
Space, 13-16 September 2016, and Long Beach

A Model Based Systems Engineering Approach

Towards Developing a Rapid Analysis and Trades

Environment

Tejas P. Kulkarni∗ , Kevin J. Debruin∗ , and Adam P. Nelessen∗

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA

Kevin A. Reilley† , Stephen J. Edwards‡ , Russell S. Peak§ , and Dimitri N. Mavris¶

Aerospace Systems Design Lab, Georgia Institute of Technology, Atlanta, GA, 30332, USA

In this work, an integrated and end-to-end modeling environment was developed to as-
sess the system-level impacts of evolving requirements and design parameters. Researchers
at the Georgia Institute of Technology’s Aerospace Systems Design Laboratory (ASDL) col-
laborated with JPL engineers to develop, implement, and test a modeling environment to
assess design changes to a notional Europa Mission called the Jupiter Europa Buzzer (JEB).
This environment was developed using a Model Based Systems Engineering (MBSE) ap-
proach and consists of three major components: the Systems Model, the Mission Simulator,
and the Web Based Interactive Dashboard.

I. Introduction

Early in the spacecraft design process, there is a need to evaluate design decisions in an organized,
consistent, and rapid manner without committing significant resources to these decisions. Changes to

the spacecraft design due to maturing requirements and hardware capability result in a ripple of changes
throughout many of the spacecraft subsystems. Assessing the impact of these design decisions in a complex
system requires navigating several disciplines, each with their own analyses, as well as an end-to-end approach
to fully understand the ripple effect of a design change.An example of such a problem is the planned Europa
Mission undertaken at the Jet Propulsion Laboratory (JPL). In this project, allocations for power, data, and
thermal resources for the evolving mission concept are constantly changing in response to updates in the
observation strategy as well as maturation of the actual orbiter hardware. In a system with the complexity
of the planned Europa Mission, the time-savings enabled by real-time evaluation of system-level impacts of
design changes can be significant.

Complexity in this phase of the design process occurs because of the diverse range of disciplines that
are involved in spacecraft design, and the tight coupling between many of the disciplinary analyses. A
classic example of this coupling is the feedback loop between propellant sizing and the dry mass of the
spacecraft. As dry mass grows due to various factors, more propellant is needed for maneuvers and orbit
insertion. Propellant increases cyclically demand increases in spacecraft dry mass, and so on. In this way,
the propulsion and mechanical aspects are directly influencing one another. Similar interactions are seen
between almost all spacecraft disciplines.

The core responsibility of systems engineers in the design process is to drive the project toward a converged
spacecraft design that reconciles the diverse constraints and complex interactions involved. As hardware and

∗Systems Engineer, Advanced Systems Engineering and Formulation, 4800 Oak Grove Pasadena California, AIAA Member.
†PhD Student, School of Aerospace Engineering, 270 Ferst Drive, Mail Stop 0150, AIAA Student Member.
‡Research Engineer, Aerospace Systems Design Lab. 270 Ferst Drive Atlanta, GA 30332. AIAA Member.
§Senior Research Engineer, Aerospace Systems Design Lab. 270 Fest Drive Atlanta, GA 30332.
¶Boeing Regents Professor of Advanced Aerospace Systems Analysis, School of Aerospace Engineering; Director, Aerospace

Systems Design Lab. 270 Ferst Drive Atlanta, GA 30332. AIAA Fellow.
Copyright c© 2016 by the American Institute of Aeronautics and Astronautics, Inc. The U.S. Government has a royalty-free

license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the
copyright owner.

1 of 14

American Institute of Aeronautics and Astronautics Paper 2016



technologies mature through the project lifecycle, their demands for mass, power, data, and cost can often
change. For example, science instruments have the potential to demand more power and data than initially
predicted in order to adequately perform a scientific measurement. Conversely, a solar panel could be found
to require less mass upon fabrication, which can increase the amount of mass available for other components
or can open up mass margins. By modeling and simulating the system it is possible to track the effects of
these changes as they ripple through the overall system.

In this work, an integrated and end-to-end modeling environment was developed to assess the system-
level impacts of evolving requirements and design parameters. Researchers at the Georgia Institute of
Technology’s Aerospace Systems Design Laboratory (ASDL) collaborated with JPL engineers to develop,
implement, and test a modeling environment to assess design changes to a notional Europa Mission called the
Jupiter Europa Buzzer (JEB). This environment was developed using a Model Based Systems Engineering
(MBSE) approach and consists of three major components: the System Model, the Mission Simulator, and
the Web Based Interactive Dashboard. By enabling rapid analysis and visualization of design impacts, the
JEB environment allows decision makers to observe high-level effects of design changes on performance.

II. Previous Work

Several authors have worked towards implementing end-to-end modeling techniques in MBSE languages.
Some examples include: the review performed by Estefan,1 the study done by Bajaj et al. to demonstrate
their software capability,2 and the study by Kaslow et al. to model the Radio Explorer Cubesat.3 These
papers illustrate various means of typing project data and requirements through meaningful modeling towards
analytical environments. Additionally, the importance of commercially available “plug’n’play” modeling
components can be demonstrated by examining the motivations in Neff et al.,4 where such tools enable rapid
development of aerospace systems. These works contributed towards the tools which can enable rapid analysis
and visualization MBSE languages. The emphasis for JEB was to utilize commercially available products
where possible and in such a way that model and/or analytical components could be easily assembled or
switch for higher-fidelity versions. This motivation led to particular implementation concerns for the Web-
Based Interactive Dashboard, System Model, and the Mission Simulator.

III. Web-Based Interactive Dashboard

A. Overview

The Web-Based Interactive Dashboard (WID) element of the JEB environment provides a monitor of the
spacecraft mission that highlights the performance of the baseline design, as well its performance relative
to alternatives. This dashboard allows the project’s systems engineers and leaders to make more informed
decisions by showing the potential impacts and tradeoffs associated with design decisions, changes to space-
craft operations, or unexpected anomalies in flight. The WID is interactive in the sense that users can alter
parameters of interest and see the impacts to the flight system in real-time. The WID is a powerful tool

Figure 1. High-level E2E work flow for generating WID Views

because of its extensibility. With access to all of the parameters collected in the Systems Model, it allows
users to thoroughly check the underlying assumptions behind every result. Since this WID is linked to an
integrated analysis environment, not only are the local effects of a design change seen almost immediately,
but also the downstream effects on other subsystems and key metrics. Through its web-based front end,

2 of 14

American Institute of Aeronautics and Astronautics Paper 2016



visualization using javascript graphics allows the users and developers to show information in user-accessible
forms. This flexibility allows the user interface to be as complicated as needed to support engineering
decisions, as simplified as needed to make high-level programmatic decisions, and everything in between.

In this work, the JPL Model Based Engineering Environment (MBEE) toolset was used to interface with
SysML in order to produce the Web-Based Interactive Dashboard. The high-level workflow used in this work
to generate views is shown in Figure 1. A SysML View Diagram collects and sorts the relevant information
contained in the SysML Systems Model,then organizes this information in a format usable for generating
dashboard Views in View Editor. Then, View Editor displays the data in the format prescribed within the
View Diagram. Dashboard graphics such as radar plots and various other graphics were created to display
these data in more user-accessible forms using javascript.

B. Methods

Figure 2. Notional description of Views and
Viewpoints

Within SysML, the MBEE framework utilizes a general struc-
ture shown in Figure 2. In View Editor, Views are constructed
which import data from the System Model and conform to the
rules specified in the Viewpoint.

In developing the Web-Based Interactive Dashboard for this
work, a number of views were organized into a hierarchical tree,
which comprise a View Editor block referred to as a Document.
A subset of the WID View Diagram created in this work is
shown in Figure 3. In this example, the ASDL JPL E2E Dash-
board Document has Key Results and Science Trades as some
of its highest level Views. The Margins, Power Key Measures,
and Data Key Measures Views reside in a hierarchical level
below the Key Results View. Also shown in Figure 3 is the
syntax through which the Margins View exposes the contents
of a particular Block Definition Diagram (BDD), and conforms to the rules contained in a Viewpoint.

Figure 4. Margins BDDs, Viewpoint, and Angular JS Widget ID Tag

Figure 3. Construction of a View Diagram
in MBEE

Figure 4 shows more detail about the BDDs, Viewpoints,
and documentation associated with the Margins view from
Figure 3. The BDD is a set of blocks containing key values,
which are linked to Instances of the SysML Systems Model.
The Viewpoint is a set of instructions which tell View Editor
the appropriate way to organize information from the BDD
in producing a table of data. Finally, the bottom left corner
of Figure 4 shows where an ID tag for a javascript dashboard
graphic is placed. The corresponding javascript object will
generate a graphic based on the tabular data output from the
View Diagram to View Editor. As numbers from the SysML

3 of 14

American Institute of Aeronautics and Astronautics Paper 2016



Systems Model are updated through user input or integrated
analysis, the graphics on the dashboard will change accord-
ingly.

C. Results

To demonstrate the utility of this Web-Based Interactive Dashboard, several relevant spacecraft design
graphics were built and tested in the environment as shown by Figure 5. These are meant to highlight key
results of analyses and show tradeoffs, but are only simple examples meant to represent what’s possible with
such an environment. The key views of the WID are the following:

1. Margins — This view shows key results of the analysis: Mass Margin, Depth-of-Discharge, and a Data
Margin.

2. Observation Profile — This view shows the science planning, and allows the user to toggle when the
various instruments are operating and at what power level.

3. Instrument Specs — This view collects the mass, data rate, and power consumption of the instruments.

4. Specifications — This view allows comparison of spacecraft key parameters. In the included example,
the solar array area, battery capacity, telecom power draw, data rate, and data storage are compared.

5. Ground Track Comparison — This view shows the ground tracks covered by the orbiting spacecraft,
allowing comparisons between different trajectories.

(a) Margins (b) Observation Profile (c) Instrument Specs

(d) Specifications (e) Ground Track Comparison

Figure 5. Representative Outputs of the JEB Environment as visualized in the Web Interactive Dashboard

IV. System Model

A. Introduction

An important aspect in assessing design changes to the spacecraft is consistency and integrity of input data,
in other words a single source of truth. The system model represents a sign source of truth for the inputs to
the analytical models as well as the flow of data between various analyses. The systems model provides the
ability to maintain consistent assumptions about the design of the spacecraft, and represent the information

4 of 14

American Institute of Aeronautics and Astronautics Paper 2016



(a) Flyby Pattern (b) Non-Flyby Pattern

Figure 6. SysML Patterns representing the descriptive modeling of the Flyby and Non-Flyby portions of the
mission

consistently across a variety of useful views.5 This provides a consistent context for the results of a design
change viewable in the web based interactive dashboard.

The Systems Model is notionally based on the Europa Project and is broken into two major parts: a
descriptive model and an analytical model. The descriptive model was created using MagicDraw and Systems
Modeling Language (SysML) and was used primarily to record the JEB design and all of its associated values.
The descriptive model characterized the physical decomposition of the spacecraft along with properties used
by the analytical model. The analytical model was developed using a combination of Mathematica and
Phoenix ModelCenter. ModelCenter provides the ability to integrate the inputs and outputs of several
analyses into a coherent workflow, and it integrates with the descriptive side of the model using a plug-in
developed for MagicDraw called MBSEPak. The analysis workflow is defined in MagicDraw and MBSEPak
executes the analyses, allowing the analyses workflows to be run in ModelCenter using an analytical engine
of the designers’ choice.

The system model was constructed using Systems Modeling Language (SysML) implemented by Magic-
Draw. The model was built to model only the information that is necessary to communicate (a) mass, (b)
power, (c) data, and (d) cost constraints associated with the spacecraft. The system model can be expanded
to include a larger set of constraints, however, a limited set was modeled over the course of this research.
The system model was broken into two sections (a) a descriptive section and (b) an analytical section. This
division allows updates to particular values associated with spacecraft hardware, like the mass of propellant
without having to update all analyses that use that data. It further enables the ability for analytical models
to be updated without having to rebuild the entire model. This is a crucial element for the development and
deployment of a viable systems model to assist in the flight project.

B. Descriptive Model

The descriptive section of the model is based on the notional Europa Project and can be divided into
two sections, a description of the hardware, and a description of the mission. To model the mission several
simplifying assumptions are made. Each petal is assumed to be independent of all other petals. Consequently,
the state of charge of the battery and all other margins should be at acceptable levels at the conclusion of a
single petal. This allowed the modeling of the mission to be simplified as 45 independent petals. Each petal
is further decomposed into two major segments, the flyby portion of the petal and the non-flyby portion of
the petal. The flyby portion of the petal is representative of the primary science portion of the mission while
the non-flyby section is representative of the primary engineering resource recovery portions of the mission.6

The flyby portion is broken into 13 zones. The flyby decomposition is illustrated by Figure 6.
The zones are delineated by the altitude of the spacecraft with respect to the surface of Europa. Each zone

is mapped to a particular instrument mode as described in the Mission Activity Planner. This information

5 of 14

American Institute of Aeronautics and Astronautics Paper 2016



(a) JEB Internal Block Diagram

(b) Notional Europa Project Internal Block Diagram

Figure 7. A comparison of Block Diagrams as generated by JEB and the Notional Europa Project Block
Diagram

6 of 14

American Institute of Aeronautics and Astronautics Paper 2016



can be used to feed the Observation Profile in the web interactive dashboard. The non-flyby section of the
mission, shown in Figure 6, is broken into two zones that alternate at specified time intervals which represent
the time required to downlink the data as well as the time required recharge the batteries.

The description of the hardware in the model is composed of the physical decomposition of the space-
craft and the different modes of operation for each component on the spacecraft. The spacecraft physical
decomposition was modeled as shown in Figure 7.

The JEB Block Definition Diagram (BDD) compares well with the JPL block diagram as shown in Figure
7. The scope of the changes studied were limited to augmentations to the model payload; consequently, the
instruments were modeled with greater detail than other spacecraft components. A representation of the
instrument-modeling pattern is shown in Figure 8. There were two types of instruments considered, those

Figure 8. Instrument MagicDraw Pattern

that required information regarding field-of-view and those that did not. The field-of-view information that
was used to generate Europa coverage maps displayed in the web based interactive dashboard. Additional
visualizations were included to show power and data profiles in the Web-Based Interactive Dashboard,
according to the power and data modes, in conjunction with mission information.

C. Analytical Decomposition

The analytical decomposition models the flow of information from hardware descriptor blocks as shown in
Figure 7, and Figure 8 to the actual analyses. The primary method for the integration of analyses into the
MagicDraw model was using Phoenix Integration MBSEPak. This software places some limits on SysML,
but MBSEpak represents a practical approach to integrating dis-similar analyses. The power, data and
environmental analyses were built into a parametric diagram as shown in Figure 9. In this implementation
each mode for the instruments is linked to their input port in the analysis as a compromise to the desired use
of arrays. Additionally, MBSEPak infers the order of the analyses and an analysis workflow is built up based
on the constraint diagram and input-output tags. Finally, MBSEPak also provides the ability to quickly
visualize which parameters have changed and by how much as shown in Figure 10. While the linkages are
created at the block level it is important to note that each execution must occur at the instance level. That
is to say each execution of the workflow can be stored independent of any other execution, such that the
SysML instances represent particular implementations of the design. Therefore, the implementation enables
an important capability by allowing instances to be compared against each other to see the impacts on the
scale of the entire spacecraft.

While the value of the MBSEPak for integrating arbitrary analysis is undeniable, there are several
problems with the MBSEPak approach. MBSEPak utilizes constraint blocks to represent specific analyses;
each constraint block must have the inputs and outputs of the analyses defined in the properties of the port.
This forces directionality on equations, that is to say a program that has the constraint, a = b + c would be
modeled with a constraint block that has inputs b and c and output a. Consequently the constraint block
can only be solved for a. In theory given a and b, c should be a solvable quantity. An even more practical
example would be the multiplicative link equation,7 which when implemented declaratively in Mathematica
permits solving any single unknown parameter. Bidirectional, declarative mathematics is a fundamental
concept in SysML parametric models8 that cannot be applied using the MBSEPak approach. One gap in
the JEB model which arises due to the directionality imposed by MBSEpak affects the solar panel sizing
relations, as the performance equations cannot also be “back-solved” for sizing panel area. The model would

7 of 14

American Institute of Aeronautics and Astronautics Paper 2016



Figure 9. Parametric Diagram representing connections between descriptor blocks and constraint blocks

Figure 10. Changes as displayed in MBSEPak

8 of 14

American Institute of Aeronautics and Astronautics Paper 2016



require a controller that aids in sizing and converging the solar panel area. The capability to build this
controller is also absent in this implementation of MBSEPak and JEB, and is therefore left to future work
to determine a suitable implementation.

V. Mission Simulator

The third element of the framework described above is the mission simulator. The Mission Simulator
element consists of the open source General Mission Analysis Tool (GMAT) developed at Goddard Space
Flight Center along with Python to extend its capability. GMAT and Python interact with analytical
spacecraft models and an environmental model built in Mathematica via Phoenix ModelCenter. Rationale
for tools chosen and development methods will be addressed in the following paragraphs as well as the
processes for running the JEB Environment.

(a) Non-Declarative Function (b) Declarative Function

Figure 11. Equation Function Format

GMAT was the chosen tool used to simulate the trajectory. Systems Tool Kit (STK) by AGI is usually
the first thought that comes to mind when simulating trajectories, however STK was not able to be used
due to an AGI issue with using the Georgia Tech student license. GMAT was decided to be a suitable
replacement used to propagate orbits and plan spacecraft missions. The simulated trajectory and attitude
information came from publicly available Europa Project spice files. However, GMAT does lack a capability
for instrument ground tracks and other data which implied the need for some post-processing work to be
performed. Power, data, field-of-view and ground track analyses were produced as Python code, effectively
extending the functionality of GMAT, with data stored in text files between analyses. The GMAT tool and
Python were integrated in such a way that if a new trajectory spice file became available, it could just simply
replace the current spice file and all analysis and integration would still hold true because the interfaces were
properly defined. This is evidence of the team’s effort to develop a plug’n’play framework. This flexibility
allowed different trajectories to be traded and still remain consistent within the JEB environment with
essentially no effort. A way to describe the activities occurring during the course of a petal (petal being one
orbit of the spacecraft around Jupiter) was needed and the Mission Activity Plan was developed in its first
form of an Excel sheet seen in Figure 12.

This concept was described above with the MagicDraw implementation seen in and the user interface via
the web-based interactive dashboard in.This information feeds into the environmental calculations as well
as the analytical spacecraft models before going on into the power, data, field-of-view, and ground track
analyses.

The analytical models were built in Mathematica due to its declarative capability and it serves as a
standard JPL analysis tool which integrates with MagicDraw. Mathematica was integrated with Phoenix
ModelCenter using the Mathematica Plug-In by specifying the interfaces of each model. Microsoft Excel
and Python were considered for developing analytical models, however were not chosen because Excel is not
preferred for MagicDraw integration and Python requires many custom libraries. The declarative function-
ality of Mathematica allowed for the models to be reconfigurable instead of the standard function format
like that of Figure 11.

The analytical models did not need to be a complete spacecraft sizing tool, but instead a representative
prototype that would some computational flexibility to solve the model parameters however desired for

9 of 14

American Institute of Aeronautics and Astronautics Paper 2016



Figure 12. Excel Based Mission Activity Plan

particular scenarios. The JEB Environment needed to have enough fidelity to provide time-varying profiles
of: spacecraft power consumption, data production, pointing of the spacecraft, coverage of Europa, and
changes in operational approaches of the mission.

The Mathematica notebooks were built around symbolic equations, such that they could dynamically
respond to a user request for particular variables. This dynamic functionality was implemented using a
“SolveForFlag” variable which would be used as an array index, unique to each notebook. Given a particular
flag, the notebook would then be able to reduce the simplified symbolic expression for a particular symbol
unique to that notebook. This implementation was crafted in an attempt to combat imposing directionality
on the constraint parameters of a constraint block using MBSEPak. However, the project timeline did not
permit closing the loop as to how a particular flag would be selected. Therefore, for rapid integration, the flag
variables and conditional wrapping statements were eliminated, and the notebooks were hard-wired to solve
for particular variables of known interest. In the case of the telecommunications notebook, this necessitated
an “A” and “B” version of the model, solving the symbolic “link design” equation in two different directions.
Sufficient models of each subsystem of a spacecraft were needed to be defined to enable the team to see the
necessary implications of the design changes. For our analyses, we had to decide what sort of simulation
we wanted to run. For example, with the propulsion system we had two options — firstly a great textbook
model that covers the whole system and would be much closer to a propulsion design code example, or the
simple high-level design relationships in SMAD,7 as seen in Figure 13.

(a) Detailed Propulsion Model

(b) SMAD Propulsion Model

Figure 13. Different Fidelity Models for Analysis

10 of 14

American Institute of Aeronautics and Astronautics Paper 2016



For our purposes we chose to closely follow the subsystem analyses as defined in SMAD,7 as these were
usually more declarative and easier to integrate with the rest of our system.

Even though these models are lower-fidelity due to their textbook source, sufficient interfaces were defined
for each model to enable to capability of a plug’n’play framework. Since the appropriate interfaces were
defined, a higher level of fidelity model could be substituted into the analysis framework and “play nicely”
with the others. This capability was not tested in the scope of this task and serves as part of future work. The
team designed the models with this intent because they saw the value of enabling this type of functionality.
These models were integrated into the JEB Environment using the Mathematica ModelCenter plug-in.

Analytical models of subsystems as well as cost and mass analyses were integrated from the Mathemat-
ica code built to provide estimates of performance and recommendations on design modification. Several
independent environmental calculations (such as eclipses, solar incidence, and radiation dose approximation)
were combined into a single Mathematica file, to be run before the power, data, and field-of-view analysis.

The Mission Simulation Overview can be seen in Figure 16. Figure 16 is the process by which the JEB
Environment elements are ran. The JEB spacecraft performs 45 different petals during its mission, starting
with a large loop around Jupiter and gets closer as the mission progresses. The Python extensions of GMAT
aided in generating a plot of Distance versus Time in Figure 14.

Figure 14. Distance vs Time

.
Since each petal was analyzed independently

starting with the flyby the petal computations would
need to be run 45 times to complete simulating the
entirety of the spacecraft mission. However, the en-
vironment does not have to be ran 45 times to pro-
duce effective results. The user only needs to ana-
lyze the petal of interest and all the petals prior to
that petal. For example, if the user is interested in
the statistics for petal 15, they would have to run
the environment for only 15 petals and not the entire
45.

From the Mission Simulator Overview, the
Spacecraft Analysis Diagram runs the analytical
spacecraft models and feed that information into the
Environment Calculations of as eclipses, solar inci-
dence, and radiation dose. From there, the Power Calculations are performed, then Data Calculations and
then the Petal Statistics are run in parallel with the Optical Instrument Calculations and Petal Image Gen-
eration. The results of these parallel This is a feed-forward analyses but it can then be returned to a mass
rollup and design iteration to close to the spacecraft design for the petals. Once the user completes their
desired number of petals, the results are sent to a Mission Image Generation, Mission Statistics, and Cost
Model.

Figure 15. Ground Tracks
Generated from JEB En-
vironment

The Mission Image Generation consists of individual ground-track plots for
each instrument with a Field of View attributes seen in Figure 15 as well as a
global coverage map combining all petal’s ground-tracks. The Mission Statistics
compile the individual Petal Statistics into an overall mission summary.

The Mission level metrics are calculated in this section but discussed above
in the Web-Based Dashboard section. The Cost Model provides deltas from the
baseline notional mission.

A general flow of the JEB Environment information from the user through
the environment to the end product can be seen in Figure 17.

A possible analysis flow of the Systems Model can be seen in Figure 18. The
analysis cost in computation time is approximately 11.5 min per petal, so for 45 petals the total run time is
around nine hours. The trajectory propagation with GMAT is only needed to be ran once in the beginning
unless the trajectory changes or the 1st zone boundary of the flyby. Then for each petal approximate run
times are 3.5 min for the Petal Diagram, 3.5 min for Petal Images, 2 min for Instrument Analysis, and 2-3
min for Spacecraft Analysis. Times include some extra margin for analysis building and text file copying.
Time was the currency for our workarounds with less complex integration, this system may run faster.

11 of 14

American Institute of Aeronautics and Astronautics Paper 2016



Figure 16. Mission Simulation Overview

Figure 17. Mission Simulation Information Flow

12 of 14

American Institute of Aeronautics and Astronautics Paper 2016



Figure 18. Notional method of running the environment

VI. Future Work

A need for a design oriented dashboard was identified. This would require flexibility to edit components
without hardwiring the components and also to be able to run the analysis from the dashboard without
opening up the Systems Model and MBSEPak. We identify that the data and power modeling are limited in
number of components and could be improved by developing an expandable modeling architecture. We’ve
also identified a need a method to execute analysis sequentially. A way to reduce time and increase flexibility
would be to eliminate text files, by passing objects not text files. This would aid in addressing petal
dependencies as well as a GMAT transformation would be needed to analyze petals uniquely. Lastly, we
have also identified that the ability to pass arrays (as well as multidimensional arrays) would greatly aid in
the JEB Environment framework.

VII. Acknowledgements

The research was carried out at the Georgia Institute of Technology in collaboration with The Jet
Propulsion Laboratory, California Institute of Technology. The authors are grateful for the mentoring
provided by Bjorn Cole and others at the Jet Propulsion Laboratory. Thanks are also due to Miyako Wilson
for her assistance on setting up the Open-MBEE server infrastructure, and to Steffan Slater for building the
GMAT-python interface. Additionally, the authors are grateful for the contributions of Hsiang-Jui Chin,
Coline Ramée, Lucia Casucci, and Anirudh Tadanki towards preparing the Mathematica models required
for the analysis.

13 of 14

American Institute of Aeronautics and Astronautics Paper 2016



References

1Estefan, J. A., “Survey of Model-Based Systems Engineering Methodologies,” Tech. rep., Jet Propulsion Laboratory,
California Institute of Technology, 2008.

2Bajaj, M., Zwemer, D., Peak, R., Phung, A., Scott, A., and Wilson, M., “4.3.3 Satellites to Supply Chains, Energy to
Finance – SLIM for Model-Based Systems Engineering,” INCOSE International Symposium, Vol. 21, 2011, pp. 410–431.

3Kaslow, D., Soremekun, G., Kim, H., and Spangelo, S., “Integrated model-based systems engineering (MBSE) applied to
the Simulation of a CubeSat mission,” Aerospace Conference, 2014 IEEE , 2014, pp. 1–14.

4Neff, J. M., Some, R., and Lyke, J., “Lessons Learned in Building a Spacecraft XML Taxonomy and Ontology,” AIAA
Infotech@Aerospace 2007 Conference and Exhibit , 2007.

5Peak, R. and Zwemer, D., “SysML and MBE/MBSE: A Quick-Start Course (SMQS),” Tech. Rep. a, Georgia Tech and
InterCAX, August 2015.

6Jet Propulsion Laboratory, C. I. o. T., Europa Clipper Science and Reconnaissance Payload Proposal Information Package,
NASA, 2014.

7Wertz, J. R. and Larson, W. J., editors, Space Mission Analysis and Design, Vol. 8, Microcosm, 3rd ed., 1999.
8Peak, R. S., Burkhart, R. M., Friedenthal, S. A., Wilson, M. W., Bajaj, M., and Kim, I., “9.3.2 Simulation-Based Design

Using SysML Part 1ISSN: 2334-5837,” INCOSE International Symposium, Vol. 17, No. 1, 2007, pp. 1516–1535.

14 of 14

American Institute of Aeronautics and Astronautics Paper 2016


	Introduction
	Previous Work
	Web-Based Interactive Dashboard
	Overview
	Methods
	Results

	System Model
	Introduction
	Descriptive Model
	Analytical Decomposition

	Mission Simulator
	Future Work
	Acknowledgements

