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PERIODIC ORBIT-ATTITUDE SOLUTIONS IN THE PLANAR
ELLIPTIC RESTRICTED THREE-BODY PROBLEM

Dayung Koh∗ and Rodney L. Anderson†

The pitch motion of a spacecraft in the planar elliptic restricted three-body system
is studied. Previous studies laid the foundation for spacecraft stability analysis
with a small perturbation to the zero pitch motion. In this study, a cell mapping
approach that combines analytical and numerical techniques is used to study the
global behavior of the full nonlinear spacecraft attitude in which coupling between
orbital dynamics and attitude occurs. The effect of gravity gradient torques, orbital
eccentricity, and the spacecraft configuration at different Lagrangian points is an-
alyzed. Multiple-period periodic solutions and invariant surfaces are presented
for different cases. Reference trajectories around the Lagrangian points are also
considered to study coupled dynamics.

INTRODUCTION

The problem of gravity gradient satellites has been studied extensively in the two-body system.
The classical studies on the topic were done by Beletskii4 and Modi et al.5 who formulated funda-
mental periodic solutions by employing the method of harmonic balance and boundary condition
problems. Zlatoustov et al.6 and Modi et al.7 studied families of periodic solutions of the pitch
oscillations by the method of numerical integration, and they investigated stability using a linear
approximation. Koh and Flashner8 investigated the pitch dynamics for elliptic orbits in the two-
body problem using the cell mapping method, and rich nonlinear dynamic characteristics including
multiple-period solutions, invariant surfaces, and bifurcations were found.

Recently, the success of libration orbit missions such as the International Sun-Earth Explorer-31

(ISEE-3), Genesis mission2 (2001), and others3 proved that the three-body problem can consider-
ably enhance our ability to perform sophisticated scientific explorations. In the three-body problem,
however, spacecraft experience complex dynamics that affect the gravity gradient torques in the cou-
pled dynamics. Consequently, a fundamental understanding of the attitude motion in these complex
dynamical environments is increasingly important.

The attitude dynamics in the three-body problem have not yet been fully discovered, although a
variety of researchers have begun to study this problem. Kane and Marsh9 and Robinson10 showed
the pitch motion stability chart for various configurations of a set of parameters at the libration
points by employing linearized methods. Ashenberg11 considered the elliptic three-body case and
showed Poincaré maps and bifurcation diagrams for the nonlinear pitch dynamics for a dumbbell
satellite at the libration points. Brucker and Gurfil12 explored the dynamics using Poincaré maps
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with particular initial conditions focusing on the vicinity of the Lagrangian collinear points, and they
also computed stability charts. Wong et al.13 investigated stability characteristics of the small pitch
motion but with spacecraft traveling in the linearly approximated orbits in the vicinity of libration
points. Guzzetti and Howell14 and Knutson et al.15 investigated stability characteristics of the pitch
motion using the Lyapunov and Halo orbit families. Most recently, Guzzetti and Howell16 studied
periodic solutions using Poincaré mapping / Floquet therory and differential correctors. They noted
that because of the complex dynamics, the formulation of periodic solutions depends significantly
on the initial guess.

In this study, global periodic orbit-attitude dynamics of the pitch motion in the elliptic restricted
three-body problem (ERTBP) are explored as we vary the spacecraft inertia parameter and the or-
bital eccentricity of the primaries. As other studies have noted, it is difficult to approach this prob-
lem using standard methods because of the coupled, nonlinear, and time-varying dynamics. One
approach that is ideal for a numerical exploration of this problem is the cell mapping method17, 18

that is based on a combination of analytical and numerical techniques. Various extensions of the
cell mapping method can be found such as generalized cell mapping19 using Markov chains and
set oriented methods20, 21, 22, 23 using subdivision techniques. We are focused here though on study-
ing global dynamical behavior of the coupled nonlinear dynamics with the rapid and fundamental
approach.

In the cell mapping approach (see Hsu17), the state variables are thought of as a collection of
intervals. The cell state space S we are interested in is constructed by dividing each state variable
component, θ and θ′, into uniformly sized cells. In the cell state space S, a cell-to-cell mapping C is
created. Solutions of period K · T , where T is the system period 2π, are found when a cell repeats
after applying the map K-times. An unravelling algorithm (see Hsu18) is used to find the periodic
solutions.

The present paper is dedicated to analyzing the periodic orbit-attitude solutions in the ERTBP.
The cell mapping method applied to the ERTBP will first be introduced, and then specific cases
with varying parameters will be explored. Specifically, these cases will include 1) the two-body
problem case compared to L3 of the three-body problem, 2) L2 and L4 in the circular restricted
three-body problem (CRTBP), 3) L2 and L4 in the ERTBP with varying orbital eccentricity and
spacecraft inertia parameters, and 4) reference trajectories in the vicinity of L2 and L4.

PROBLEM DESCRIPTION

In this study, periodic orbit-attitude solutions are found in the ERTBP using a cell-mapping
method. The motion of the spacecraft in the ERTBP is described in a rotating pulsating dimension-
less frame, centered at the barycenter ofM1 (the primary) andM2 (the secondary). The equations of
motion for the attitude of an axi-symmetric rigid spacecraft acted upon by gravity gradient torques
in the ERTBP is described by Euler’s equations (see Huges24):

I1
I ω̇B1 + (I3 − I2) IωB3 IωB2 = g1

I2
I ω̇B2 + (I1 − I3) IωB1 IωB3 = g2

I3
I ω̇B3 + (I2 − I1) IωB2 IωB1 = g3.

(1)

Here, Ii is the moment of inertia of the spacecraft about the i-axis, IωBi denotes the ith component
of the body frame’s angular velocity with respect to the inertial frame, and the gravitational torque,
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gi, induced by the primary and secondary bodies is given as

ḡ =
3M1

r3 · ρ31
ρ̂1 × I · ρ̂1 +

3M2

r3 · ρ32
ρ̂2 × I · ρ̂2

=
3M1

r3 · ρ31

 (I3 − I2)ρ̂12ρ̂13
(I1 − I3)ρ̂13ρ̂11
(I2 − I1)ρ̂11ρ̂12

+
3M2

r3 · ρ32

 (I3 − I2)ρ̂22ρ̂23
(I1 − I3)ρ̂23ρ̂21
(I2 − I1)ρ̂21ρ̂22

 (2)

where ρ̂n denotes a unit vector fromMn to the center of the spacecraft in a pulsating rotating frame.
By substituting Eq. (2) into Eq. (1), we get (see also Wong et al.13)

I1
I ω̇B1 + (I3 − I2) IωB3 IωB2 =

3M1

r3 · ρ31
(I3 − I2)ρ̂12ρ̂13 +

3M2

r3 · ρ32
(I3 − I2)ρ̂22ρ̂23

I2
I ω̇B2 + (I1 − I3) IωB1 IωB3 =

3M1

r3 · ρ31
(I1 − I3)ρ̂13ρ̂11 +

3M2

r3 · ρ32
(I1 − I3)ρ̂23ρ̂21

I3
I ω̇B3 + (I2 − I1) IωB2 IωB1 =

3M1

r3 · ρ31
(I2 − I1)ρ̂11ρ̂12 +

3M2

r3 · ρ32
(I2 − I1)ρ̂21ρ̂22.

(3)

Note that the pulsating frame is normalized using the distance r between M1 and M2,

r̄1 = r · ρ̄1
r̄2 = r · ρ̄2

(4)

where r = 1−e2
1+e cos ν . In Eq. (2), ρ̂1i and ρ̂2i, i=1, 2, 3, represent the ith component of the ρ̂n vector.

The position of the center of the spacecraft in the rotating frame [eR] relative to its position vector,
r̄p, can be written as

r̄R1 =

 xp +D1

yp
zp

 , r̄R2 =

 xp −D2

yp
zp

 (5)

where r̄p is the position vector of the center of the spacecraft and Dn is the distance of the mass
Mn from the barycenter in a dimensionless pulsating frame (D1 = µ and D2 = 1 − µ, where
µ = M2

M1+M2
). The position vector in Eq. (5) can be written in the body frame as

r̄Bn = BCR ·

 xp ±Dn

yp
zp

 (6)

Figure 1. Geometry of a satellite in the ERTBP
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with ‘+’ for n = 1, and ‘-’ for n = 2, where

BCR =

 cφcθ cφsθ −sφ
−cψsθ + sψsφcθ cψcθ + sψsφsθ sψcφ
sψsθ + cψsφcθ −sψcθ + cψsφsθ cψcφ

 . (7)

The body orientation is described in the body fixed frame, ēB , with respect to the rotating frame,
ēR using a 3-2-1 pitch, roll, and yaw (θ, φ, ψ) Euler rotation sequence. The corresponding body
frame’s angular velocity with respect to the inertial frame is

I ω̄B =I ω̄R +R ω̄B

=B CR

 0
0
1

 |ν̇|+
 1 0 −sφ

0 cψ sψcφ
0 −sψ cψsφ


 ψ̇

φ̇

θ̇

 =

 −sψ|ν̇|+ ψ̇ − sφθ̇
sψcφ|ν̇|+ cψφ̇+ sψcφθ̇

cψcφ|ν̇| − sψφ̇+ cψcφθ̇

 . (8)

The spacecraft’s displacement, r̄p, in Eq. (6) is prescribed in a cartesian coordinate system by

xp
′′ = 2yp

′ +
r

1− e2

(
xp − (1− µ)

xp + µ

ρ31
− µxp + µ− 1

ρ32

)
yp
′′ = −2xp

′ +
r

1− e2

(
yp − (1− µ)

yp
ρ31
− µyp

ρ32

)
zp
′′ =

r

1− e2

(
−(1− µ)

zp
ρ31
− µzp

ρ32

) (9)

where the prime denotes the derivative with respect to true anomaly. Euler’s equations and the
kinematic differential equations derived above are solved together by substituting Eqs. (4) - (9) to
Eq. (3) to produce the orbit-attitude solutions of the spacecraft.

In this study, we consider pitch dynamics in the planar problem for which ω1 = ω2 = 0 and
φ = ψ = 0 which leaves only the last line in Eq. (3):

II3 ω̇
B
3 =

3M1

r3 · ρ31
(I2 − I1)ρ̂11ρ̂12 +

3M2

r3 · ρ32
(I2 − I1)ρ̂21ρ̂22 (10)

and from Eq. (8) with the planar motion assumptions,

IωB3 =
d

dt
(θ + ν). (11)

The equations written with the true anomaly as the independent variable are more intuitive in the
elliptic orbit problem. An independent variable transformation using the relationship

dν

dt
=

(1 + e cos ν)2√
(1− e2)3

(12)
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leads to
I ω̇B3 =

d

dt
(θ̇ + ν̇)

=
d

dν

dν

dt

[
dθ

dν

dν

dt
+
dν

dt

]
=
d2θ

dν2

(
dν

dt

)2

+
dθ

dν

(
d

dν

dν

dt

)
dν

dt
+

(
d

dν

dν

dt

)
dν

dt

= θ′′
(
dν

dt

)2

+ (θ′ + 1)

(
d

dν

dν

dt

)
dν

dt

(13)

where the dot and the prime denote the derivative with respect to time and ν, respectively.

By substituting Eq. (13) to Eq. (10), r = 1−e2
1+e cos ν , and ρ̂n = ρ̄n/ρn, we get:

(1 + e cos ν)θ′′ − 2e sin ν(θ′ + 1) =
3µ1
ρ51

k3[(y
2
p − (xp + µ)2) sin θ cos θ + (xp + µ)yp(cos2 θ − sin2 θ)]

+
3µ2
ρ52

k3[(y
2
p − (xp + µ− 1)2) sin θ cos θ + (xp + µ− 1)yp(cos2 θ − sin2 θ)]

(14)
where k3 = (I2 − I1)/I3. The primaries’ mass parameters using this notation are the same as the
three-body problem, i.e. M1 = µ1 = 1 − µ, and M2 = µ2 = µ. Example shapes of spacecraft for
different inertia parameters k3 are shown in Fig. 2.

Figure 2. Example spacecraft shapes for different inertia parameters k3

Note that for L1, L2, and L3, this equation reduces to

(1 + e cos ν)θ′′ − 2e sin ν(1 + θ′) = −3

2

[
1− µ
ρ31

+
µ

ρ32

]
k3 sin 2θ. (15)

which is the same equation that Ashenberg11 used in his study. For L4 (12 − µ,
√
3
2 ) in the ERTBP,

the equation becomes

(1 + e cos ν)θ′′ − 2e sin ν(1 + θ′) =
3

4

[√
3(1− 2µ) cos 2θ + sin 2θ

]
k3. (16)

Note that with the flipped rotating frame with the primary at (µ, 0) and the secondary at (−1 +µ, 0)
used in Ashenberg,11 the L4 point is at (−1

2 +µ,
√
3
2 ) by his definition. Then the pitch motions at the

L4 point are mirror symmetric to the motions computed with the above equations of motion with
respect to x = 0. For the case where e = 0, this reduces to the CRTBP, and Eq. (14) reduces to

θ′′ = θ̈ =
3µ1
ρ51

k3[(y
2
p − (xp + µ)2) sin θ cos θ + (xp + µ)yp(cos2 θ − sin2 θ)]

+
3µ2
ρ52

k3[(y
2
p − (xp + µ− 1)2) sin θ cos θ + (xp + µ− 1)yp(cos2 θ − sin2 θ)]

(17)

which is the same equation used in Knutson et al.15
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METHODOLOGY

In this section, the cell mapping method of Hsu17, 18 and the extended cell mapping computa-
tion27 are described. Thorough steps for analyzing global dynamic behavior using the methods with
examples are introduced. In the final subsection, the computational implementation is summarized.

Cell mapping formulation

Consider a dynamical system
ẋ(t) = f(t,x(t)) (18)

and define the states xi, i = 1, 2, ..., N (N=number of states) to get a state representation. The cell
state space S is constructed by dividing the bounded state variables between x(L)i (lower limit) and
x
(U)
i (upper limit) into a small interval with uniform size hi. Each cell center is considered to be an

entity represented by an integer, and the state space S is regarded as a collection of these cells. The
region outside of this bounded region is defined as the ‘sink cell.’

Figure 3. Cell state space for N = 2

Figure 3 presents an example for a two dimensional cell state space. Each state variable, x1 and
x2, is divided into a finite number of cells, Nc1 and Nc2, with intervals of h1 and h2, respectively.
Then S contains a total number of cells Nc = Nc1 ×Nc2 × · · · ×NcN . Each cell is identified by its
center point and numbered sequentially, z = 1 to z = Nc.

In the cell state space S, one can form the cell mapping C of a dynamical system by integrating
it for one specified period T . The evolution of a discrete dynamical system can be described by

z(n+ 1) = C(z(n)) (19)

where C : S → S, z(n) = 1, 2, · · · , Nc.

Table 1 gives an example of a schematic cell mapping with the cell state space shown in Fig. 3.
Cells numbered from z = 1 to z = 35 are mapped to C(z) after one integration of period T . The
mapping C(z) = 0 indicates that cell z is mapped out of the cell state space to the sink cell. The
cell z and mapping C(z) can be stored as a vector form or a matrix form for the computational
algorithm.
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Table 1. Example of a cell mapping C(z)

z C(z) z C(z) z C(z) z C(z) z C(z)

1 9 8 9 15 8 22 15 29 0

2 9 9 9 16 9 23 15 30 22

3 10 10 9 17 9 24 16 31 23

4 10 11 17 18 19 25 20 32 0

5 0 12 5 19 13 26 27 33 0

6 0 13 14 20 34 27 28 34 25

7 0 14 0 21 0 28 0 35 0

An intuitive understanding of the cell mapping may be obtained by observing the C(z) in Table
1 in the cell state space, as shown in Figure 4. Arrows show the evolution of each center point after
integration for one period.

Figure 4. An example of cell mapping C(z)

Computation of discrete periodic solutions

Once the mapping process is complete, i.e., we have C(z), the properties of the cells are deter-
mined using an unraveling algorithm (see Hsu18). The dynamics of the cell mapping is characterized
by classifying singular cells as either equilibrium cells or periodic cells. An equilibrium (or period
one) cell z∗ is given by

z∗ = C1(z∗). (20)

To define periodic cells, let Cm denote the cell mapping C applied m times (m is an integer) with
C0 understood to be the identity mapping. A sequence of K distinct cells z∗(j), j = 1, 2, · · · ,K
which satisfies

z∗(m+ 1) = Cm(z∗(1)), m = 1, 2, · · · ,K − 1,

z∗(1) = CK(z∗(1))
(21)
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is a P −K mapping.

To delineate the global properties, three entities are defined from the unraveling algorithm, as
follows:

1. Group number (Gr): Positive integers that are assigned sequentially as the periodic motions
are discovered. Each group has an invariant set in the form of a periodic motion and shares
the same periodicity number.

2. Periodicity number (P): This number indicates that the cell or a group that the cell belongs to
is periodic with a period of P · T .

3. Step number (S): The number of steps to map a cell into a group is assigned to each cell. If
the step number of z is 0, it is a periodic cell.

Figure 5 shows some of the periodic cells for the previous mapping example (Fig. 4). The solid
gray shaded cell is an equilibrium (P − 1) cell which maps back to itself after one period. The

Figure 5. Equilibrium cell z∗ and P −K cells z∗(i), i = 1, · · · , K for K = 3

red dashed edge cells (z25 → z20 → z34 → z25) are P − 3 cells where each one of them maps
back to the same cell after three periods. For further global dynamics analysis, the hatched cells are
attracted to the cell z = 9 (see the arrows in Fig. 4). White cells are the ones eventually mapped to
the sink cell.

All of these dynamics characteristics can be determined by running the unraveling algorithm.
The result of the unraveling algorithm is represented in another form in Table 2 based on the cell
mapping example from Fig. 4 (z = 10 to z = 19 are omitted to save space). There are three
groups: the P − 1 solution (Gr = 1), the sink cell (Gr = 2), and the P − 3 solution (Gr = 3). The
same group number classifies types of motion sharing the same periodicity number. Note that the
periodicity number for a sink cell is defined as 0. The unraveling algorithm runs sequentially from
z = 1 to z = Nc until the algorithm reaches a periodic cell.

The unraveling algorithm starts with z = 1 which maps to z = 9. The cell z = 9 maps to
z = 9 which is found to be a P − 1 cell. Then the algorithm identifies the group and assigns the
characteristic numbers for z = 1 and 9 as Gr(1) =1, P(1)=1, S(1)=1 and Gr(9)=1, P(9)=1, S(9)=0.
Then the algorithm moves on to z = 2 which is the next unidentified cell, and it then maps to z = 9
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Table 2. Schematic cell mapping C(z)

z C(z) Gr P S z C(z) Gr P S

1 9 1 1 1 23 15 1 1 3

2 9 1 1 1 24 16 1 1 2

3 10 1 1 2 25 20 3 3 0

4 10 1 1 2 26 27 2 0 3

5 0 2 0 1 27 28 2 0 2

6 0 2 0 1 28 0 2 0 1

7 0 2 0 1 29 0 2 0 1

8 9 1 1 1 30 22 1 1 4

9 9 1 1 0 31 23 1 1 4

... ... ... ... ... 32 0 2 0 1

20 34 3 3 0 33 0 2 0 1

21 0 2 0 1 34 25 3 3 0

22 15 1 1 3 35 0 2 0 1

again which was just defined as Gr(9)=1. Thus, it assigns the same group number and periodicity
number as Gr(9) and P(9), i.e. Gr(2)=1, P(2)=1. The step number S(2) is 1 because it took one
mapping to fall into the group. The next sequence follows with z = 3 until all the cells have been
assigned group, periodicity, and step numbers.

In summary, the gray shaded P − 1 cell and the hatched cells in Figure 5 belong to the same
group, Gr=1, sharing the same periodicity number, P=1. The white cells have Gr=2 and P=0. The
dashed edge ones are P − 3 cells, and they are assigned Gr=3 and P=3.

Stability and bifurcation conditions

After finding a periodic solution x∗, its local stability can be investigated using eigenvalues of the
monodromy matrix. Let us define u(t) = x(t) − x∗(t; s) as the perturbation of the state x about
a periodic solution x∗. In order to analyze stability of the periodic solution, the system Eq. (18) is
expressed as

u̇(t) = A(t, s)u(t) +

∞∑
k=2

rk(t,u(t), s;x∗), (22)

where the matrixA(t) ∈ RN×N is given by

A(t, s) =

[
∂f(t,x, s)

∂x

]
x=x∗

,

and rk(t,u(t), s;x∗) is a vector of all polynomials of degree k in the components of u(t).

Then a discrete-time representation expressed by time-invariant difference equations (see25, 26)
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can be obtained as
um+1 = H(s)um + h.o.t, m = 1, 2, · · · (23)

where H(s) ∈ RN×N is given by

H(s) = HK(s)HK−1(s) · · ·H1(s). (24)

Note thatH(s) can be computed by using an algorithm for the computation of point mappings.25, 26

The local stability of a P −K solution is determined by the eigenvalues of matrix H(s). Note
that for Hamiltonian systems, H is symplectic, i.e., detH(s) = 1 and all eigenvalues of H satisfy
λi+1(H) = 1/λi(H). When the eigenvalues of H reside on the unit circle, the solution is locally
stable. If not, the solution is unstable with the pairs of eigenvalues satisfying |λi(H)| > 1 and
|λi+1(H)| < 1.

Bifurcation from a P −K solution to a P −MK solution may occur if there exists an integer M
such that

det(I −HM ) = 0 (25)

(see Flashner and Hsu25). In particular, one of the eigenvalues of H is λi,i+1 = 1 for a P − 1 to
P − 1 bifurcation, and λi,i+1 = −1 for a P − 1 to P − 2 bifurcation.

Extended Cell Mapping Computation

Assume that cell j1,2,3 are P − 3 cells as shown in Fig. 6. Then the center of the cell φ∗j is
mapped back to the same cell after three mapping iterations, i.e., φ∗j = G3(φ∗j ) when a discrete-
time representation of the system ẋ = f(t,x(t), s) is formulated by an operator G,

xn+1 = G(xn, s), n = 1, 2, · · · . (26)

However, the center of the cell φ∗j may not be an exact P − 3 point. We called it as a ‘discrete
periodic solution’ from the cell mapping. The exact periodic point can be another location in the
vicinity of the center point. We shall use the concept of extended cell mapping introduced by Golat
et al.27 to develop an algorithm for computing the exact periodic point z∗ with a parameter ζ.

Figure 6. Illustration of the extended cell mapping method
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For a general argument, assume that cells j1, · · · , jK constitute P −K solutions which hold the
following sequence of mappings:

φ∗j1
G(φ∗j1

)
−−−−→ φ∗j2

G(φ∗j2
)

−−−−→ · · · φ∗jK
G(φ∗jK

)
−−−−−→ φ∗j1

where φ∗ji is the center of the cell ji, i = 1, · · · ,K. The exact P −K solutions are at locations ζi
from the center of the periodic cells φ∗ji , i = 1, · · · ,K, as shown in Fig. 6. Then the perturbation
of the center of cells, ζi, satisfies the following sequence of point mapping

G(φ∗ji + ζi) = φ∗ji+1
+ ζi+1, i = 1, · · · ,K − 1

G(φ∗jK + ζK) = φ∗j1 + ζ1.
(27)

We have N ·K equations with N ·K unknowns where N is the number of states.
Expansion of the functionG in Eq. (27) in Taylor series about the solution φ∗j yields

G(φ∗ji + ζi) = G(φ∗ji) +G(m)(ζi), i = 1, · · · ,K. (28)

The value of G(φ∗ji) can be obtained by integration of the continuous-time equations given in
Eq. (18) over one period of time with initial conditions x(0) = φ∗ji and substitution of Eq. (28)
into Eq. (27) yields:

ζi+1 = G(φ∗ji)− φ
∗
ji+1

+G(m)(ζi), i = 1, · · · ,K − 1

ζ1 = G(φ∗jK )− φ∗j1 +G(m)(ζK).
(29)

For m = 1, i.e., the linear approximation of Eq. (29) takes the form

ζi+1 = 4i +H i · ζi
ζ1 = 4K +HK · ζK

(30)

where
4i = G(φ∗ji)− φ

∗
ji+1

, i = 1, · · · ,K − 1,

4K = G(φ∗jK )− φ∗j1 , H i =

[
∂G

∂x

]
φ∗ji

.

Thus, the correction ζ1 can be found iteratively with the first point of the P −K solution, and ζ1 is

(I −H)ζ1 = b =⇒ ζ1 = (I −H)−1b (31)

whereH =
∏K
i=1H i, b = 4K +

∑K−1
i=1 (

∏K
K=i+1HK) ·4i. Note that Eq. (31) has a singularity

problem if we are at a bifurcation point. The rest of the corrections, ζi, i = 2, · · · , K, are computed
using Eq. (30).

Cell mapping implementation

For the global analysis of the nonlinear dynamic system, the cell mapping method is utilized.
Two main steps for the global analysis are developed. First, the cell mapping is obtained for the
given dynamical system by integrating over one desired period T . Then, the global properties, such
as equilibrium points, discrete multiple-period periodic solutions, and regions of attraction of the
system are extracted by an unraveling algorithm.

The computational algorithm is written using the MATLAB parallel computing tool box and
implemented on a high performance computation (HPC) supercomputer for better computational
performance. A procedure for the study is summarized in the following.
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1. Select a cell state space and divide it into a finite number of cells as in Fig. 3

2. Develop a cell mapping for the state space, see Eq. (19), Table 1, and Fig. 4

3. Employ the unraveling algorithm (see Hsu18) to analyze global properties, see Fig. 5 and
Table 2

4. Run the extended cell mapping method to increase the accuracy of the discrete P −K solu-
tions found in Step 3, see Eq. (27)

5. Evaluate the local stability characteristics and bifurcation conditions of each solution using
eigenvalues of the monodromy matrix of Eq. (24)

RESULTS

The two body problem vs. CRTBP at L3

To begin the study of the complex nonlinear spacecraft attitude coupled with orbital dynamics in
the three-body problem, one of the cases of a gravity gradient satellite in the two-body system study8

is recalled as shown in Figure 7a. The assumption of only one primary (such as the Earth) exerting
a gravitational influence on an orbiting satellite was made, and the system is non-dimensionalized
. The present investigation involves studying the effect of the two primaries (such as the Earth and
the Moon) on the attitude behavior of the spacecraft. To facilitate discussion of the comparison, the
spacecraft is located at L3 where it is farthest from the second primary’s gravitational effect.

(a) The two-body system8 (b) The elliptic restricted three-body problem, L3

Figure 7. Cell mapping results for the two-body problem and the ERTBP at L3 of the
Earth-Moon system, k3 = 0.1, e = 0.01

The cell mapping results showing the discrete periodic solutions for the pitch motion of a space-
craft located at L3 with k3 = 0.1 and e = 0.01 are shown in Figure 7b. For this case, the position
of the spacecraft was known to be at the L3 equilibrium point in the ERTBP at all times. The cell
mapping grid was set up in [θ, θ′] with an interval size of 0.005 radians (0.2865 deg) in θ and 0.005
radian/radian (0.2865 deg/rad) in θ′. The cell map was computed at a period of 2π, and the resulting
P −K solutions were found using the unraveling algorithm. The P − 1, P − 2, and P − 3 peri-
odic solutions from this analysis are shown in Figure 7b as well as islands of points around these
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solutions. The islands are points corresponding to selected solutions with the same group number,
chosen to illustrate overall attitude dynamics in the region.

Comparison of the cell mapping results in Figure 7 shows that the attitude dynamics for the two
cases have nearly identical patterns. Kane and Marsh9 mentioned this similarity using the stability
chart. The center point of the invariant curves is the P − 1 solution. Both have stable behavior with
the spacecraft initially pointing to the first primary (or the only primary, the Earth) with small initial
θ′ such as θ′|twobody = 0.028337 rad/rad (1.6236 deg/rad) and θ′|L3 = −0.029416 rad/rad
(−1.6854 deg/rad). The similarity is found for the P − 2 and P − 3 solutions and its invariant
surface as well. Note that the same configuration (e = 0.01 and k3 = 0.1) dynamics was studied at
L2 and L4 and presented in Figure 13a and Figure 26a, respectively. The loss of the similarity at L2

and L4 can be attributed to the fact that the second primary’s gravity field significantly affects the
attitude dynamics.

CRTBP at L2 and L4, k3 = 1

Ashenberg11 used bifurcation diagrams and Poincaré maps to explore periodic motions with
dumbbell shaped spacecraft (k3 = 1) located at L2 and L4 of the Earth-Moon system (T = 2π)
while assuming the eccentricity is zero with zero initial state. The study presented Poincaré maps
with P − 1, P − 2, and P − 3 solutions. Here, the study is repeated using the cell mapping method,
verifying the existence of pendulum-like periodic solutions.

(a) L2 (b) L4

Figure 8. Cell mapping results for T = 2π (in the middle) and pitch dynamics vs.
true anomaly at the Lagrangian points of the Earth-Moon system, k3 = 1, e = 0

The cell mapping results are shown in the middle of Figure 8 for both cases. Each point on the
curves represents an initial condition for periodic motion with a period of 2π, the mapping period.
One of the solutions was selected from each curve to show its motion over two-orbital revolutions
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(θ vs. ν). The periodic motions with different frequency responses, m:n, are presented where m
and n are the number of pitch librations and the number of orbits of the spacecraft, respectively.
The outermost curve, a), for both is a P − 1 solution, and the ratio increases as the pitch amplitude
decreases in size. The center point in Figure 8 for both cases is an equilibrium point. The spacecraft
orientation with the equilibrium pitch state θ0|L2 = 0 and θ0|L4 = 60.3070 deg with θ′ = 0 is shown
in Figure 9. The stable solution shown in Figure 9 corresponds to the case where the spacecraft
attitude initially points to the Earth. In this case, the spacecraft remains in this orientation across
time at the libration point. Note that this case is addressed again in the later sections to investigate
how the orbital eccentricity affects the pitch motion.

Figure 9. Equilibrium pitch motion at L2 and L4 for e = 0

It is interesting to explore the case where the eccentricity of the primaries is varied, and the
Earth-Moon system with e ≈ 0.05 is one realistic case of interest. Figure 10 shows the effect of
the primaries’ orbital eccentricity on the pitch motion of a spacecraft placed at L4 using the cell
mapping method. An isolated unstable P − 1 solution appears for e = 0.05 (see Figure 10a). As

(a) L4, e = 0.05 (b) L4, e = 0.1

Figure 10. Cell mapping for T = 2π at the Lagrangian point L4 of the Earth-Moon
system including eccentricity, k3 = 1.

orbital eccentricity is increased, P − 2 and P − 3 solutions with invariant surfaces around them are
also found using the cell mapping algorithm. Figure 10b shows two islands around a stable P − 2
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solution. Another P − 2 solution predicted from the cell mapping is shown. Triangles indicate the
possible existence of P − 3 solutions from the cell mapping step. The accuracy of the solutions
from the cell mapping (discrete periodic solutions) may be updated by running the extended cell
mapping, and future work will focus on refining these solutions further. The cell mapping solutions
(discrete periodic solutions) are run to a tolerance of approximately 0.001 radians, since the grid
used for the cell mapping was from 0.001 to 0.005. The refined P − 1 states with the extended cell
mapping step a) (60.3038 deg, 2.5554 deg/rad) and (60.3153 deg, 87.9433 deg/rad) at e = 0.05 are
shown in Fig. 11. The initial orientation is close to the equilibrium condition at e = 0, but it has
a pitch velocity that maintains attitude. The corresponding trajectories in the phase plane and the

(a) (θ, θ′)|0=(1.0525 0.0446) (b) closer view of (a) (c) (θ, θ′)|0=(1.0527 1.5349)

Figure 11. Example of P − 1 pitch motion at L4 of the Earth-Moon system, k3 = 1

angular response with the true anomaly for selected points are shown in Figure 12, verifying their
periodicity.

(a) L4, e = 0.05 a) P-1 (b) L4, e = 0.05 d) P-2

Figure 12. Pitch dynamics at the Lagrangian point L4 of the Earth-Moon system
including eccentricity, k3 = 1

At ERTBP L2 and CRTBP reference trajectories around L1,2

The effect of the two primaries’ gravity gradient torques, orbital eccentricity, and shape of the
spacecraft on the pitch motion of the spacecraft when the spacecraft is placed at L2 is studied. First,
k3 is fixed as 0.1 with varying orbital eccentricity, and e is fixed as 0.05 with varying k3 while
the spacecraft is located at L2. Next, some Lyapunov orbits were considered as reference trajecto-
ries. Global pitch dynamic behavior including invariant surfaces, multiple-periodic solutions, and
bifurcations which were not previously known are revealed.
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Varying eccentricity at L2, k3 = 0.1 Since most studies have focused on the circular case or
linearized solutions,11 it is important to explore how the primaries’ orbital eccentricity affects the
pitch motion. For that, the inertia parameter k3 is fixed as 0.1 (see Fig. 2), and the invariant surfaces
are found for varying orbital eccentricity using the cell mapping method. As shown in Fig. 13,
the islands around the P − 1 solution and discrete multiple-period solutions have been found. The
amplitude of P − 1 motion increases in size as the orbital eccentricity increases but the size of the
invariant surface shrinks.

(a) e = 0.01 (b) e = 0.05 (c) e = 0.1

Figure 13. Cell mapping for T = 2π at L2 in the ERTBP, k3 = 0.1

For better understanding the invariant surfaces from the unraveling algorithm, different groups is
broken down into step by step for the case e = 0.05. Selected groups labeled sequentially are shown
in Fig. 14. Each group represents different period of invariant surface, and the attitude motion is
bounded within the corresponding initial conditions. Fig. 14c group 3 contains P −6 solutions, and
Fig. 14l group 12 is a group of P − 1 solutions.

The equilibrium solution at (0, 0) no longer exists for these eccentric orbits, and the P −1 motion
with some value of initial pitch velocity exists as shown in Fig. 15 in the phase plane. As orbital
eccentricity is increased, a larger initial θ′ is required to maintain the position pointing to the Moon
at ν = 0. These P − 1 solutions have tolerance around 2e − 5 radians. To show the effect of the
eccentricity, the pitch motion with the (0, 0) initial condition is compared to the P − 1 solution as
an initial condition for 7 · T at e = 0.01 is compared. Figures 16b and 16d show the phase plane
with the initial condition, and 16a and 16c indicate the corresponding pitch motion in the rotating
frame captured every period for seven orbital revolutions. The body coordinate frame eB1 (solid
line) and eB2 (dashed line) is placed at L2. Note that the spacecraft is in planar motion, i.e., zp and
eB3 are in the out of plane direction, and the body frame is not to scale. The spacecraft maintains its
attitude with the P − 1 solution at periapsis found from the cell mapping, whereas the pitch motion
amplitude continuously grows as ν increases for the case with an initial condition at (0, 0).

Multiple-period solutions which might be useful for various scenarios of pointing at different
locations are found as well using the cell mapping method. As an example, the P − 6 solution at
e = 0.05 is presented in the phase plane in Figure 17. The extended cell mapping can be applied to
multiple-periodic solutions updating and refining each point in parallel. The tolerance of the P − 6
solution was tightened down to 1e− 4 radians. Note that the reference point/trajectory was fixed as
initially set at all times.
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(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4

(e) Group 5 (f) Group 6 (g) Group 7 (h) Group 8

(i) Group 9 (j) Group 10 (k) Group 11 (l) Group 12

Figure 14. Selected groups from the unraveling algorithm, e = 0.05

(a) e = 0.01 (b) e = 0.05 (c) e = 0.1

Figure 15. Pitch vs. Pitch velocity of P − 1 solution, k3 = 0.1

Varying inertia parameter at L2, e = 0.05 It is also interesting to study the pitch dynamics with
a varying spacecraft inertia parameter. The orbital eccentricity is chosen as e = 0.05 for the Earth-
Moon ERTBP, and pitch dynamics is studied at L2. One to three P−1 solutions at θ0 = 0 are found,
and invariant surfaces around them are discovered for different k3 as shown in Figure 18. Multiple-
periodic solutions such as P − 2 and P − 3 are found as well. The potential P − 3 solutions from
the cell-mapping step are shown in Figure 18a, and further refinement can then be applied to find
the periodic solutions using a stricter tolerance.

17



(a) e = 0.01, (0,0) at every ν = 0 (b) e = 0.01, (0,0) for 7 · T

(c) e = 0.01, P − 1 at every ν = 0 (d) e = 0.01, P − 1 for 7 · T

Figure 16. Pitch motion captured every period for 7 orbital revolutions ν = 0 com-
paring initial conditions of (0, 0) and P − 1, e = 0.01

Figure 17. P − 6 solution trajectory in the phase plane

The P − 1 solutions found using the cell mapping method can be shown in a bifurcation diagram
as presented in Fig. 19. There is one stable P −1 solution for k3 = 0.1. An unstable P −1 solution
and a stable P − 1 solution evolves near k3 = 0.15.

It is demonstrated how spacecraft (k3 = 0.3) behave throughout each orbital revolution for two
of the P − 1 solutions, P − 1 (a) and P − 1 (b) in Fig. 20. As expected, P − 1(a) maintains its
pitch angle close to zero. P − 1(b) oscillates with a larger angle about zero, but comes back to the
initial condition after one period. P − 2 motion is shown in Fig. 21. The pitch motion starts at
‘1)’ as an initial condition, passes ‘2)’, and comes back to the initial attitude condition at 2 · T . The
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(a) k3 = 0.3 (b) k3 = 0.2

(c) k3 = 0.15 (d) k3 = 0.1

Figure 18. Cell mapping for T = 2π at L2 in the ERTBP, e = 0.05

Figure 19. Bifurcation diagram dθ/dν vs k3

corresponding pitch motion is shown in the rotating frame in Fig. 21a. Again, the body coordinate
frame eB1 (solid line) and eB2 (dashed line) is placed at L2.

CRTBP reference trajectories around L1,2 Now that the pitch dynamics atL2 have been explored,
it is interesting to analyze how the motion translates when the spacecraft is placed on reference tra-
jectories. Three Lyapunov orbits were chosen to show in this paper, a Lyapunov orbit around L1
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(a) P − 1 (a), k3 = 0.3 (b) P − 1 (b), k3 = 0.3

Figure 20. Pitch motion of P − 1 at L2 in the ERTBP, e = 0.05

(a) P − 2, k3 = 0.3 (b) P − 2, phase plane

Figure 21. Pitch motion of P − 2 at L2 in the ERTBP, e = 0.05

with T = 3.358724106 which was analyzed on Guzzetti and Howell16 and two Lyapunov orbits
around L2 with T = 3.47866979 and T = 4.187193272. Figure 22 gives an idea of the size of the
reference trajectories in the rotating frame. As an overview, the P − 1 motion found using the cell
mapping method is shown on top of the reference trajectories.

Invariant surfaces and discrete multiple-period solutions are shown in Figures 23 to 25 for each
reference trajectory. Comparing these three, the P − 1 solution for the L1 Lyapunov orbit has
higher θ′ than ones for the L2 Lyapunov orbits. Correspondingly, pitch oscillates more in the L1

Lyapunov orbit than the L2 orbits as shown in Figures 23b, 24b, and 25b. One other kind of P − 1
solution is found for the larger L2 Lyapunov orbit. The initial pitch angle is 90 deg, which means
eB2 points to the Moon, instead of eB1 . It is found that the two P − 1 pitch motion solutions have
reflectional symmetry with respect to (0, 0). Lastly, the discrete multiple-periodic period motion
found using the cell mapping is shown in the phase plane in Figures 23c and 24c. All the given
solutions’ tolerances were able to be decreased down to 1e− 5 radians.
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Figure 22. P − 1 motion along reference trajectories in the rotating frame

(a) Cell mapping result (b) P − 1 (c) P − 4

Figure 23. Pitch motion at L1 Lyapunov orbit T=3.358724106, k3 = 0.4

ERTBP at L4 and CRTBP reference trajectory around L4, k3 = 0.1

At L4, as e increases, the amplitude of θ′ for P − 1 solutions increases, whereas the amplitude
of P − 2 solutions decreases. There is an isolated P − 1 solution with e = 0.1, i.e., no invariant
surface around the solution is found using the cell mapping.

Pitch dynamics on a reference trajectory around L4 is shown in Figure 27. The period of the
reference orbit in Figure 27a is T = 6.5847782. Figure 27b shows the corresponding periodic
solutions from the cell mapping. The center of the invariant surfaces is the P−1 solution. Compared
to Figure 26, the periodic solutions are shifted as the reference orbit is translated. Figure 27c shows
an example of the pitch motion trajectory with an initial point on the P − 2 solution with period 2T.

CONCLUSIONS

Cell mapping methods were applied to the ERTBP to study orbit-attitude coupled solutions at
the libration points and libration point orbits. The cell mapping method enabled rapid exploration
across various parameters including eccentricity and the spacecraft shape. In each case the cell
mapping method allowed the computation of periodic solutions including K-periodic attitude solu-
tions and invariant surfaces which indicate quasi-periodic regions around the periodic solutions. It is
demonstrated that the characteristics of pitch dynamics at L3 in the three-body problem are close to
the gravity gradient satellite in the two body problem. However, the dynamic behavior significantly
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(a) Cell mapping result (b) closer view

(c) P − 1 (d) P − 5

Figure 24. Pitch motion at L2 Lyapunov T=3.47866979

(a) Cell mapping result (b) P − 1 (c) P − 1

Figure 25. Pitch motion at L2 Lyapunov T=4.187193272

changes at L2 and L4. Pitch oscillation of a spacecraft initially oriented to point toward the Moon
grows larger, and the size of the invariant surface is reduced as eccentricity increases for both cases.
In addition, a P − 1 to P − 1 bifurcation was found by varying the spacecraft inertia parameter at
L2. Attitude dynamics coupled with reference trajectories were also studied. Even though relatively
narrow invariant surface regions were found as the spacecraft is placed at libration orbits, periodic
solutions were able to be found. Multiple-periodic motions were also discovered.

FUTURE WORK

Further exploring the effects of changing eccentricity, spacecraft shape, and three-body orbits are
planned. Additional work will focus on refining the cell-mapping and extended cell-mapping results
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(a) e = 0.01 (b) e = 0.05 (c) e = 0.1

Figure 26. Cell mapping for T = 2π at L4 in the ERTBP, k3 = 0.1

(a) Reference orbit around L4 (b) Cell mapping result for T =
6.5847782

(c) Trajectory of P − 2 solution

Figure 27. Pitch motion on an orbit around L4, e = 0, k3 = 0.1

even further. This process will aid in differentiating potential periodic solutions from quasi-periodic
orbits.
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