Largest change occurred during Temporary Capture

=*We need to develop theories for transit and capture trajectories in the
CRTBP at these energy levels.

Brian D. Anderson,
bdanders@usc.edu, MartinW.Lo@jpl.nasa.gov
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Future Work

sTemporary Capture Phase needs further study

mDeterminelunarinteraction in more detail
= Earth-Moon CRTBP
= Sun-Earth-Moon 4 Body Problem

="CRTBP Transit Dynamics need further study

I ———
02/15/15 Brian D. Anderson,

bdanders@usc.edu, Martin.W.Lo@jpl.nasa.gov 17



USC Viterbi

References

= W.S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Resonance and Capture of Jupiter Comets,” Celestial Mechanics and Dynamical Astronomy, Vol. 81, No. 1, 2001, pp. 27-38.
=W.S n, M. W. Lo, J. E. Marsden, and S. D. Ross, “Heteroclinic Connections Between Periodic Orbits And Resonance Transitions In Celestial Mechanics,” Chaos, Vol. 10, No. 2,

. Koon,
2000, pp. 427-469

= K. C. Howell, M. W. Lo, and B. G. Marchand, “Temporary Satellite Capture of Short-Period Jupiter Family Comets from the Perspective of Dynamical Systems,” Journal of
Astronautical Sciences, Vol. 49, No. 4, 2001.

= M. Granvik, J. Vaubaillon, and R. Jedicke, “The Population of Natural Earth Satellites,” Icarus, Vol.218, 2012, pp. 262-277.

= V. Szebehely, Theory of Orbits. New York City: Academic Press, 1967.

= V. Szebehely and G. E. O. Giacaglia, “On the Elliptic Restricted Problem of Three Bodies,” The Astronomical Journal, Vol. 69, No. 1, 1964, pp. 230-235.

= J. Moser, Stable and Random Motions in Dynamical Systems. Princeton: Princeton University Press, 1973.

= M. W. Lo, R. L. Anderson, G. J. Whiffen, and L. Romans, “The Role of Invariant Manifolds in Low Thrust Trajectory Design,” AAS Conference, Mani, HA, 2004.

= R. L. Anderson, Low Thrust Trajectory Design for Resonant Flybys and Captures Using Invariant Manifolds. PhD thesis, University of Colorado at Boulder, Boulder, CO, 2005.
= C. C. Conley, “Low Energy Transit Orbits in the Restricted Three Body Problem,” Siam Journal on Applied Mathematics, Vol. 16, No. 4, 1968, pp. 732-746.

. Ren and J. Shan 5”N‘i12r§erical study of the three-dimensional transit orbits in the circular restricted three-body problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 114,

= W. M. Folkner, J. G. Williams, D. H. Boggs, R. S.Park,and P. Kuchynka, “The Planetary and Lunar Ephemerides DE430 and DE431,” The Interplanetary Network Progress Report, Vol.
42-196, 2014, pp. 1-81.

= B. D. Anderson and M. W. Lo, “NEO 2006 RH120 Preliminary Resonance Analysis,” JPL Interoffice Memorandum, NASA Center Innovation Fund Program at JPL, 2014.
= G. V. Williams, “Distant Artificial Satellite Observation (DASO) Circular,” IAU Minor Planet Center, No. 68, 2006.

= K. C. Howell, “Three-dimensional, periodic, halo orbits,” Celestial Mechanics, Vol. 32, No. 1, 1987, pp. 52-72.

02/15/15 Brian D. Anderson,

bdanders@usc.edu, Martin.W.Lo@jpl.nasa.gov 18



USC Viterbi

IMAGE CREDITS

=“Earth's "Other Moon“” Sky & Telescope. 17 Apr. 2007. Web. 4 Aug.
2013. < http://www.skyandtelescope.com/news/7067527.html ».

I ———
02/15/15 Brian D. Anderson,

bdanders@usc.edu, Martin.W.Lo@jpl.nasa.gov 19



USC Viterbi

Acknowledgements

Thisresearch was funded in part by the JPL Strategic University
Research Partnership Program, the Center Innovation Fund Program at
JPL, and the JPL AMMOS/MGSS Program.

Thisresearch was carried out in part at the Jet Propulsion Laboratory,
Californialnstitute of Technology. This research was carried outin part
at the University of Southern California.

© Copyright. All rights reserved.

02/15/15 Brian D. Anderson,

bdanders@usc.edu, Martin.W.Lo@jpl.nasa.gov 20



USC Viterbi

Backup Slides
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Example of Rapid Orbital Change

= Comet 39P/Oterma
= Repeated “hopping” between resonant orbits

= Heteroclinic connections between resonant orbits make this possible

Comet Trajectory
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Lunar Interactions

=Lunar interactions during
Temporary Capture considered

25_><106
sEffects causing rapid changes not
27 likely
g .
< 15/ =Small perturbations allowed to
8 accumulate
n'd 1t
o
05/
Reo | min = 4.4Rs0
0 L L )
6 6.5 7 7.5 8

EPHEMERIS TIME [YEARS]

Brian D. Anderson,

02/15/15 . .
bdanders@usc.edu, MartinW.Lo@jpl.nasa.gov

23



USC Viterbi

Conversion Method 1

1) R,V from ephemeris for Earth relative to Sun 1. DE431, R(t), V(t)

2)  Setlength unit 2. LU = |R’|
3) Compute angular velocity 3 _, _ RxV
+ . . . RERTTE
- 4) Set time and velocity units LU
O 4 TU = |w|™L, VU = —
8 — 5) Select rotating frame axes v
- 5 A _ E A _ 2 A A x A
9 6)  Assemble Rotation matrix ATRSB T RreTs%4
7) Rotate position and velocity (fl
6. Q = \|€>
8) Convert units é3
9)  Adjust origin 7. iy = QTh, Up = QU — & X 7
5. F=1235=10 [
LU 40 TU
U
9 ?=F+k]
0
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Conversion Method 2
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p—

v Reference R,V from ephemeris for Earth relative to Sun for unit conversion
c - - — —
S | R =R(@"), V" =V({t"),LU = g = = |&*| 1 VU—E
1) R\ from ephemeris for Earth 1. DE431R(¢), I—/)(t)
relative to Sun = -
A —_ A — i A — A A
‘o 2) Select rotating frame axes 2. &= |R| 183 @2 T €3 X €
= . : e
@ _J 3) Assemble Rotation matrix "1
z " . 3. Q=&
kS 4) Rotate position and velocity _ég_
5) Convert units 4. T =QF,Up =0QV5 —w X7
| 6) Adjust origin 5 7= 'F_,,B _ B_D, _ tp=tpo
LU VU TU
U
6. =71+ ’0]
0
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