
AAS/AIAA Astrodynamics Specialist Conference, September 13-16, 2016, Long Beach, CA

MONTE’s Client-Based Trajectory Propagation

Architecture

Jonathon Smith, William Taber, Theodore Drain,

Scott Evans, James Evans, Michelle Guevara,

William Schulze, Richard Sunseri, Hsi-Cheng Wu∗

Mission Design and Navigation Software Group, Jet Propulsion Laboratory,

California Institute of Technology, Pasadena, CA 91109

The Mission Analysis, Operations, and Navigation Toolkit Environment (MONTE) is
JPL’s signature astrodynamic computing platform. It supports all phases of space mis-
sion development, from early stage mission design and analysis through flight navigation
services. MONTE employs a client-based trajectory propagation architecture where ac-
celerations are calculated in the main MONTE library and the integrator exists on the
periphery as a client. This paper outlines this approach to a trajectory propagation system
and provides a concrete set of examples showing its utility.

I. Introduction

Numerical integration of a spacecraft or natural body trajectory subject to a set of force models is
central to orbit determination, optimization, and many other facets of astrodynamic computing. The

creators of MONTE have taken a client-based approach to building a trajectory propagation system. In
this architecture, there are a set of force model managers external to the propagation system that have the
generic ability to compute accelerations. For instance, there is a gravity force model manager that can be
used directly to calculate gravitational accelerations between sets of bodies. There are likewise force model
managers that compute accelerations for nongravitational effects such as atmospheric drag, solar radiation
pressure, finite burns, etc.

The trajectory integration system is a client of these MONTE force model managers. Given an initial
state and the list of models to use in the integration, the propagator asks the main MONTE library for the
accelerations needed to compute its next step. These accelerations are computed by the appropriate force
model managers and returned to the propagation system.

In this setup, all of the accelerations available to the propagation system are also available to a user of
MONTE. Some of the advantages of this approach are immediately obvious. A user can manually query
the system to find out what accelerations are being used in any given propagation, for instance to create
acceleration plots or investigate an anomaly. One can even create a custom numerical integrator that uses
MONTE’s force models to calculate accelerations.

II. MONTE Overview

MONTE is a Python-language library for general-purpose astrodynamic computing. At JPL it has been
used primarily for trajectory design and optimization, orbit determination, and flight-path control. As
a result it has developed advanced functionality in each of these areas, but underneath them is a solid
foundation of core astrodynamic systems. These include the ability to represent and query trajectories,
define coordinate frames and rotations, calculate high-precision time, perform astrodynamic event searches,
numerically integrate astrodynamic equations, and configure low-level optimization routines.

∗Members of the Mission Design and Navigation Software Group, Jet Propulsion Laboratory, California Institute of Tech-
nology, Pasadena, CA 91109

Copyright c© 2016 California Institute of Technology. Government sponsorship acknowledged.

1 of 11

American Institute of Aeronautics and Astronautics

Most of the functionality of MONTE is contained in the base Monte library. The algorithms used in Monte

are written in C++ for speed and wrapped in Python for ease of use. The result is a normal, importable
Python-language module that can be used alongside the many other Python-language scientific computing
libraries. Convention is to import the main Monte library as M. Throughout this paper, if a class is referred
to with the prefix M., it means this class belongs to the main MONTE library (e.g. M.TrajLeg, M.Gm, etc).

The following example shows a simple script using MONTE to get the state of the Cassini spacecraft
with respect to Saturn at the time of its Saturn Orbit Insertion (SOI) burn.

import Monte as M

import mpy.io.data as defaultData

Set up a project BOA database, and populate it with base

astrodynamic data from the default data depot

boa = defaultData.load(["time","body","frame","ephem/planet/de405"])

Load the Saturn satellite ephemeris and Cassini trajectory into

our BOA database

boa.load("sat365.boa")

boa.load("cassini_trajectory.boa")

Define time of SOI

soiTime = M.Epoch("01-JUL-2004 02:48:00 UTC")

Get the trajectory manager from the BOA database

tset = M.TrajSetBoa.read(boa)

Request the state of Cassini at SOI from the trajectory manager

in a Saturn-centered Earth Mean Orbit of 2000 coordinate frame.

casAtSoi = tset.state(soiTime, "Cassini", "Saturn", "EMO2000")

Several of MONTE’s core systems are illustrated in the above example. They have been discussed
previously in Smith1 and Evans,2 and therefore only a brief overview is provided here.

BOA The Binary Object Archive (BOA) is MONTE’s primary data management system. The role that
BOA plays in MONTE can perhaps be best understood as “defining the universe that MONTE’s
astrodynamic tools operate on”. In the above example, this “model universe” (the BOA database)
is populated with time systems, natural body data, a planetary ephemeris, the Cassini spacecraft
trajectory, etc.

Default Data A standard MONTE installation comes with a collection of predefined, publicly available
astrodynamic datasets. These can be accessed and loaded into a BOA database via MONTE’s default
data loader (mpy.io.data). The default data loader was used in the example to load body data, time
and coordinate frames, and the planetary ephemeris DE405.

Time and Units MONTE supports the time systems TDB, TT, TAI, GPS, UTC, and UT1. Its unit
system supports the notions of time, length, mass, and angle. In the example, the time of SOI was
specified in UTC using the class M.Epoch.

Trajectories and Coordinate Frames MONTE has robust support for modeling and querying both tra-
jectories and coordinate frames. These are thoroughly explained in Section III below. In the example,
the trajectory manager class M.TrajSet was used to query the Cassini spacecraft trajectory at SOI.

Event Finding MONTE allows a user to search through astrodynamic relationships in a given BOA
database in pursuit of particular events (e.g. periapses, conjunctions, occultations).

Numerical Integration System MONTE provides a framework for numerically integrating spacecraft
and natural body trajectories subject to a set of force models. This is thoroughly explained in Section
V below.

Parameter System MONTE’s parameter system supports the calculation of partial derivatives for astro-
dynamic variables that can then be used in optimization and estimation.

2 of 11

American Institute of Aeronautics and Astronautics

III. Trajectory Definition and Usage in MONTE

MONTE defines and uses trajectories in two distinct systems. The component interface allows tra-
jectories to be defined using a variety of underlying implementations. These include analytic trajectory
definitions, interpolated table-based trajectories, and custom system-interface trajectories. Once a set of
trajectories has been defined, the astrodynamic interface can be used to perform generic state-queries
using a single, common syntax (Fig. 1).

III.A. Trajectory Definition Using the Component Interface

Figure 1. Two components of MONTE’s trajectory system.

BOA was described above as a “model
universe” on which astrodynamic func-
tions operate. This analogy has con-
crete ramifications on how MONTE mod-
els trajectories. In the real world, a body
moving through space has only one tra-
jectory. There aren’t multiple trajecto-
ries for the Earth around the Sun, but
only the actual path taken by the Earth
as it orbits. MONTE reflects this in its
trajectory system. In any given BOA
database, there can be only one trajec-
tory for a body, but this trajectory can
be modeled by several possibly overlap-
ping trajectory legs. For example, many
revolutions of a long-period comet may
be represented by one two-body analytic
model. Separate, higher-fidelity look-up
tables can then be overlaid covering times
when more accurate trajectory data are
available (perhaps during a specific peri-
helion passage). In MONTE’s trajectory system, these legs are collapsed into a single representation such
that the comet has only one state at any given time (Fig. 2). MONTE’s layered trajectory protocol follows
a last-in, first-out method of building composite trajectories.

Figure 2. Layered legs appear as a single trajectory through the astro-
dynamic interface.

MONTE represents trajectory legs
using a set of M.TrajLeg classes. There are
three main categories of trajectory legs,
grouped by their intended users (Tables
1 – 3). Some legs are meant to be used
by the MONTE system in the course of
its operation, some are meant to be used
when importing external trajectory for-
mats (such as SPICE files, OEM files,
or trajectory state tables) into MONTE,
and some are meant to be manually de-
fined by an analyst.

Table 1 lists the set of trajectory defi-
nition classes primarily used internally by
MONTE. Two in particular are used by
MONTE’s client-based numerical propa-
gation system (M.DiffLineSegTraj and M.DivaTraj) and will be discussed more in Section V.

A second grouping of TrajLeg classes is primarily used by trajectory converters when importing externally
defined trajectories into the MONTE system (Table 2). Most of these classes are built using a table of states
and differ in which algorithms they use to interpolate between table entries.

The largest grouping of TrajLeg classes are meant to be used by MONTE analysts. A number of these allow
an analyst to define a trajectory that has a direct relation to other trajectories in the system (M.BaryShiftTraj,

3 of 11

American Institute of Aeronautics and Astronautics

M.EarthStnTraj, M.OffsetTraj). Others allow trajectories to be defined using closed-form analytic representa-
tions (M.LagrangePointTraj, M.TwoBodyTraj). A full list of options is provided in Table 3.

III.B. Trajectory Queries using the Astrodynamic Interface

Once a set of trajectories has been integrated, imported or defined using the available TrajLeg classes, the
astrodynamic interface can be used to perform state queries between them. Every BOA database that
contains trajectories also has a trajectory manager (a class called M.TrajSet) with a global view of the
system. Its .state method can be used to request the position of any body with respect to any other body.
The trajectory manager has close ties with with the coordinate frame manager (M.CoordSet), which allows
these states to be automatically rotated into any defined coordinate system on request (Fig. 3).

III.C. A Note on Coordinate Frames

Figure 3. Cooperation between MONTE’s trajectory and coordinate
frame systems

MONTE’s trajectory and coordinate
frame systems are symmetrically struc-
tured and have many similarities. In the
trajectory system, TrajLegs are used to
define trajectories and TrajSet is used to
make state queries. In the coordinate
frame system, CoordFrames are used to de-
fine coordinate systems and CoordSet is
used to request rotations between frames.

As with TrajLeg, there are three main
groupings of CoordFrame classes; those
used primarily by the MONTE system,
those used in converting external frames,
and those used mainly by analysts. These
can be layered using the same last-in,
first-out protocol to create a composite
frame which again appears as a contin-
uous coordinate frame from the CoordSet

interface.

IV. Force Models and Accelerations in MONTE

MONTE provides a set of force model managers that can be used to compute accelerations on astro-
dynamic bodies (Table 4). These models, part of the top-level MONTE library, have interfaces which are
accessible to analysts.

Each manager class computes accelerations by coordinating the actions of component models which have
been independently constructed in a given BOA database. For instance, the M.AtmDrag model computes
accelerations due to atmospheric drag on a body. It first requests the state of a body from the trajectory
system, the density at that state from the atmosphere model, the cross-sectional area of the body relative
to the local wind direction from the body shape model, and then uses this information to calculate the
acceleration. All of these components (trajectory, atmosphere, shape) must be independently constructed
for the M.AtmDrag class to work. However, once these component models are constructed, M.AtmDrag can manage
their interaction to report accelerations along a trajectory.

V. Client-Based Propagation Architecture

MONTE’s numerical integration system is a heavy consumer of the services provided by the trajectory
and force model managers. Instead of containing custom algorithms for calculating states and accelerations,
it outsources these functions to classes in the main library. In this respect, the propagation system is like a
non-human client of the broader MONTE library. An important aspect of this arrangement is that MONTE
analysts have unrestricted access to the same classes used during integration. This level of accessibility

4 of 11

American Institute of Aeronautics and Astronautics

Table 1. TrajLegs targeted for use by MONTE system components.

Name Summary

M.DiffLineSegTraj contains a series of state modified difference array lines covering consecutive intervals of time.

M.DivaTraj interface class used to link an active propagation into the trajectory system.

M.PatchedConicPropTraj interface class used to link a M.PatchedConicProp into the trajectory system.

M.SpkPassThrough passes through queries to SPICE, allows SPICE trajectories to be used directly by MONTE.

Table 2. TrajLegs targeted for use by MONTE trajectory converters.

Name Summary

M.ChebySegTraj contains a series of sets of Chebyshev polynomials representing the body state over time.

M.GpsBroadcastTraj computes GPS satellite states from broadcast ephemeris information.

M.HermiteTraj uses Hermite interpolation on a table of positions and velocities.

M.LagrangeTraj uses Lagrange interpolation on a table of positions and velocities.

M.PolyTableTraj uses interpolation based on JPL Math77 “dilup” routine on a table of positions and velocities.

Table 3. TrajLegs intended for use by MONTE analysts.

Name Summary

M.BaryShiftTraj computes the barycentric location of a planet based upon its Gm and satellites.

M.EarthStnTraj defines stations, landmarks, and other Earth-fixed features over time.

M.EquinoctialTraj equinoctial element defined trajectory allowing for two-body + J2 effects.

M.GroundTrackTraj computes state of the surface point of the body with respect to the center body.

M.LagrangePointTraj implements a trajectory leg for one of the Lagrange point locations in a two-body system

M.OffsetTraj provides for a participant location that is specified as a constant position offset.

M.PassiveRelOrbitTraj implements passive relative orbit based on the Hill-Clohessy-Wiltshire equations.

M.PatchedConicTraj implements a trajectory leg containing interval/conic state pairs.

M.PolynomialTraj trajectory leg that interpolates its states using polynomials.

M.PyTrajLeg allows analysts to write their own trajectory legs in Python.

M.StateTraj like OffsetTraj but with velocity.

M.StmOffsetTraj provides a trajectory that is a linear mapping of an offset around another reference trajectory.

M.TwoBodyTraj two-body orbital motion trajectory.

Table 4. Force Model Managers in MONTE.

Model Description

M.AtmDrag computes the acceleration of an atmosphere model on a body.

M.ExpAccel computes an exponentially decaying acceleration on a body.

M.FiniteBurn computes an acceleration and mass flow rate from a finite duration maneuver.

M.Gravity computes point mass, extended-body, and relativistic gravity accelerations on a body.

M.ImpulseBurn computes an instantaneous change to the mass and velocity of a body due to a maneuver.

M.PolyAccel computes an acceleration on a body modeled as a set of polynomials in Cartesian X, Y, and Z.

M.SolarPressure computes the acceleration on a body due to the impact of solar electromagnetic radiation.

M.AcsSolarDesat computes the acceleration on a body due to thruster firings which counter solar radiation torques.

M.SmallBurn computes instantaneous changes to the mass and velocity of a body due to a set of small maneuvers.

M.PeriodicAccel periodic acceleration model used to model effects that vary on a per orbit basis.

5 of 11

American Institute of Aeronautics and Astronautics

enables several interesting kinds of force model analysis, which will be explored below.

V.A. Overview of MONTE’s Numerical Integration System

MONTE’s propagation system is capable of numerically integrating state, mass, coordinate frame, time, and
user-defined equations. There are three steps to setting up a state propagation (similar steps are needed for
mass, coordinate frame, time, and user-defined integrations).

Step 1: Configure Force Models. As previously mentioned, the force model managers used to compute
accelerations during an integration are not part of the propagator. As a result, any models that are to
be used in an integration must be set up before that integration is performed.

Step 2: Setup Integration Elements. MONTE is capable of simultaneously integrating several indepen-
dent or interrelated elements. For instance, a spacecraft trajectory and a collection of natural bodies
(e.g. the Cassini spacecraft along with the satellites of Saturn) can be integrated as a set. Also, a
spacecraft that performs regular maneuvers can integrate both its state and mass, so that changes in
one can affect the other.

MONTE provides a set of classes that are used to define integration elements (Table 5). These classes
capture and convey information, such as the initial conditions and force models, needed by the propa-
gator to perform the integration.

Step 3: Create and Run the Propagator. The integration elements defined in Step 2 need to be bun-
dled together before they are passed to the integrator. A container class M.IntegSetup packages and
coordinates each element being integrated.. This object is then used to build the propagator that will
actually perform the integration.

All of the important classes in setting up a MONTE integration are listed in Table 6.

V.B. Communication between the Propagator and Model Managers

There are two primary channels of communication that need to exist when numerically integrating in
MONTE. First, the propagation system must be able to request accelerations from the appropriate force
model managers acting on a body. This is a flow of data from the MONTE system into the propagator.
Second, the model managers must be able to use real-time information about the body being propagated.
This is a flow of data from the propagation system into MONTE.

A series of bridge classes facilitate these lines of communication. First, to help the propagator request
accelerations, one Force class is provided for each model manager. For instance, the M.Gravity model has a
corresponding M.GravityForce object which helps the propagator request gravitational accelerations (same for
M.AtmDrag and M.AtmDragForce, etc). All of the actual acceleration calculations occur in the model classes; the
force classes simply serve as an intermediary and manage integration-related details like the correct index in
the integration table to insert accelerations.

In the reverse direction, model managers need access to real-time information about the body being
propagated. A series of propagator bridge classes are provided to make this information available. For
instance, the M.DivaTraj bridge class enters the trajectory system like any other M.TrajLeg. When a request
is made for the state of a body being integrated, DivaTraj returns the current integration state from the
propagator. After an integration has finished, the DivaTraj is removed from the trajectory system and replaced
by a M.DiffLineSegTraj which contains the integrated difference lines that represent the final trajectory. This
interaction is illustrated for a state integration under the influence of gravity in Fig. 4.

At no point in this process do the trajectory or model managers know that an integration is being
performed. Because of the bridge classes, requests from the integrator for states or accelerations look the
same as those from a MONTE analyst.

VI. Advantages of Client-Based Architecture

6 of 11

American Institute of Aeronautics and Astronautics

Figure 4. MONTE’s client-based propagation architecture

The client-based structure used for
the MONTE’s propagator is a common
pattern throughout the system. MONTE
is a general purpose astrodynamic li-
brary. Rather than have closed, self-
contained tools, MONTE tends to make
the computational building blocks for its
systems part of the main library. In the
propagation framework, the classes which
calculate accelerations and perform state
and rotation queries are independent en-
tities available to any user of MONTE.
The propagation system must use them
the same way that any other MONTE
client would. A similar approach has
been taken in MONTE’s trajectory opti-
mization, orbit determination, and flight
path control systems. All the core func-
tionality of these systems are exposed via
classes in MONTE’s main library. These classes are then used to construct the advanced functionality in
the end system.

This structure has two major advantages over building self-contained, closed sub-systems. First, it allows
multiple parts of the software to take advantage of the same infrastructure elements. All of MONTE’s
advanced systems (such as integration, optimization, estimation) use the same trajectory and coordinate
frame managers, the same force model managers to compute accelerations, and so on. These abstracted
manager classes provide uniform behavior across all the systems that need these services, and it helps
prevent subtle coding errors that may be otherwise hard to detect.

Second, it opens these building blocks to MONTE users in building their own tools or performing their
own in-depth analysis. For instance, a user could construct a custom integrator that takes advantage of the
model managers and bridge classes. They can also perform propagation-related analyses without actually
running the integrator. The next two sections illustrate how MONTE’s force model managers can be used
in trajectory acceleration analysis.

VI.A. Acceleration Analysis for Integrated Trajectories

After integrating a trajectory in MONTE, an analyst can extract the models from the BOA and examine
the accelerations experienced by the body. Below is a MONTE script that illustrates this type of analysis.
It starts by extracting a propagator that has been setup and used to integrate a segment of NASA’s Juno
spacecraft trajectory. The force models used in the integration are read from the propagator, and then two
of the corresponding force model managers (for gravity and solar radiation pressure) are extracted from the
BOA database and queried to see Juno’s acceleration profile over the integration span.

import Monte as M

from mpy.units import *

Load integrated trajecory and supporting models

boa = M.BoaLoad("juno.boa")

Extract propagator and see which force models were used

prop = M.DivaPropagatorBoa.read(boa, "DIVA")

forces = prop.integSetup().findState("Juno").forces()

for f in forces:

print(str(f.__class__))

Output:

Monte.GravityForce

Monte.SolarPressureForce

Monte.PolyAccelForce

Monte.SmallBurnForce

7 of 11

American Institute of Aeronautics and Astronautics

Get query times for accelerations

junoSpan = M.TrajSetBoa.read(boa).totalInterval("Juno")

times = M.Epoch.range(junoSpan.begin(), "01-JUN-2015 ET", 1 *day)

SRP Accels

srpMgr = M.SolarPressureBoa.read(boa, "Juno")

srpAccels = [srpMgr.accel(t) for t in times]

PolyAccels

pMgr = M.PolyAccelMgrBoa.read(boa, "Juno")

pAccels = [pMgr.accel(0,t,"EME2000") for t in times]

SmallBurn Accels

sbMgr = M.SmallBurnMgrBoa.read(boa, "Juno")

sbTimes = [b.time() for b in sbMgr]

nburns = range(sbMgr.size())

dTime = 1./1 *sec

sbAccels = [sbMgr.computeDvel(i, "EME2000")*dTime for i in nburns]

Get Gravity Accels

gMgr = M.GravityBoa.read(boa, "Juno")

gAccels = [gMgr.accel(t, "Sun") for t in times]

Figure 5 shows a plot of the computed accelerations. Working directly with the models in this way gives
the user more control for exploratory analysis. For instance, certain parameters in the underlying models
can be changed and the result in the acceleration profile observed.

Figure 5. Accelerations on the Juno Spacecraft

VI.B. Acceleration Analysis for Pre-Existing Trajectories

A similar analysis can be performed for any trajectory (not just those integrated by MONTE), provided one
has set up the acceleration models required for the calculations.

8 of 11

American Institute of Aeronautics and Astronautics

The following MONTE script gives an example of how this might be done. The Mariner 9 spacecraft
was the first to orbit another planet, in this case Mars. This MONTE script looks at the acceleration on
the spacecraft due to gravity and the atmosphere of Mars during a segment of its trajectory. It constructs
a gravitational model and atmospheric model using the following steps.

• A gravity model is constructed using the mpy.traj.force.grav.basic function. It gravitationally links
Mariner 9 to the Sun, Mars, and the two Martian moons, Phobos and Deimos.

• An atmospheric model is built by:

– loading the MarsGram 2005 density model from default data.

– constructing a spherical shape model to represent the Mariner 9 bus.

– building a mass model.

With these models built, the gravity and atmospheric model managers have all the information they need
to calculate accelerations on the spacecarft.

import Monte as M

import mpy.io.data as defaultData

import mpy.traj.force.grav.basic as basicGrav

from mpy.units import *

from gravlib import GravAccelQuery

Load simulation data

boa = defaultData.load(["time", "body", "frame",

"ephem/planet/de405", "ephem/satellite/mars097"])

boa.load("mariner9.boa")

Build gravity nodes activating gravitational bodies

gravBodies = ["Sun", "Mars", "Phobos", "Deimos"]

basicGrav.add(boa, "Mariner 9", gravBodies)

Build spacecraft shape model

m9Shape = M.ScShape(boa, "Mariner 9 Shape")

m9Sphere = M.ScSphere("Mariner 9 Sphere", 2 *m)

m9Shape.insert(m9Sphere)

Build spacecraft mass model

m9Mass = M.ConstantMass(boa, "Mariner 9", 700 *kg)

Get acceleration query times

begin, end = M.Epoch("14-FEB-1972 ET"), M.Epoch("16-FEB-1972 ET")

times = M.Epoch.range(begin, end, 600 *sec)

Get drag accels

m9Flux = M.ConstantFlux(boa, "Constant Solar Flux")

dragMgr = M.AtmDrag(boa, "Mariner 9", "Mariner 9 Shape",

"MarsGram2005 Density", M.AtmDrag.SINGLE_DRAG)

dragAccels = [dragMgr.accel(t) for t in times]

Get Gravity Accels using MONTE Extended

Library (supernova) gravlib.GravAccelQuery class

gaq = GravAccelQuery(boa, "Mariner 9")

gAccels = gaq.accels("Mars", times)

Fig. 6 shows a plot of the computed accelerations (top) and the radial distance of Mariner 9’s orbit
(bottom). As expected, both gravity and atmospheric drag spike when the spacecraft approaches periapse.

9 of 11

American Institute of Aeronautics and Astronautics

Figure 6. Gravity and atmospheric accelerations on the Mariner 9 Spacecraft

Table 5. Integration Elements in MONTE’s Propagation System

Name Summary

M.IntegState setup class for state integration.

M.IntegMass setup class for mass integration.

M.IntegFrame setup class for coordinate-frame integration.

M.IntegUser setup class for user-defined first order equation integration.

Table 6. Important Classes in MONTE’s Propagation System

Name Summary

M.DivaPropagator main numerical integrator, uses JPL’s DIVA astrodynamic integration algorithm.3

M.IntegSetup container for integration elements which are to be simultaneously integrated.

M.IntegState, etc. integration elements defining initial conditions, force models, etc.

M.GravityForce, etc. bridge classes allowing propagator to use MONTE force model managers.

M.DivaTraj, etc. bridge classes allowing MONTE managers to access in-process information from the propagator.

10 of 11

American Institute of Aeronautics and Astronautics

VII. Conclusion

There are many benefits to constructing astrodynamic subsystems as clients of a broader computational
library. These have been described in the context of MONTE’s trajectory and force model systems and how
they interact with the propagator. Allowing users access to underlying computational routines such as the
trajectory and force model managers gives them more flexibility to create their own applications and perform
in-depth analysis.

VIII. Acknowledgment

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space Administration.

References

1Smith, J., “MONTE Python for Deep Space Navigation,” Proceedings of the 15th SciPy Conference, SciPy, Austin, Texas,
2016.

2Evans, S., “MONTE: The Next Generation of Mission Design and Navigation Software,” Proceedings of the 6th Interna-
tional Conference on Astrodynamics Tools and Techniques (ICATT), ICATT, Darmstadt, Germany, 2016.

3Krogh, F. T., “Notes on a New Package for Ordinary Differential Equations,” Computing Memorandum 361, California
Institute of Technology, Jet Propulsion Laboratory, Section 914, May 1974.

11 of 11

American Institute of Aeronautics and Astronautics

	Introduction
	MONTE Overview
	Trajectory Definition and Usage in MONTE
	Trajectory Definition Using the Component Interface
	Trajectory Queries using the Astrodynamic Interface
	A Note on Coordinate Frames

	Force Models and Accelerations in MONTE
	Client-Based Propagation Architecture
	Overview of MONTE's Numerical Integration System
	Communication between the Propagator and Model Managers

	Advantages of Client-Based Architecture
	Acceleration Analysis for Integrated Trajectories
	Acceleration Analysis for Pre-Existing Trajectories

	Conclusion
	Acknowledgment

