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Abstract— This paper presents a new approach to depth
from stereo in scenes with non-Lambertian surfaces. While
these surfaces usually prove to be hard to incorporate in
photo-consistency energy minimization, we retrieve additional
information about their surface normals from applying a
polarization-based approach that computes the degree and
angle of polarization at each pixel. Therefore, we set up a stereo
camera rig that captures four different rotations of a linear
polarizer simultaneously for each camera. While most existing
polarization-based approaches to shape reconstruction require
a setup with known lighting, our approach uses arbitrary
unpolarized illumination. We describe a regularization-based
stereo approach that constrains specular surface normals in the
scene to lie in the plane of their observed angle of polarization.
We derive the mathematical foundations of this approach and
present results on virtually generated stereo and real-world
stereo imagery.

I. INTRODUCTION

Specular and transparent surfaces are important classes
of materials with non-Lambertian reflectance that are com-
monplace in urban areas. Many robotics applications will
operate in urban areas, so it is important to develop robotic
perception systems that function well in the presence of
such materials. Passive 3-D perception systems that do not
explicitly allow for the presence of such materials perform
poorly in these environments; active ranging systems also
have difficulty (Fig. 1).

This paper focuses primarily on indoor/outdoor urban
scenes with opaque surfaces that include areas of both
Lambertian and non-Lambertian reflectance. Several tech-
niques have been explored to improve depth perception in
such environments, including multi baseline stereo, active
illumination, and polarization. Multi baseline methods have
generally sought to overcome the effects of strong highlights
by searching for images where corresponding pixels do not
contain the highlight. Such techniques require many cameras
or many views, which is problematic for robotic vehicles in
dynamic environments. Methods that focus on strong high-
lights are not well-suited to scenes where large areas combine
diffuse and specular reflection, such as waxed linoleum
floors and analogous textured materials with a surface sheen.
For surfaces with both diffuse and specular components of
reflection, various forms of active illumination can be used
to obtain range measurements from the diffuse reflection,
including structured light and lidar. Structured light is a
relatively short-range technique, especially wherever ambient
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Fig. 1. Specular surfaces (left) usually pose a challenge to state-of-the-art
stereo vision algorithms (right, an exemplary result from SGBM [1]): In
this case the floor is reconstructed as being further from the camera as they
are.

illumination is strong, like outdoors; scanning lidar over-
comes strong ambient lighting, but still has difficulty with
specular surfaces, especially at high angles of incidence.
Polarization has been used for depth perception, but so far
either as a monocular camera system, where absolute depth
perception is still not possible, or as an adjunct to active
depth sensors like the Kinect, where it has been used to
help correct errors. Compact cameras are now available with
microgrid polarization filter arrays on the focal plane that
provide four orientations of linear polarization in each 2× 2
block of pixels. These can be used to estimate the degree
of polarization and the angle of polarization (AOP) in the
image for each 2 × 2 pixel block. The AOP is the image
plane projection of the surface normal; therefore, it provides
a constraint on the surface normal at each pixel where the
AOP is well-defined. We present the first stereo algorithm
to use such information. We formulate an objective function
that includes a data term, the surface normal constraint from
polarization, and a second-order surface smoothness prior,
which yields better results in typical man-made environments
than first order smoothness prior.

Sections II and III, respectively, discuss related work
and the shortcomings of conventional depth from stereo
in more detail. We describe how to generate virtual stereo
imagery with a polarization-aware ray tracer in section IV.
In doing so we are able to have rectified stereo images
and ground truth disparities for later comparison at hand.
Then we describe the formulation of our regularization-based
approach in section V. In section VI we describe the camera
setup that we have used to create real-world scenes and
evaluate various state-of-the art stereo vision algorithms and
our approach on both the virtual and real-world scenes before
we conclude in section VII.



II. RELATED WORK

Early work on stereo vision for non-Lambertian scenes
focused on strong specular highlights, analyzing how such
points may provide information about local surface curvature
[2], [3]. Later, trinocular camera configurations were used to
attempt to ensure that at least one pair of cameras would
image each scene point without being affected by specular
highlights [4]; this concept has been extended to more
general multibaseline camera configurations [5], [6], [7], [8].
This line of work often considered specularities as sparsely
occurring highlights; this does not address the important case
where reflections are superimposed over large areas of shiny
surfaces that also have intrinsic patterns in the diffuse com-
ponent of reflection. This was addressed with multibaseline
stereo in an approach that assumed the presence of multiple,
additive layers and used a nested plane sweep algorithm to
estimate the depth of each layer [9]. Results were shown
on real data in tabletop-like settings; however, there was no
discussion of computational complexity or the number of
images required to obtain satisfactory results. In general, for
mobile robot applications in dynamic scenes, it is desirable
to solve this problem with the smallest number of cameras
necessary.

In the context of a single moving camera, specular and
diffuse optical flow from the same shiny surface has been
estimated as layered flow to recover shape under some
simplifying assumptions, including known camera motion,
distant illumination, and a twice-differentiable surface [10].
This was demonstrated in simulation and with real images
of a shiny ball. We are concerned with relatively arbitrary,
discontinuous urban scenes. In principle, stereo algorithms
designed to handle transparent or semi-transparent surfaces
[11] could be applicable to specular scenes, alone or com-
bined with a layered approach to optical flow; we have not
seen this done.

Time of flight laser rangefinders can estimate range to
shiny materials that also have a diffuse component of re-
flection; however, this capability degrades with increasing
angle of incidence of the beam on the surface [12] and with
increasing degree of specularity. Various methods have been
examined to use other forms of structured illumination to
estimate range to surfaces with both specular and diffuse
reflection [13], [14], [15], [16]. These methods can be
effective, but are limited by the range of the illuminator,
especially in scenes with strong ambient lighting, particularly
outdoors.

Polarization has been used for several purposes in com-
puter vision, including classifying different types of materials
and different types of intensity edges, separating specular and
diffuse components of reflection, and constraining surface
orientation [17], [18]. The angle of polarization (AOP) in
an image constrains the surface normal of the corresponding
point in space to lie in the specular plane containing the
image AOP vector and the center of projection; if the index
of refraction of the material is also known, constraints on
the full surface normal can also be obtained [17]. These

constraints have been used to integrate image-centric height
models [19], [20], [21]; however, absolute depth cannot be
inferred this way. Related ideas, without knowledge of the
index of refraction of the material, were applied to multiview
polarization imagery in [22] to reconstruct shape; however,
the method was only developed for and applied to textureless
objects. Polarization and multiple known point light sources
are used in [23] to recover the shape of smooth specular
objects. Some recent papers have used polarization-based
surface orientation information to improve depth data from
the Microsoft Kinect [16], [24]; these methods are also
limited by the range of the illuminator in the depth sensor.

The idea of using polarization-based surface normal con-
straints together with stereo vision was discussed in [17],
but no algorithm for estimating depth maps in this way
was described; to our knowledge, we are the first to do so.
We formulate an energy function that combines a robust
data term, a surface smoothness prior, and the constraint
on the specular plane available from the AOP measured
at each pixel. For urban scenes, second-order smoothness
priors generally give better results than first-order priors.
Both the surface normal constraint and the second-order
smoothness prior lead to ternary terms in the energy function
and a difficult optimization problem. We adapt the approach
in [25] to rewrite these as combinations of binary terms
and we use their estimation algorithm, which is based on
quadratic pseudo-boolean optimization, to approximate the
optimal depth map. Tests with stereo polarization imagery
of a simulated hallway scene and several real scenes show
that this yields better results than methods that do not exploit
polarization information.

III. SHORTCOMINGS OF CONVENTIONAL DEPTH FROM
STEREO

Depth from stereo can be computed by solving an energy
minimization problem on the photoconsistency between the
left and right camera’s image in a stereo rig. In accordance
with [25], this can be expressed as

minD(x)Ephoto+smoothness =
∑
x

f(IΠ
1 (x,D(x))− I0(x), V )

+
∑
N∈N

W1(N )ρ(S(N ,D))

(1)

with D(x) the depth/disparity map, Π the projection matrix
between the two cameras and I0 the image of the left
camera. Further, V is a visibility flag and f is a photo-
consistency metric (both discussed in greater detail in [25]).
N (x) is the clique containing pixel x, and W1 and ρ are
weighting functions for the smoothness prior S. While the
photo consistency formulation holds for diffuse surfaces, the
non-Lambertian surfaces will provide intensity values

I0(xnonLambetian) = γIdiffuse + (1− γ)Ispecular. (2)

Depending on γ, a minD(xnonLambetian) may be evaluated at
a virtual distance to the mirrored object behind the non-
Lambertian surface or even to an unpredictable distance.



Fig. 2. The light transport through a synthetic hallway scene generated by our ray tracer. In this scene, all surfaces are purely diffuse except for the floor.
A virtual linear polarizer at (from left to right) rotations 0◦, 45◦, 90◦ and 135◦ is simulated in front of the camera. Through the four images it can be
seen, that the intensity of the floor pixels follows a square cosine behavior, and that the reflected highlights are most visible at the 0◦ polarizer rotation.

Reasoning that for most specular surfaces a Fresnel behavior
can be assumed, the term Ispecular should be at least partially
polarized when imaged by the camera. Thus, adding a linear
polarizer in front of the camera and rotating it perpendicular
to the plane of incidence on the non-Lambertian surface will
mitigate the specularity. However, the plane of incidence
and thus the rotation angle α are unknown. Also, except
for Brewster’s angle, the reflected light is not exclusively
perpendicularly polarized, and thus cannot simply be extin-
guished by rotating a linear polarizer accordingly.

IV. PROVIDING GROUND TRUTH BY POLARIZED LIGHT
TRANSPORT SIMULATION

We seek to test our algorithms on datasets with accurate
ground truth, thus we developed a ray tracing solution that is
capable of simulating the light transport of polarized light.
Our ray tracer incorporates the Fresnel terms for parallel
and perpendicular reflection of shiny surfaces and simulates
the presence of a linear polarizer in front of the virtual
camera. We implement the Fresnel Terms in the well-known
form [26] for single-surface media:

✓
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Fig. 3. The we simulate the polarization effects of shiny surfaces by
incorporating the Fresnel terms for singe-surface media, Eqns. 3- 5. The
intensity of parallel f‖ (red) and perpendicular f⊥ (blue) polarized light is
dependent on the zenith angle θ for a given surface point. The refractive
index of the surface material and surrounding medium are n2 and n1.

f⊥(n1, n2, θ) =
sin2(θ − θ′)
sin2(θ + θ′)

(3)

f‖(n1, n2, θ) =
tan2(θ − θ′)
tan2(θ + θ′)

(4)

with

θ′ = sin−1

(
n1 sin(θ)

n2

)
(5)

Where θ denotes the zenith angle at a surface point computed
between the viewing direction and the surface normal and
n1 and n2 denote the refractive indices of the surrounding
medium and the surface material. The rotation of the azimuth
angle α at a surface point needs to be taken into account
for the parallel and perpendicular reflection by applying the
corresponding rotational change of basis. This way, the ray
tracer is capable to accurately simulate the square cosine be-
havior of the captured intensity for shiny surfaces at arbitrary
rotations of a linear polarizer. Since our real-world camera
setup provides us with images captured at four equidistant
polarizer rotations only, we confine ourselves to generating
imagery for virtual polarizer rotations at 0◦, 45◦, 90◦ and
135◦, Figure 2. The ray tracer performs two tracing steps:
in the first step it simulates purely diffuse and unpolarizing
surfaces and their contribution to the scene light transport,
in the second step the shiny surface and their contribution to
the polarization state of the light are simulated. Both results
are combined before applying the linear polarizer in front of
the virtual camera.

V. DEFINITION OF ENERGY FUNCTIONAL FOR GRAPH
CUT SOLUTION

In our approach we distinguish two areas in the image:
specular areas, where we can see noticable intensity differ-
ences for varying rotations of a linear polarizer, and diffuse
areas with negligible intensity differences. In the diffuse
areas a stereo vision approach like SGBM [1] performs well.
In the specular areas, it is likely to produce erroneous results,
so we incorporate the Angle of Polarization computed from
the four polarizer rotations in these areas. A distinction
between the specular and diffuse areas can be performed
by thresholding the Degree of Linear Polarization, which is
computed from the four polarizer rotations as well.



We define the energy functional as a sum of a photo
consistency term and a smoothness in accordance to [25]:

Ephoto+smoothness =
∑
x

f(IΠ
1 (x,D(x))− I0(x), V )

+
∑
N∈N

W1(N )ρ(S(N ,D)) (6)

+
∑
x

W2(N (x))ρ(A(N (x),D, α(x)))

with α(x) the angle of polarization at a given pixel x -
corresponding to the azimuth α described in Sect. IV, N (x)
the clique containing pixel x and A defined as

A(N ,D, α) = tan−1(Γ((Π−1(p,D(p))−Π−1(q,D(q))

×Π−1(r,D(r))−Π−1(q,D(q)))))− α),

{p, q, r} ∈ N (7)

where {p, q, r} are consecutive pixels in the 3 × 1 and
1 × 3 neighborhoods described above. The function Γ(·)
back projects the surface normal into the image plane. The
first summation term defines the second derivative discretely
applied to the three nodes. The second summation term
creates a local surface normal by back projecting the three
nodes and then retrieves the angle between the normal and
the global up-vector. The difference from the resulting angle
and the captured angle of polarization from the left camera is
then sought to be minimized. As is well known, first-order
priors tend to bias depth reconstructions to fronto-parallel
surfaces. This is especially noticeable where images do not
have strong texture all around the edge of the image. We
tested both first-order and second-order smoothness priors
and found that a second-order prior produces better results on
our data sets, which is consistent with previous experience.

Note, that it is possible to also include the angle of polar-
ization captured from the right camera into the smoothness
term. However, we constrained ourselves to only include the
angle of polarization from one viewpoint for the evaluation.

Graph Cut solution
The optimization is performed by a graph cut representa-

tion of the energy functional as quadratic pseudo-boolean
optimization problem [27]. In this case, at each iteration
a choice is made between a proposal disparity map and a
current disparity map. Following Woodford et al [25], these
proposals may be achieved by drawing randomly from a set
of disparity values, or from different plane equations which
are fitted to areas corresponding intensity segments in the
input images. We found that constraining the unpolarized
image regions to the disparity values that a SGBM [1] algo-
rithm would produce works better than drawing all disparity
values from a uniform distribution. Suitable proposals for
the polarized regions can be acquired by enforcing planarity
where the AOP-derived surface normal is constant. With
the inclusion of visibility terms to the functional, the graph
representation results to be non-submodular, so a global
minimum solution can not be guaranteed [25] but the the
global energy will decrease or remain constant with each
iteration.

Fig. 4. The Bumblebee camera with adjustable linear polarization filters
(up) and a depiction of the 4D polarcam micro-grid array (down, photo
courtesy of 4D Technology).

VI. RESULTS

A. Test setup

We used two image capture setups during our evaluation.
Initially, we used a PointGrey Bumblebee BB2-08s2C stereo
camera rig equipped with a fixture that holds linear polarizers
in front of each lens (Fig. 4, up). Each linear polarizer is
adjusted manually to suitable rotations, e.g. to 0◦, 45◦, 90◦,
and 135◦. Thus, in this setup the scene elements have to
remain static.

At a later stage, we acquired two IGV B0610M cameras
that have been altered by 4D Technology Inc to bond a
micro-grid array of linear polarizers, with filters rotated at
0◦, 45◦, 90◦, 135◦ over each 2x2 block of pixels (Fig. 4,
down). We have set the baseline spacing to 3.5 inches. The
images are captured at a depth of 16 bits per pixel.

B. Sensor Noise Evaluation

To verify image quality before experiments, we evaluated
the sensor noise of the IGV B0610M by capturing images
of a diffuse wall and a linear polarization filter over a time
span of 30 minutes. The exposure time and gain have been
fixed to allow for a good contrast. We have computed the
temporal standard deviation in both cases for each pixel and
then averaged the values over the image. For the diffuse wall,
we found a standard deviation of 0.7% for 16 bit images. For
the imaging with the additional linear polarization filter, we
found standard deviations of 0.9% (parallel to filter), 0.72%
(45◦ rotated from filter), and 0.3% (perpendicular to filter).
The derived values for degree of polarization and for angle
of polarization showed a standard deviation of 2% and 1◦,
respectively. Further, we evaluated the sensor noise of the
Pointgrey Bumblebee BB2-08s2C with the polarizer fixture
attached, and found a standard deviation of 0.3%. These
noise levels were satisfactory. We did not evaluate the noise
levels of the Pointgrey camera for varying polarizer rotations



Fig. 5. Intermediate computation results and provided ground truth disparities on the virtual and real-world scenes. Left: the input image, polarizer at
zero degrees, middle left : the Degree of Polarization in percent, middle right: the Angle of polarization visualized as vector plot, right: the ground truth
disparity map. Note, that the AOP is only valid in image regions with high Degree of Polarization. The ground truth disparity maps for the real-world
scenes are provided by user input.



of the external fixture, thus we did not compute the DOLP
and AOP noise.

C. Scenes

We want to test our algorithms in scenes where shiny
surfaces are present. In those scenes, conventional depth
from stereo is assumed to be challenged. Thus we created
three scenes in a modeling toolkit that showcase a large
reflective portion of the scene in the stereo images. In scene
v1-collonade, we design the surface material of the columns
to be shiny. In scenes v2-pipes and v3-walltexture we design
the floor to be shiny. The object geomtetry in both scenes
is modeled after r1-hall2. Note, that in v2-pipes, the floor
features two half-pipes whose computed AOP captures a
large angular range. For the real world-scenes we have
chosen reflective hallway floors, water puddles and windows.
Most real world scenes show a subtle underlying surface
texture in the shiny image regions (such as the PVC floor
nobs). The scenes r1-hall2, r3-water4, and r4-bldg10 have
been captured with the BB2-08s2C sensor, while the scene
Hallway3 has been captured with the IGV B0610M sensor.

D. Comparison with state of the art

We compare the following there stereo matching algo-
rithm to our approach on the datasets shown in Figure 5:
SGBM [1]. Also, we run the original version of the graph
cut algorithm, Woo2009 [25], on the data. We compute the
absolute difference between the reconstructed disparity map
Ism and the ground truth disparity map IGT . From the re-
sulting difference map, we compute the mean µ|Ism − IGT | within
the pixel areas with nonzero degree of polarization, i.e. the
reflective surface areas. We have chosen SGBM because it
performs well for complex, diffuse scenery; though slower,
it is still reasonably fast and real-time, low-power versions
have been implemented with FPGAs and ASICs. We have
conducted some experiments with the original, unaltered
graph-cut algorithm as described in [25], and found that
the photo consistency term governs the reconstruction in the
specular areas. Therefore, the resulting depth maps show the
typical artifact of virtual disparities from objects mirrored
by the reflective surfaces. It is impractical to produce a
pixel-accurate ground truth image IGT for the real-world
scenes with another sensor. However, we provide user-
defined pseudo ground truth images ÎGT = Iuser by letting
the user identify planar surfaces in both stereo images for
each real-world scene. Each planar surface is attributed a
normalized local coordinate system by solving a homography
between the bounding box of each planar surface and a unit
plane. The per pixel disparity ÎGT is computed by subtracting
the right from the left coordinate values for each planar
surface individually. Unidentified areas are then excluded
from the computation |Ism − IGT |. As preprocessing step
we allow the adjustment of image intensity between the
left and right image. Further, the AOP information in small
pixel regions that are saturated for most of the polarizer
rotations (e.g. at highlights) is replaced by interpolating with
AOP information from neighboring pixels. The intermediate

results for our algorithm, such as the DOLP and AOP are
visualized in Figure 5. A side-by side comparison of the
results from our approach and the other algorithms can be
seen in Figure 6. The results of all algorithms applied to our
test scenes are listed in Table I.

E. Discussion

1) Intermediate Results: Figure 5 shows the intermediate
results for the virtual and real-world scenes. The second
column visualizes the DOLP in percent. Note, that the
surfaces, that have been rendered as purely diffuse return the
same intensity value for any polarizer rotation. Hence, only
the reflective areas have nonzero DOLP value. The close the
incident angle to the Brewster angle, the higher the DOLP.
The third column shows the AOP visualized as needle plot
for the reflective areas only. The AOP follows the rotation
of the projected surface normal in the image plane, see third
column. The fourth column shows the ground truth disparity
maps. Note, that the ground truth disparity value can be
computed for each pixel from the geometry of the virtual
scene. Note, that for the real-world scenes, the AOP only
follows the rotation of the projected surface normal where
the DOLP is significantly high. Since the geometry of the
real-world scene elements is not known, the ground truth is
provided by point correspondences, that have been clicked
by a user.

2) Result Disparity Maps: The result disparity maps
are shown in Figure 6. The second column shows the
results using our algorithm. The third column shows the
outcome using from Woo2009 [25], the fourth column shows
the results for SGBM[1]. The last column reiterates the
ground truth disparity maps for visual comparison. Further,
in Table I, the mean absolute difference, the Out-2 and
Out-4 percentage, denoting the percentage of pixels whose
disparity value differs more than 2 or 4 units from the
provided ground truth, are provided for all scenes (rows). For
SGBM we also provide the density to indicate the percantage
of pixels that have been assigned a valid disparity value.
We applied a histogram adjustment before computing the
Woo2009 result in some scenes (v1-collonades) where it
improved the accuracy of the result disparity. It can be seen
that the algorithms Woodford and SGBM that do not use
polarization are challenged by reflections. For Scene V2,
though, these algorithms seem to produce near-correct results
in the pixel areas comprised by the pipes. However, the pipe-
floor edge provides an important cue for assigning a close-
to-correct disparity in that case. For the real-world scene
r1-hall2, the hallway floor, which is a PVC material, is too
specular to contribute to a meaningful depth reconstruction
and the state of the art algorithms produce depth values in
the pixel region comprised by the floor that are larger than
they should be, corresponding to the virtual depth of the
reflection. The same holds for the water puddle in r3-water4
and r4-bldg10. Our approach performs well on scenes V1, V2
and V3. It is challenged by the colonnades in V1, as surfaces
normals varying along the camera’s line of sight cannot be
sufficiently distinguished by exclusively relying on the Angle



of Polarization. Note, that there is no back wall in the virtual
hallway scenes and that the camera looks toward infinity
at the and of the hallways. Our approach overcomes the
effects introduced by the specular material in the real-world
scene R1 and the floor is reconstructed convincingly. Further,
our results for r3-water4 and r4-bldg10 are more accurate
than the results from the algorithms that do not incorporate
polarization information. It can be seen, that SGBM produces
a stair-case looking result on r4-bldg10 which is reasoned
by a number of slightly higher disparity gradients in the
subpixel-accurate disparity map which invoke Mach-band
effects.

VII. CONCLUSION

In this paper, we focused on 3-D perception of specular
scenes, with eventual applications in mind to robot nav-
igation in dynamic, indoor/outdoor environments. A wide
variety of approaches have been taken in the past to this
problem using passive and active sensors, including the use
of structured illumination. Existing methods had a variety of
limitations, in terms of maximum range, maximum surface
slope, ability to operate with uncontrolled lighting, abil-
ity to estimate absolute range, or demonstrated suitability
for mobile robot applications. Polarization phenomenology
had not previously been integrated into a stereo vision
algorithm. The advent of polarization cameras that acquire
four channels of linearly polarized imagery simultaneously
makes this prospect more practical than it used to be,
and holds considerable potential to be useful for scenes
with transparency as well as specularity. Accordingly, we
developed a stereo algorithm that incorporates polarization-
based surface normal constraints into typical stereo vision
energy function; to improve performance on urban scenes
with surfaces at a wide range of orientations, we also
used a second-order smoothness prior. We leveraged existing
software based on quadratric pseudo-boolean optimization
to find depth maps that approximately minimize this cost
function. Although the resulting implementation is still quite
slow, results with synthetic and real polarization-stereo image
sets show promise for this approach, and we believe that this
sensor configuration warrants further research.
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Fig. 6. The result disparity maps on both the virtual and the real-world scenes computed with our algorithms and with Woo2009 [25], SGBM [1].

Ours Woo2009[25] SGBM[1]
Mean Out-2 [Percent] Out-4 [Percent] Mean Out-2 [Percent] Out-4 [Percent] Mean Out-2 [Percent] Out-4 [Percent] Density [Percent]

v1-collonade 0.608 0.730 0.000 0.651 0.471 0.000 0.545 0.226 0.080 99.755
v2-pipes 0.426 0.424 0.086 1.319 6.206 3.392 1.165 4.913 2.107 98.743

v3-walltexture 0.528 0.041 0.000 4.566 21.012 15.312 5.936 20.938 17.249 98.590
r1-hall2 0.906 3.946 0.038 10.647 25.407 23.605 9.061 21.406 19.023 99.773
r2-hall3 3.713 12.065 5.213 37.217 35.368 35.368 7.834 30.202 25.127 89.604

r3-water4 0.302 0.043 0.000 3.004 4.560 4.287 2.355 3.235 2.823 99.408
r4-bldg10 1.749 7.344 0.000 8.790 7.425 5.433 2.795 13.151 2.369 99.445

TABLE I
THE RESULTS ON THE VIRTUAL SCENES RENDERED WITH OUR SIMULATOR AND THE REAL WORLD SCENES CAPTURED WITH OUR STEREO RIG. THE

TABLE SHOWS THE MEAN µ|Ism − IGT | OF THE ABSOLUTE DIFFERENCE BETWEEN THE GROUND TRUTH DISPARITIES AND THE COMPUTED DISPARITIES.
FURTHER IT STATES THE AMOUNT OF DISPARITY PIXELS THAT ARE OFF MORE THAN 2 AND 4 UNITS FROM THE GROUND TRUTH. THE DENSITY OF

VALID DISPARITY PIXELS IS LISTED FOR SGBM. SOME ALGORITHMS SHOW MINOR MEAN ABSOLUTE DIFFERENCES ([1] ), BUT ALL ARE

OUTPERFORMED BY OUR APPROACH.


