

Using SpaceWire Time Codes for Spacecraft Time
Synchronization

SpaceWire Missions and Applications, Short Paper

Susan C. Clancy, Mazen M. Shihabi, Krisjani S. Angkasa
Flight Communications Systems Section

Jet Propulsion Laboratory
Pasadena, California 91109 USA

Susan.Clancy@jpl.nasa.gov, Mazen.M.Shihabi@jpl.nasa.gov, Krisjani.S.Angkasa@jpl.nasa.gov

Abstract— This paper describes how SpaceWire Time
Codes can be used for synchronizing time within various
subsystems of a spacecraft as well as, maintaining a common
time reference needed for coordinating operations within a
spacecraft. The algorithms to account for inaccuracies in the
time distribution method were based on the NASA-4009
Space Telecommunication Radio System (STRS) standard
[1], which defined an interface for synchronizing clocks
running at different tick rates and tick resolutions.

Index Terms— Relevant indexing terms: SpaceWire,
SpaceWire Time Codes, SpaceWire Time Distribution
Protocol, CCSDS Unsegmented Time (CUC), Space
Telecommunications Radio System (STRS).

I. INTRODUCTION
Spacecraft systems are typically comprised of many

subsystems, each with their own clock running at different
tick rates and with varying performance, which can degrade
over time. Clock synchronization becomes very important in
cases where commands and activities need to be correlated
with a common time reference and for attitude determination
based on current time or predicted position propagated over a
period of time.

Subsystems needs to know what time it is in order to
perform synchronized activities, or to time-tag telemetry that
can be correlated with operations in other subsystems. One
subsystem equipped with a Ground Navigation Satellite
System (GNSS) receiver can maintain an accurate reference
of time and can act as the time “master” to distribute the time
to other nodes connected via SpaceWire.

II. SPACECRAFT TIME SYNCHRONIZATION METHODS
There are two common methods used for synchronizing

time on a spacecraft: (1) a periodic “message” based method
performed in software and (2) a periodic “hardware tick”
based method performed in hardware or firmware.

The “message” based method uses a “master” to generate
a “tick” message at specific intervals and sends a time
message to the “slaves” at a specific “tick”. The “slaves”
update their time at a time boundary after the time message

is received. In the example below, the “tick” message is sent
100 times per second, and the time message is sent once per
second prior to the one second time boundary.

Fig. 1. Time Synchronization “Message” Based Method

 The “hardware tick” method uses a “master” to send a
“tick” signal to all the “slaves”, who will then increment
their own slave clock. The hardware clock oscillator used to
generate the clock tick signal is usually a Temperature
Compensated Crystal Oscillator (TCXO) or Ovenized
Crystal Oscillator (OCXO) with accuracy better than 1 part
per million.

Fig. 2. Time Synchronization “Hardware Tick” Method

III. SPACECRAFT TIME SYNCHRONIZATION CHALLENGES
The challenges in synchronizing spacecraft time are

similar to those in ground-based systems:
A. Latency – the time it takes to transfer and respond to

a time update. Each spacecraft subsystem must
account for latency and be tolerant within a measured
minimum and maximum range. A technique for
measuring latency is described in the SpaceWire
Time Distribution Protocol [2].

B. Jitter – the intermittent delay in the path between the
master sending the time and the slave receiving and
updating their time. Each spacecraft subsystem must
tolerate a measured maximum jitter.

C. Drift – the variation in the clock tick rate due to
oscillator performance, which typically degrades over
time and varies with temperature. The time “master”
clock must be calibrated periodically to account for
the drift in the time conversion. The drift can be
accounted for as a clock rate correction [2] to mimic
the actual clock rate changes.

D. Time conversion – the different clocks may tick at
different rates and a conversion from the hardware
clock value to the time representation unit (usually in
seconds) is applied using the clock tick rate, clock
hardware value, and an offset, which typically
includes drift. The conversion algorithm needs to
account for latency, varying jitter, and clock
degradation.

A further complication is that the performance of the
clock oscillators in various parts of the system may be
orders of magnitude different: a spacecraft computer may
have a clock with 10 ppm performance, while spacecraft
radios and GNSS receivers may be accurate to parts per
billion (ppb). The system design, however, may be that all
systems need to follow the time kept by the spacecraft
computer, so the time distribution method must allow a
better clock to follow a poorer clock, which is different
than the typical Network Time Protocol (NTP)
architecture, where clocks at a lower stratum follow more
accurate clocks at a higher stratum.

IV. STRS TIME SYNCHRONIZATION METHOD
The NASA-STD-4009 Space Telecommunications

Radio System (STRS) architecture standard [1] defines some
time related functions and corresponding Application
Programming Interfaces (APIs) for getting, setting, and
synchronizing time. These functions are used by
applications to maintain and coordinate time derived from
different clocks that may have different tick rates and
resolutions.

Note that the reference clock may or may not have a
higher performance and stability than the monitored clock.
The purpose is to synchronize the clocks and not to maintain
the correct time. The reference clock and managed clock can
exist on the same local host or on different hosts but can be
synchronized to report the same time.

The core concept of the STRS clock model is that the
underlying clock is allowed to run unhampered, and the
relationship between the raw clock and “time” is
encapsulated in the API which provides a standardized way
of getting and setting time based on calling API functions
that can account for latency, jitter, and drift using conversion
data. This conversion data is set to values that initially
synchronize the reference clock with the managed clock.
The conversion data can be updated periodically to
continuously account for drift.

The linear conversion algorithm commonly used to
compute time, converts hardware clock ticks to time in
seconds using the oscillator clock rate and hardware clock
ticks as follows:

time = (clock_rate × clock_ticks) + offset
The STRS time conversion algorithms include additional
adjustments to the rate and offset to account for the
difference between two clocks plus the latency, drift, and
even jitter as follows:

STRS time = ((clock_rate + adjust_rate) × clock_ticks) +
(offset + adjust_offset)

Figure 3 below shows an implementation of an STRS
time interface that synchronizes a local reference clock and a
local managed clock. The conversion data is applied when
getting the time via the STRS_GetTime API function which
converts the clock value to a time in seconds and sub
seconds.

Fig. 3. STRS Time Synchronization Method

V. SPACEWIRE SPECIFICATION FOR TIME CODES

The SpaceWire Protocol Standard [3] includes the
definition of the time interface with Time Codes and the
TickIn and TickOut signals. The key features in any
implementation are:

A. Time Code generation or receipt can be enabled or
disabled.

B. The Time Code rate is generated by a “master” and
can be configured to send Time Codes at a specific
rate

C. The Time Code is a specific type of SpaceWire
message containing a Time Code identifier and Time
Code counter. The Time Code counter is an
incrementing 0 to 63 integer value and any missing
Time Code can be detected and reported by firmware
using this counter.

The Time Code TickIn / TickOut signals can support an
interface to a software interrupt line and/or hardware signal
going to a hardware clock. The time “master” (aka initiator)
can generate a software interrupt for each tick using the
TickIn signal. Using this TickIn interrupt, a “slave” (aka
target) can implement a SpaceWire “derived clock” to align
the tick generation with the time message.

VI. CCSDS TIME MESSAGE FORMAT
The CCSDS Unsegmented Code (CUC) Time

Specification [4] is a proposed standard for specifying time
as a number of seconds and sub-seconds.

Fig. 4. CCSDS Unsegmented Code (CUC) Format

The fields in the time announced message are as follows:

Fig. 5. Time Announced Message Format

VII. TIME SYNCHRONIZATION DEMO
The first goal was to demonstrate the ability to

compensate for time distribution inaccuracies due to latency,
jitter, and drift using the STRS time API. The second goal
was to demonstrate time distribution using SpaceWire Time
Codes and the CCSDS CUC formatted time message.

In the first test, the time synchronization was performed
on the SDR using the Clock Calibration waveform
component (CLKCAL) to synchronize two different clock
“kinds” on the SDR. The CLKCAL waveform (1) computes
the delta between the reference clock time and managed
clock time, (2) computes the drift detection value for each
clock, (3) reports any time delta or drift detection, and (4)
synchronizes the managed clock to report the same time as
the reference clock. The STRS time API is used by
CLKCAL for getting, setting, and synchronizing the time.

Fig. 6. Clock Synchronization Test

In the second test configuration, the CLKCAL waveform
was integrated with the SpaceWire Time interface. The
SpaceWire time interface on the SDR “slave” was
implemented as a “waveform” component with counterparts
running in both firmware on a Field Programmable Gate
Array (FPGA) and software running on the SDR Sparc
computer.

The SPW waveform continuously (1) receives the time
codes, (2) maintains a Time Code tick counter, (3) captures
the time sent in the SpaceWire time messages, (4) sends
periodic notifications at synchronization intervals and (5)
makes the time available to other waveforms.

Fig. 7. Clock Synchronization with SpaceWire Test

The time delta is computed by CLKCAL and is expected
to be constant unless inaccuracies are introduced by jitter or
drift.

A set of “threshold” values (minimum, maximum, and
rate adjustment maximum) is used to determine when to
synchronize the clocks and which method to use (time jump,,
incremental update, or a rate adjustment).
The threshold minimum accounts for expected jitter
introduced by the time distribution interface itself. The

minimum should not be 0 since there will always be some
amount of jitter. The threshold minimum value can be
determined by analyzing the delta values over a period of
time.

Any delta above the threshold minimum but below the
rate adjustment maximum will cause a rate adjustment
update to synchronize the clocks. The rate adjustment is
included in the conversion data used in the time conversion
algorithm. This is the smoothest update method. Any delta
between the minimum and the incremental adjustment
maximum will use an incremental adjustment over a period
of time. Incremental updates will be made until they add up
to the desired delta. This adjustment period can be longer to
make smaller incremental updates or shorter to make bigger
incremental updates. Any delta above the incremental
adjustment maximum will cause a time “jump”. A “jump” is
not desired when the managed clock is used for time based
computations or activities but is a common method used for
updating or synchronizing time during initialization.
The clock drift is obtained by capturing a counter for each
clock at specific intervals. This counter should remain
constant unless the clock is drifting. Watermarks are used to
track the range of drift for each of the clocks. A drift
watermark reporting threshold maximum value is used to
determine when to report drift. This reporting threshold can
be 0 to always report any detected drift or a value that must
be exceeded before the drift is reported.

VIII. TEST RESULTS
The initial tests run on the SDR show the STRS time

interface successfully synchronizing two different clock
“kinds” that exist on the same SDR. The data below (in red)
shows the software detecting the delta above the threshold,
and performing the synchronization.

Fig. 8. Clock Synchronization

The clock delta and drift reported by the CLKCAL
waveform used inputs distorted by the jitter introduced by
the software itself due to running in a multitasking
environment on both the “master” and “slave”. This
artificial input data was useful in developing and testing the
clock synchronization thresholds and synchronization
response. The use of an independently generated counter
latched at fixed intervals as described in earlier work in [2]
and a “distributed” interrupt generated via the TickOut signal

as described in [6] are needed to account for the real
inaccuracies introduced by latency, jitter, and drift.

The synchronization parameters that were tested included
thresholds to control whether time was updated gradually or
immediately in one-time jump.

The following test result shows the “threshold min.”
should be set to 6 usec to avoid synchronization for changes
smaller than the expected. 1 to 5 usec range. Based on this
example, the changes above 5 usec would result in a clock
synchronization.

Fig. 9. Synchronization Delta Values

In earlier tests on the SDR, the CLKCAL waveform
attempted to poll the received Time Code counter value to
increment the Time Code virtual clock ticks. These tests
intermittently failed when generating Time Codes at 100 per
second. The “slave” reported a missed tick error when the
Time Code value did not increment as expected, although
this issue was not encountered when Time Codes were
generated at once per second.

The TickOut interrupt interface and a latched counter
interface have since been implemented in the SDR FPGA
firmware to mitigate these issues. The TickOut interrupt unit
tests showed that software increments the SpaceWire DCLK
virtual ticks properly. However, tests using these
mechanisms integrated with CLKCAL are planned for the
future.

IX. CONCLUSIONS AND FUTURE WORK
The STRS time API does accommodate synchronizing

various clock "kinds" using clock compensation data to
mitigate inaccuracies (latency, jitter, drift) in a time
distribution system.

Synchronization tolerance ranges (i.e. thresholds) can be
used to determine which method to use for synchronizing
clocks and when to correct for drift. Future work is needed
to establish the tolerance ranges for synchronizing clocks
using the SpaceWire Time Distribution Protocol such as
those described in [2] and [6].

The SpaceWire Time Codes are useful for creating a
virtual clock on hosts connected via SpaceWire. This
SpaceWire virtual clock can be implemented on a "slave"
host that may not have a clock.

ACKNOWLEDGEMENT
The authors wish to acknowledge the following

individuals for their significant contributions: James P. Lux,
Minh Lang and David E. Robison from the Jet Propulsion
Laboratory, and David Chelmins and Larry M. Vincent from
the NASA Glenn Research Center.

This work was carried out at the Jet Propulsion
Laboratory in Pasadena (JPL), California, under contract
with the National Aeronautics and Space Administration, for
the SCaN Testbed Project. References herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute or
imply its endorsement by the U.S. Government or the Jet
Propulsion Laboratory.

©2016 California Institute of Technology. Government
sponsorship acknowledged.

REFERENCES
[1] NASA-STD-4009 Space Telecommunication Radio System

(STRS) architecture standard
[2] A. Sakthivel, J. Ekergarn, D. Hellström, S. Habinc, M. Suess,

“SpaceWire Time Distribution Protocol Implementation and
Results,” 6th International SpaceWire Conference, [September
2014]

[3] ECSS-E-ST-50-12A-C SpaceWire Protocol Standard
[4] CCSDS Time Code Format Recommended Standard, Issue 4

CCSDS-301.0-B-4 Blue Book November 2010
[5] Space Communications and Networking (SCaN) Test Bed

Experiment
https://spaceflightsystems.grc.nasa.gov/sopo/scsmo/scan-
testbed/

[6] S. Habinc, A. Sakthivel, M. Suess, “SpaceWire – Time
Distribution Protocol,” International SpaceWire Conference,
[June 2013].

