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Abstract— This paper describes how SpaceWire Time 
Codes can be used for synchronizing time within various 
subsystems of a spacecraft as well as, maintaining a common 
time reference needed for coordinating operations within a 
spacecraft.  The algorithms to account for inaccuracies in the 
time distribution method were based on the NASA-4009 
Space Telecommunication Radio System (STRS) standard 
[1], which defined an interface for synchronizing clocks 
running at different tick rates and tick resolutions. 

 

Index Terms— Relevant indexing terms: SpaceWire, 
SpaceWire Time Codes, SpaceWire Time Distribution 
Protocol, CCSDS Unsegmented Time (CUC), Space 
Telecommunications Radio System (STRS). 

I. INTRODUCTION 
Spacecraft systems are typically comprised of many 

subsystems, each with their own clock running at different 
tick rates and with varying performance, which can degrade 
over time.  Clock synchronization becomes very important in 
cases where commands and activities need to be correlated 
with a common time reference and for attitude determination 
based on current time or predicted position propagated over a 
period of time. 

Subsystems needs to know what time it is in order to 
perform synchronized activities, or to time-tag telemetry that 
can be correlated with operations in other subsystems.  One 
subsystem equipped with a Ground Navigation Satellite 
System (GNSS) receiver can maintain an accurate reference 
of time and can act as the time “master” to distribute the time 
to other nodes connected via SpaceWire. 

II. SPACECRAFT TIME SYNCHRONIZATION METHODS 
There are two common methods used for synchronizing 

time on a spacecraft: (1) a periodic “message” based method 
performed in software and (2) a periodic “hardware tick” 
based method performed in hardware or firmware. 

The “message” based method uses a “master” to generate 
a “tick” message at specific intervals and sends a time 
message to the “slaves” at a specific “tick”.  The “slaves” 
update their time at a time boundary after the time message 

is received.  In the example below, the “tick” message is sent 
100 times per second, and the time message is sent once per 
second prior to the one second time boundary. 

Fig. 1.  Time Synchronization “Message” Based Method 

    The “hardware tick” method uses a “master” to send a 
“tick” signal to all the “slaves”, who will then increment 
their own slave clock.  The hardware clock oscillator used to 
generate the clock tick signal is usually a Temperature 
Compensated Crystal Oscillator (TCXO) or Ovenized 
Crystal Oscillator (OCXO) with accuracy better than 1 part 
per million. 

Fig. 2.  Time Synchronization “Hardware Tick” Method 



 

III. SPACECRAFT TIME SYNCHRONIZATION CHALLENGES 
The challenges in synchronizing spacecraft time are 

similar to those in ground-based systems: 
A. Latency – the time it takes to transfer and respond to 

a time update.  Each spacecraft subsystem must 
account for latency and be tolerant within a measured 
minimum and maximum range.  A technique for 
measuring latency is described in the SpaceWire 
Time Distribution Protocol [2].   

B. Jitter – the intermittent delay in the path between the 
master sending the time and the slave receiving and 
updating their time.  Each spacecraft subsystem must 
tolerate a measured maximum jitter. 

C. Drift – the variation in the clock tick rate due to 
oscillator performance, which typically degrades over 
time and varies with temperature.  The time “master” 
clock must be calibrated periodically to account for 
the drift in the time conversion.  The drift can be 
accounted for as a clock rate correction [2] to mimic 
the actual clock rate changes. 

D. Time conversion – the different clocks may tick at 
different rates and a conversion from the hardware 
clock value to the time representation unit (usually in 
seconds) is applied using the clock tick rate, clock 
hardware value, and an offset, which typically 
includes drift.  The conversion algorithm needs to 
account for latency, varying jitter, and clock 
degradation. 
 

A further complication is that the performance of the 
clock oscillators in various parts of the system may be 
orders of magnitude different: a spacecraft computer may 
have a clock with 10 ppm performance, while spacecraft 
radios and GNSS receivers may be accurate to parts per 
billion (ppb). The system design, however, may be that all 
systems need to follow the time kept by the spacecraft 
computer, so the time distribution method must allow a 
better clock to follow a poorer clock, which is different 
than the typical Network Time Protocol (NTP) 
architecture, where clocks at a lower stratum follow more 
accurate clocks at a higher stratum. 

IV. STRS TIME SYNCHRONIZATION METHOD 
The NASA-STD-4009 Space Telecommunications 

Radio System (STRS) architecture standard [1] defines some 
time related functions and corresponding Application 
Programming Interfaces (APIs) for getting, setting, and 
synchronizing time.  These functions are used by 
applications to maintain and coordinate time derived from 
different clocks that may have different tick rates and 
resolutions. 

Note that the reference clock may or may not have a 
higher performance and stability than the monitored clock. 
The purpose is to synchronize the clocks and not to maintain 
the correct time.  The reference clock and managed clock can 
exist on the same local host or on different hosts but can be 
synchronized to report the same time. 

The core concept of the STRS clock model is that the 
underlying clock is allowed to run unhampered, and the 
relationship between the raw clock and “time” is 
encapsulated in the API which provides  a standardized way 
of getting and setting time based on calling API functions 
that can account for latency, jitter, and drift using conversion 
data.  This conversion data is set to values that initially 
synchronize the reference clock with the managed clock.  
The conversion data can be updated periodically to 
continuously account for drift. 

The linear conversion algorithm commonly used to 
compute time, converts hardware clock ticks to time in 
seconds using the oscillator clock rate and hardware clock 
ticks as follows: 

time = (clock_rate × clock_ticks) + offset 
The STRS time conversion algorithms include additional 
adjustments to the rate and offset to account for the 
difference between two clocks plus the latency, drift, and 
even jitter as follows: 

STRS time = ((clock_rate + adjust_rate) × clock_ticks) + 
(offset + adjust_offset) 

Figure 3 below shows an implementation of an STRS 
time interface that synchronizes a local reference clock and a 
local managed clock.  The conversion data is applied when 
getting the time via the STRS_GetTime API function which 
converts the clock value to a time in seconds and sub 
seconds. 

Fig. 3.  STRS Time Synchronization Method 

  



 

 

 

 

 
V. SPACEWIRE SPECIFICATION FOR TIME CODES 

The SpaceWire Protocol Standard [3] includes the 
definition of the time interface with Time Codes and the 
TickIn and TickOut signals.  The key features in any 
implementation are: 

A. Time Code generation or receipt can be enabled or 
disabled. 

B. The Time Code rate is generated by a “master” and 
can be configured to send Time Codes at a specific 
rate 

C. The Time Code is a specific type of SpaceWire 
message containing a Time Code identifier and Time 
Code counter.  The Time Code counter is an 
incrementing 0 to 63 integer value and any missing 
Time Code can be detected and reported by firmware 
using this counter. 

The Time Code TickIn / TickOut signals can support an 
interface to a software interrupt line and/or hardware signal 
going to a hardware clock.  The time “master” (aka initiator) 
can generate a software interrupt for each tick using the 
TickIn signal.  Using this TickIn interrupt, a “slave” (aka 
target) can implement a SpaceWire “derived clock” to align 
the tick generation with the time message. 

VI. CCSDS TIME MESSAGE FORMAT 
The CCSDS Unsegmented Code (CUC) Time 

Specification [4] is a proposed standard for specifying time 
as a number of seconds and sub-seconds. 

Fig. 4.  CCSDS Unsegmented Code (CUC) Format 

The fields in the time announced message are as follows: 
 

Fig. 5.  Time Announced Message Format 

VII. TIME SYNCHRONIZATION DEMO 
The first goal was to demonstrate the ability to 

compensate for time distribution inaccuracies due to latency, 
jitter, and drift using the STRS time API.  The second goal 
was to demonstrate time distribution using SpaceWire Time 
Codes and the CCSDS CUC formatted time message. 

In the first test, the time synchronization was performed 
on the SDR using the Clock Calibration waveform 
component (CLKCAL) to synchronize two different clock 
“kinds” on the SDR.  The CLKCAL waveform (1) computes 
the delta between the reference clock time and managed 
clock time, (2) computes the drift detection value for each 
clock, (3) reports any time delta or drift detection, and (4) 
synchronizes the managed clock to report the same time as 
the reference clock.  The STRS time API is used by 
CLKCAL for getting, setting, and synchronizing the time. 

 

Fig. 6.  Clock Synchronization Test 

In the second test configuration, the CLKCAL waveform 
was integrated with the SpaceWire Time interface.  The 
SpaceWire time interface on the SDR “slave” was 
implemented as a “waveform” component with counterparts 
running in both firmware on a Field Programmable Gate 
Array (FPGA) and software running on the SDR Sparc 
computer. 

The SPW waveform continuously (1) receives the time 
codes, (2) maintains a Time Code tick counter, (3) captures 
the time sent in the SpaceWire time messages, (4) sends 
periodic notifications at synchronization intervals and (5) 
makes the time available to other waveforms. 
 

Fig. 7.  Clock Synchronization with SpaceWire Test 

The time delta is computed by CLKCAL and is expected 
to be constant unless inaccuracies are introduced by jitter or 
drift. 

A set of “threshold” values (minimum, maximum, and 
rate adjustment maximum) is used to determine when to 
synchronize the clocks and which method to use (time jump,, 
incremental update, or a rate adjustment). 
The threshold minimum accounts for expected jitter 
introduced by the time distribution interface itself.  The 



 

 

minimum should not be 0 since there will always be some 
amount of jitter. The threshold minimum value can be 
determined by analyzing the delta values over a period of 
time. 

Any delta above the threshold minimum but below the 
rate adjustment maximum will cause a rate adjustment 
update to synchronize the clocks.  The rate adjustment is 
included in the conversion data used in the time conversion 
algorithm.  This is the smoothest update method.  Any delta 
between the minimum and the incremental adjustment 
maximum will use an incremental adjustment over a period 
of time.  Incremental updates will be made until they add up 
to the desired delta.  This adjustment period can be longer to 
make  smaller incremental updates or shorter to make bigger 
incremental updates.  Any delta above the incremental 
adjustment maximum will cause a time “jump”.  A “jump” is 
not desired when the managed clock is used for time based 
computations or activities but is a common method used for 
updating or synchronizing time during initialization. 
The clock drift is obtained by capturing a counter for each 
clock at specific intervals.  This counter should remain 
constant unless the clock is drifting.  Watermarks are used to 
track the range of drift for each of the clocks.  A drift 
watermark reporting threshold maximum value is used to 
determine when to report drift.  This reporting threshold can 
be 0 to always report any detected drift or a value that must 
be exceeded before the drift is reported. 

 

VIII. TEST RESULTS 
The initial tests run on the SDR show the STRS time 

interface successfully synchronizing two different clock 
“kinds” that exist on the same SDR.  The data below (in red) 
shows the software detecting the delta above the threshold, 
and performing the synchronization.  

Fig. 8.  Clock Synchronization 

The clock delta and drift reported by the CLKCAL 
waveform used inputs distorted by the jitter introduced by 
the software itself due to running in a multitasking 
environment on both the “master” and “slave”.  This 
artificial input data was useful in developing and testing the 
clock synchronization thresholds and synchronization 
response.  The use of an independently generated counter 
latched at fixed intervals as described in earlier work in [2] 
and a “distributed” interrupt generated via the TickOut signal 

as described in [6] are needed to account for the real 
inaccuracies introduced by latency, jitter, and drift. 

The synchronization parameters that were tested included 
thresholds to  control whether time was updated gradually or 
immediately in one-time jump. 

The following test result shows the “threshold min.” 
should be set to 6 usec to avoid synchronization for changes 
smaller than the expected. 1 to 5 usec range.  Based on this 
example, the changes above 5 usec would result in a clock 
synchronization. 

Fig. 9.  Synchronization Delta Values 

In earlier tests on the SDR, the CLKCAL waveform 
attempted to poll the received Time Code counter value to 
increment the Time Code virtual clock ticks.  These tests 
intermittently failed when generating Time Codes at 100 per 
second.  The “slave” reported a missed tick error when the 
Time Code value did not increment as expected, although 
this issue was not encountered when Time Codes were 
generated at once per second. 

The TickOut interrupt interface and a latched counter 
interface have since been implemented in the SDR FPGA 
firmware to mitigate these issues.  The TickOut interrupt unit 
tests showed that software increments the SpaceWire DCLK 
virtual ticks properly.  However, tests using these 
mechanisms integrated with CLKCAL are planned for the 
future. 

IX. CONCLUSIONS AND FUTURE WORK 
The STRS time API does accommodate synchronizing 

various clock "kinds" using clock compensation data to 
mitigate inaccuracies (latency, jitter, drift) in a time 
distribution system. 

Synchronization tolerance ranges (i.e. thresholds) can be 
used to determine which method to use for synchronizing 
clocks and when to correct for drift.  Future work is needed 
to establish the tolerance ranges for synchronizing clocks 
using the SpaceWire Time Distribution Protocol such as 
those described in [2] and [6]. 

The SpaceWire Time Codes are useful for creating a 
virtual clock on hosts connected via SpaceWire.  This 
SpaceWire virtual clock can be implemented on a "slave" 
host that may not have a clock. 
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