
Leveraging the Usage of GPUs in SAR
Processing for the NISAR Mission

Joshua Cohen and Piyush Agram
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Email: Joshua.Cohen@jpl.nasa.gov, Piyush.Agram@jpl.nasa.gov

Abstract—The NASA ISRO Synthetic Aperture Radar
(NISAR) mission will redefine the future of earth science in
terms of both the quality as well as the quantity of data that will
be downlinked daily. The current software architecture used to
process this data is the InSAR Scientific Computing Environment
(ISCE), a powerful and modular platform that applies a combi-
nation of novel and legacy processing modules to many sources
of SAR data. Until recently, this architecture could process most
images in a reasonable amount of time; however in the case of
the NISAR mission (where the daily influx as well as the size
of the images themselves are significantly larger) the current
architecture can take hours to process even a single image. This
paper explores new efforts to use a Graphics Processing Unit
(GPU) to accelerate one of the processing modules to achieve
unprecedented runtimes with no loss in precision, potentially
setting a new standard in radar processing in the world of “Big
Data”.

I. INTRODUCTION

A. NISAR Mission

The NISAR mission is National Aeronautics and Space
Administration’s (NASA) first collaborative effort with Indian
Space Research Organization (ISRO). The mission’s satellite
features a dual-frequency (L-band and S-band) radar system,
the first of its kind in the world. NISAR is primarily focused
on observing global land and ice masses, as well as other
domains of natural and climate hazards. It will also have the
ability to achieve both centimeter-scale accuracy and multiple
hundreds of kilometers of swath width in a single coverage.

With many challenges ahead in the mission design, before
the expected launch in 2020-2021, one of the key focuses will
be handling the data processing in order to keep pace with the
rate of data acquisition. As NISAR will provide the largest
free dataset in the world, one of the new technologies that
is being developed with support of the mission is the ISCE
framework.

B. ISCE Architecture

The ISCE architecture is being developed primarily at the
Jet Propulsion Laboratory (JPL), and is designed to be a
flexible and modular set of software applications to handle
a wide range of different SAR processing schemes. Some of
these applications are based on time-tested modules, such as
the ROI PAC interferometric tool, while others are making
rapid strides in power and performance by applying new means
of geocoding, focusing, calibration, and correction.

ISCE takes advantage of various programming techniques
such as file memory mapping and the OpenMP multi-threading

acceleration library in order to address the issues of processing
large individual images and even larger datasets. However,
while these features enable a reduction of a runtime of days
to a runtime of hours, given the large number of expected
interferogram-processing jobs per day these runtimes are still
untenable without a trade of some other critical aspect of
software or architecture design for speed.

C. GPU Programming

In the last 15 years or so, the GPU has emerged as a new
technological medium in the world of High-Performance Com-
puting (HPC). Previously these graphics cards were dedicated
entirely to processing images and videos for production and
visualization purposes. Eventually a paradigm emerged that a
GPU could be manipulated into acting akin to a miniature
supercomputer by inserting data as a texture or raster and
directing the GPU to operate on it with intrinsic functions.

Since the advent of GPU programming, the barriers of
entry into the field have been significantly lowered by new
technologies and programming languages (such as OpenGL,
OpenACC, and CUDA). For example, NVIDIA separated their
product lines into consumer-grade gaming GPUs and industry-
grade HPC GPUs. This allowed for programming schema that
were vastly more flexible than the early designs, and opened up
the world of supercomputing to the mathematical and scientific
communities.

The critical advantage of a GPU over a hyper-threaded
processor is that a GPU operates on all pixels of data in a
block simultaneously. The device does so by applying a single
function in a massively-parallel fashion over a large dataset,
in a style of pipeline operation classified in Flynn’s Taxon-
omy as Single-Instruction, Multiple-Data (SIMD). SIMD is in
direct contrast to standard serial programming which applies
a function or operation to single pieces of data sequentially,
known as Single-Instruction, Single-Data (SISD) design. The
SISD design style encompasses all code that is run on a single
thread.

II. DEFINING ISSUES

As stated before, the NISAR mission will eventually provide
the largest free dataset in the world. This concept is supported
by the fact that the satellite will accumulate roughly 660
terabits of data daily. Despite the significant amount of pre-
processing done on-board, it will downlink 26 terabits of im-
age data per day to the ground data systems. The reality is that



TABLE I
ISCE MODULES WITH SIGNIFICANT RUNTIMES

Processing Step Nominal CPU Runtime
Image-to-Map ∼ 5400 s
Map-to-Image ∼ 2700 s

Image Cross Correlation ∼ 1500 s
Resampling ∼ 1500 s

Phase Unwrapping ∼ 1300 s

one of the biggest problems facing all communities, not just
the scientific one, is that of “Big Data”. This is the notion that
data scales such as gigabytes and terabytes (approximately 109

and 1012 bytes respectively), which were somewhat imposing
and expensive 15 years ago, are commonplace today. Now the
new frontier of data sizes is on the scale of petabytes and
exabytes (approximately 1015 and 1018 bytes respectively).

While concerns such as data storage and movement are
valid enough, another concern lies with the processing of this
data. Computation is inherently time-consuming on a larger
scale, as even nanosecond-long additions still will quickly add
up when an algorithm is performing billions of them. The
intersection of a mass aggregation of atomic operations and a
large dataset gives rise to the issue of Big Data. In the case of
the NISAR mission, the ISCE architecture expects to receive
roughly 1,400 interferogram-processing jobs per day from the
data downlinked. While certain components of the system may
be doing relatively trivial work over a single pixel, the problem
becomes clear when a single processing job operates over a
billion pixels in each image.

The ISCE architecture that the NISAR mission will use to
process data has many such components, colloquially referred
to as “modules”, that operate at each stage in the processing
workflow. Some of the smaller modules perform single tasks
using nothing more than the metadata associated with a prod-
uct, while others operate on multi-gigabyte images. To that
end, the modules occasionally employ a set of programmatic
decorators (“pragmas”) that instruct the compiler to assemble
the code such that it automatically runs on multiple threads
using OpenMP. This library only allows for a relatively minor
amount of parallelism, but it is suitable for most computers
used by researchers and scientists that do not have specialized
hardware. Unfortunately, while this multi-threaded approach is
acceptable for the smaller workloads generated by data from
previous satellite missions (COSMO-SkyMed, ALOS, etc.), it
cannot sustain the massive dataset expected from NISAR.

Table I demonstrates the current runtimes for different
components in ISCE using OpenMP on a NISAR-scale image
(240 km x 240 km with an 80 MHz bandwidth, over one
billion pixels). Consider the example of the Image-to-Map
function (referred to from here on out as the “Topozero”
module), which is executed on every image processed. At
ISCE’s rate of operation, one day’s worth (1,400 images) of
Topozero processing would take a single multi-threaded CPU
over 1,900 hours to finish! To keep pace with the rate of data

Fig. 1. CPU Image Processing Workflow

influx, ISCE would need to run at least 80 fairly powerful
multi-threaded CPUs daily. Additionally, this hardly represents
ISCE’s true runtimes as this is considering the Topozero
module step by itself. Given that the Map-to-Image module
takes half that time to execute (a number that is still hardly
insignificant), the concept of having ISCE keep pace with the
job load is almost untenable, as powerful as the software is.

III. GPU ALGORITHM DESIGN

With these guiding issues in mind, it became clear that the
Topozero module was the ideal candidate to focus on in the
development of a GPU algorithm.

A. Workflow

Since the underlying mathematical equations and processes
are the same in both CPU- and GPU-based algorithms, the
most serious concerns with building a GPU algorithm are with
the memory and workflow design. Figure 1 shows an example
of an SISD-style image processing workflow on a CPU. It
depicts how the main mathematical algorithm takes an input of
a single pixel and serially loops over the entire image. Through
the OpenMP library pragmas, the execution model simply
changes by having multiple iterations of the algorithm starting
their individual serial loops at different points in the image. For
example: if the program was running on 12 separate threads,
and the image was 12,000 lines long, then each algorithm i
out of 12 would start on line (i− 1)× 1, 000 and iterate over
1,000 lines. In this model, the program would run ideally in
time TCPU , where:

TCPU =
Ntotal pixels × Tpixel

Nthreads
(1)

where Tpixel is the time the algorithm takes to process a single
pixel.

In CPU-based algorithms, the speed factor primarily is
derived from the low latency of operating on a single pixel,



Fig. 2. GPU Image Processing Workflow

at the cost of a relatively small number of threads (usually
no greater than 12 in most standard computers). For GPUs,
one of the defining characteristics is that the pixel processing
latency tends to be higher than that of a CPU, therefore it must
increase the speed factor (and reduce TGPU ) by utilizing a
significantly higher number of threads. In ideal circumstances,
a GPU algorithm will spawn the same number of threads as
the number of data points it will operate on.

Figure 2 shows the new execution model using a GPU as
an accelerator with a CPU controller. In this model, unlike the
CPU model, a block of image lines is copied over to the GPU
as the input instead of a single pixel. The GPU then initiates
the same number of threads as the number of pixels in the
block. Each thread takes a single pixel from the block, operates
on the pixel with the designated algorithm, and returns the
newly-processed data. Once all of the pixels in a block have
been operated on, the data is copied back to the CPU and
written out to the files. The CPU then passes the next block
of lines from the image data, and the process repeats.

Using this design, the time taken by the GPU to process a
block of pixels is defined only by the longest time taken to
process a single pixel. The GPU-accelerated algorithm then
operates ideally in time TGPU , where:

TGPU =

(
Ntotal pixels × Tpixel

Npixels per block

)
+ (Nblocks × Tmemcpy)

(2)
The additional component in equation 2 will be discussed later,
as it refers to the other primary limiting factor of using a GPU:
copying memory to and from the GPU device.

B. Topozero Module

For the Topozero module, in developing an SIMD archi-
tecture similar to figure 2, there were four distinctive modi-
fications made to the original algorithm. One of the changes
was designed to handle the overarching process of determining
block sizes and copies, while the remaining three changes were

optional logic-design choices to add basic code optimizations
particular to GPU operation.

1) Image Tiling: The new algorithm was designed to “tile”
the images into blocks that were appropriately sized for the
GPU. All data that the GPU operates on must reside locally
within the device itself, and GPUs have limited memory
compared to the memory normally accessible by CPU-based
codes. Therefore the overall architecture had to know how to
determine how many pixels or lines the device could process
in each block. Since each thread’s iteration of the algorithm
uses a number of temporary variables, this memory is further
limited as the majority of data used by each iteration of the
algorithm comes from these temporary variables.

2) Loop Unrolling: One of the basic optimizations applied
was “unrolling” for-loops within the algorithm. If the index of
an array element being accessed is not known at compile-time
for any GPU code, the runtime can be significantly slowed due
to high memory-access latency. Therefore if an array element
is accessed within a for-loop using an index that is changed
in each iteration of the loop, the compiler may not be able to
predetermine the array index or element. The solution to this
issue is to explicitly write out each iteration of the for-loop
instead (if an array access is contained within the loop), which
will allow the compiler to resolve any indices beforehand at
the cost of a slightly more verbose source code.

3) Temporary Variable Reduction: The original version
of the algorithm contained multiple temporary variables that
were usually included for the sake of convenience. However,
since the memory-access latency for GPUs is high, and since
the physical amount of memory on the GPU is limited, the
GPU-based algorithm was modified to use as few temporary
variables as possible while still retaining code clarity.

4) Avoiding Branch Divergence: In computer pipeline de-
sign, what is known as an “if/else” statement to computer
scientists is instead known as a “branching” statement. For
CPU-based algorithms, when a branching statement is reached,
the CPU will simply determine which statement block to fol-
low and execute it. For GPU-based algorithms, this execution
model would be ideally the same. However, the GPU is not
actually executing Nthreads separate instances of the algorithm
on Nthreads threads, rather it is executing a single instance
of the algorithm on Nthreads threads. When a branching
statement is reached, if some threads follow one branch while
the remaining threads follow the other branch, the GPU must
execute the branches separately and not simultaneously.

For example, assume that a basic algorithm checks which
line a pixel is in, and sets the value of the pixel to zero if it
is in the first half of the image. In a CPU-based algorithm,
the branching statement would just resolve to either setting
the value of the pixel to zero or leaving the value as-is. In a
GPU-based algorithm, the branching statement would first set
all pixels in the block that are in the first half of the image
to zero, and then set all pixels in the block that are in the
rest of the image to the same value. Subsequently the runtime
for the block doubles, which can be a costly time penalty on
the device. The solution for this module was to analyze each



branching statement and devise an alternative logic scheme
such that these branches would not occur.

IV. DEVELOPMENT RESULTS

The final algorithm and architecture developed was bench-
marked and tested on an NVIDIA Tesla K80 GPU with 24
GB of GDDR5 memory. To create a more realistic and rea-
sonable “worst-case” scenario, only one of the two underlying
GK210B GPUs contained in the K80 was used. This limited
the memory to only 12 GB, however the theoretical bench-
marked double-precision performance remained the same. The
tests of the original code were performed on a high-frequency
Intel Xeon E5-2670 CPU with 12 threads enabled, similar
in performance to commercially-available computers used by
scientific researchers.

1) Simplicity: One of the concerns that had to immediately
be addressed in developing this algorithm was that as ISCE
may be distributed globally in the near future, not every system
running it will have a sufficient GPU. Therefore it will be
necessary for the developers to maintain both the CPU as
well as the GPU algorithms in the codebase. Since there are
critical design differences in the overall architectures of the
two algorithms, the two codes must be maintained separately
for now. That requires the new GPU algorithm to be simplistic
in those differences (including those listed in the previous
section) to allow for parallel maintenance. Following the first
few design iterations of the algorithm, the structure of the code
resolved to a form that is very similar to the original CPU-
based code and requires essentially no external resources or
knowledge to interpret.

2) Precision: Another serious concern was maintaining the
numerical precision of the results. As with many SAR pro-
cessors, the algorithm operates primarily on double-precision
numbers, and NVIDIA GPUs originally did not guarantee
compliance with the IEEE-754 standards of precision. That
concern has since been invalidated, as all modern NVIDIA
GPUs are well within those precision standards’ tolerances.
For confirmation, the resulting images from the CPU-based
code and the GPU-based code were compared. A simple nu-
merical analysis showed that the maximum errors in each pixel
were no greater than 1 × 10−9 degrees of latitude/longitude
(which translates to sub-millimeter error in lateral position),
well within expected errors and well within the standard 7-
digit mantissa tolerance for double-precision.

3) Speed: Perhaps the most important metrics that were
to be determined by this benchmark development were the
speedups expected by the GPU-based algorithm as compared
to the CPU-based algorithm. For the CPU-based algorithm,
performance was measured by running the Topozero module in
a standalone script against two different scales of images. The
first scale of image was from the COSMO-SkyMed satellite
mission, which contained approximately 4×108 pixels, covers
an area of 40 km x 40 km. The second scale of image was
comparable to the future image sizes of the NISAR mission,
which in this test contained approximately 1.2 × 109 pixels,
and covers an area of 240 km x 240 km.

TABLE II
COMPARISON OF CPU AND GPU RUNTIME RESULTS

Image Scale CPU Runtime GPU Runtime Speedup
COSMO-SkyMed 18 m 30 s 36x

NISAR 82 m 3 m 27.3̄x

The GPU-based algorithm was then run on the same set
of tests, and the final benchmarked test speeds were well
beyond the expected 10x speedup, as shown in table II. For
the COSMO-SkyMed-scale images, the GPU algorithm took
an average of 30 seconds to process with a limited block
size of 1.5 × 108 pixels (in order to give an even better
worst-case estimate). For the NISAR-scale images, the GPU
algorithm only took an average of 3 minutes to process with
the same limited block size. As seen in table II, these images
took 18 and 82 minutes respectively to process on the CPU.
Therefore the GPU algorithm on average gave a speedup
of roughly 30x over the original CPU-based algorithm
currently implemented in ISCE.

It should also be noted that two factors negatively impacted
this performance speed. The first is that current GPU technol-
ogy only allows for limited copying speeds when moving data
between the host CPU and device GPU, contributing between
45 to 60 seconds of the overall 3 minute processing time.
Additionally, due to system limitations, the speed of writing-
to-disk was throttled, which negatively impacted the overall
processing time, despite implementing an asynchronous write-
to-file function. This could be mitigated in future development
by using a hardware system with the throttle disabled.

V. CONCLUSION

The results of the initial benchmark tests surpassed expec-
tations given the limited amount of development time needed
to create the GPU-based algorithm. Using GPUs to accelerate
SAR processing, while not necessarily a brand-new concept,
is one that clearly should be strongly considered in future
scientific processing. The early benchmark test presupposes
that GPU processing will certainly be an available feature of
ISCE upon full-scale release.

Given the promising results of these initial developments,
work will continue to re-factor and create new GPU versions
of other current modules mentioned in table I. While the same
30x speedup demonstrated here may not translate directly to
the other modules, as their algorithms are different than that
of the Topozero module, there will no doubt be significant
speedups. Hopefully GPUs will continue to revolutionize the
world of SAR (and more general scientific) processing.

ACKNOWLEDGMENT

This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the
National Aeronautics and Space Administration. Copyright
2016 California Institute of Technology. U.S. Government
sponsorship acknowledged.


