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ABSTRACT  

The Root-Sum-Squared, or “RSS” wavefront error model is a simple, scalar tool, commonly used for space telescope 
error budgeting. At the same time, much more detailed models, combining ray-trace and Fourier optics with optical 
alignments and wavefront controls, can provide accurate, high-resolution simulations for detailed system and subsystem 
design. This paper makes a connection between the two modeling approaches by deriving RSS model coefficients from 
ray-trace models, including the effects of wavefront controls, for computing system performance from component error 
statistics. It is shown that, properly constructed, the simple RSS error budget is a covariance analysis, and can be as 
accurate as high-resolution wavefront models for statistical wavefront error prediction. A notional segmented-aperture 
space telescope is used to illustrate this error modeling process. 
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1. INTRODUCTION 
One task of the optical system engineer is to manage the errors in the optical system – the figure and alignment errors of 
each optical element, for instance – to meet overall image quality requirements. These requirements can be written in 
terms of image-based metrics, such as Strehl ratio, encircled energy, or MTF. More commonly, the system Wavefront 
Error (WFE) is used as a surrogate for image quality, and the system engineer manages performance by budgeting the 
wavefront error contributions of all the various error sources to meet system-level WFE objectives. For a high-quality 
imaging telescope, the WFE will typically be specified so that the imagery will be limited by diffraction rather than 
aberrations, at a level of 1/10th of a wavelength or better. 

The Root-Sum-Squared, or “RSS” wavefront error model provides a simple and convenient scalar form for estimating 
total system WFE from the standard deviations of the various component errors, and is the most commonly used method 
for WFE budgeting:  

 WFE = sqrt((coef1*std(error1))2 + (coef2*std(error2)) 2 + ...) (1) 

This paper uses high-dimensionality ray-trace methods to examine the RSS WFE model to determine its accuracy and 
scope. In particular, this paper: 

1. Derives linearized ray-trace models for end-to-end performance, including active optical controls, such as rigid-
body alignment actuators, or deformable mirrors. 

2. Shows that RSS error models, properly formed, are covariance analyses. 

3. Derives the WFE coefficients for component errors, and… 

4. Illustrates the error modeling process for a notional large actively-controlled space telescope. 

2. MODELING IMAGE FORMATION, IN A NUTSHELL 
An imaging system, consisting of elements such as mirrors, lenses, apertures, filters, gratings, etc., plus a Focal Plane 
Array detector (FPA), takes in light emitted from a source, and brings it to a focus at the FPA. The source can be 
represented as a single point at the appropriate location, emitting rays of light in all directions simultaneously. Photons 
emitted at the same instant of time will lie upon a spherical surface located at the entrance pupil of the system, and 
centered at the source location. This spherical input reference surface is the ideal input wavefront of the system. Note 
that, for a source (such as a star) located very far away, this input wavefront surface is well represented as a plane. 

The ideal output wavefront of the imaging system is similarly a sphere, located at the exit pupil of the system, and 
centered at the focal point on the FPA. The exit pupil is located at an image of the entrance pupil, established by the 



 
 

 
 

optics between the entrance and exit of the system. For a typical telescope, the entrance pupil is the entrance aperture, 
and the exit pupil, conjugate to the aperture, is in virtual image space behind the secondary mirror. 

Imperfections in the optical system, such as figure errors, misalignments, or “design error” – the design compromises 
that balance performance across the telescope field of view and spectral pass band – cause the actual wavefront to 
deviate from the ideal. This deviation, termed the Optical Path Difference (OPD), can be computed by tracing a grid of 
rays through the optical system, from the entrance pupil to the exit pupil. The ray-by-ray pathlength, minus the mean, 
can be plotted in a 2-dimensional map: an OPD matrix, showing how the pathlength varies across the pupil (Fig. 1).  

The Wavefront Error (WFE) of the system is simply the RMS of those entries of the OPD matrix that fall within the 
system clear aperture. 

The OPD map can also be used to calculate the Point Spread Function (PSF), which is the image of an unresolved 
source at the FPA. This is done using Fourier optics, by generating a complex amplitude (CA) matrix at the exit pupil by 
using the OPD and the wavelength (or wavelengths) to set the phase, and the ray transmission to set the magnitude, of 
each entry in the matrix. (Ray transmission is computed during the ray trace, based on element extent, extinction, 
polarization, and other properties.) The CA matrix at the FPA is then computed as the Fourier transform of the pupil 
amplitude matrix, plus a phase shift: Fraunhofer propagation1. The PSF is the modulus squared of the FPA CA matrix. 
By setting the sampling of the FPA CA matrix to correspond with the locations of the FPA pixels, the PSF can 
accurately simulate the image the real optical system would take of a star or other unresolved source (Fig. 1).  

 
Figure 1. Elements used for ray-trace and Fourier optics modeling of a telescope. 

3. LINEARIZED RAY-TRACE MODEL OF AN EXAMPLE TELESCOPE 
To illustrate the points made in this paper we will use a notional space telescope design developed for the “ATLAST” 
study. Several ATLAST telescope concepts were developed to explore the scientific capabilities of a large UV-optical-
NIR observatory, culminating in a white paper submitted to the 2010 Decadal Survey2. The design we will use here is 
for a large (8-16 meter) segmented-aperture space telescope, using a Three-Mirror Anastigmat (TMA) wide field design 
similar to that used for the James Webb Space Telescope (JWST). Like JWST, the Primary Mirror (PM) segments, and 
the Secondary Mirror (SM), are equipped with 6-DOF actuators, allowing them to be controlled on orbit. Unlike JWST, 
our example also includes a Deformable Mirror (DM) located at a pupil conjugate to the PM, and Figure Control 
Actuators on the PM segments. The DM and segment FCAs can also be controlled on orbit, to correct WF errors that 
may occur during fabrication, integration or launch. Our example system is sketched in Fig. 2. 

The optical prescription of the example was entered into the JPL MACOS3 optical modeling code, which was used to 
trace rays and generate PSFs for this analysis. MACOS implements the coordinate-free ray-trace theory of Refs. 4 and 5. 

The OPD of the example can be computed by calls to MACOS (or any similar code), as: 

 OPD = MACOS(prescription data, various commands) (1) 

It is convenient to vectorize the OPD matrices we will be using. This is done as illustrated on Fig. 3, simply by stacking 
the column matrices of the OPD, excluding any entries that do not fall into the clear aperture.  



 
 

 
 

   
Figure 2. Example active telescope, showing key elements. 

Thus: 

 w = vector(OPD) (2) 

and: 

 OPD = matrix(w) (3) 

The WFE is then: 

 WFE = RMS(w) = RMS(nonzeros(OPD)) (4) 

 
Figure 3. The OPD vector w is created by stacking column vectors from the OPD matrix.  

The effect of perturbations of the optics, such as small motions of individual elements, or small changes in optical figure, 
can be computed by changing the optical prescription and recomputing the OPD. Figure 4 provides an example, showing 
the nominal OPD, the OPD after perturbing segment 2 with a small twist  motion, and then showing the sensitivity of w 
to segment 2 twist. This sensitivity, denoted 𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, is computed as: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−𝑂𝑂𝑂𝑂𝑂𝑂0)
𝛿𝛿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 (5) 

Here OPD0 is the nominal OPD, and “𝛿𝛿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃” is the applied perturbation – in this case, applied to the twist degree of 
freedom (DOF) for segment 2. All the other pose DOFs can be treated in the same way, with the resulting column 
vectors organized into a single large sensitivity matrix, 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕. Here x is termed the optical state vector, and includes all 
of the rigid body (pose) DOFs. For the ith optic, the pose state is: 



 
 

 
 

 
Figure 3. The sensitivity of w to twisting motion of segment 2: calculation by numerical differentiation.  

  (6) 

where θ is a 3-vector of rotation and δ is a 3-vector of translation perturbations, usually in a local coordinate frame. The 
combined optical state x is: 

  (7) 

Then the linearized ray-trace model of the OPD vector w that results from any combination of (small) pose changes is: 

 𝑤𝑤 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑥𝑥 + 𝑤𝑤0 (8) 

The dimension of the 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 matrix is nray by nDOF, with typically thousands of rays and hundreds of pose DOFs.  

One can compute similar sensitivities for every other degree of freedom of interest in the optical prescription: for figure 
errors z; for PM segment and SM Rigid Body (RB) controls uRB; for DM controls uDM; and for PM segment figure 
control actuators uFCA. Surface figure errors of each optic can be conveniently be represented using selected Zernike 
polynomials (Gram-Schmidt orthoganalized if not circularly shaped). For the ith optic in the example, the figure state is: 

  (9) 

Here Zi signifies the ith Zernike polynomial. The complete figure error state combines all optics as before: 

  (10) 
The DM and FCA controls are organized similarly. The DM has 1313 actuators, so the DM control vector uDM has 
dimension 1313x1. Each PM segment has 342 FCAs. For segment i: 



 
 

 
 

   (11) 

For all optics: 

  (12) 

Examples showing the OPD and PSF for selected pose and figure DOFs, and DM and FCA controls, are shown in Fig. 4. 

 
Figure 4. OPD and PSF for selected pokes: UL – effect of a local X-axis rotation of Segment 1; UR – Z4 applied to segment 
1; LL – a DM actuator influence function; LR – a FCA influence function.  

Combining all of these effects, the complete linearized ray-trace model of the OPD for the example system is: 

  (13) 

4. WAVEFRONT CONTROL 
Wavefront sensing and control (WFSC) uses measurements of the system to determine actuator settings that correct 
aberrations of the system. A thorough exposition of WFSC for telescopes like our example can be found in Ref. 6.  

For the purposes of error modeling, it is not necessary to consider all of the steps that go into achieving the ultimate 
WFSC performance. Only the initial uncontrolled state (from Eq. 13), the final WFSC step, and any subsequent drift 
need be considered. In general, the final step will involve high resolution measurements of the WF followed by 
movement of the actuators, which then retain that position for some period of time – a month in the case of JWST. 
Uncompensated drifts are added to the final WFSC setting. Systems that include metrology or other additional 
measurements can provide useful control updates – these would compensate for drift effects. In our discussion here we 



 
 

 
 

will discuss the final WFSC step only, and in an abbreviated form. Metrology-based control, assembly alignments, etc. 
can be handled in pretty much the same way. 

WF control begins with WF sensing, a process by which the wavefront w can be estimated, as west. Examples of WF 
sensing methods include interferometric WF measurement, Shack-Hartmann or other WF slope measurement, and 
image-based phase retrieval6. In simplest form: 

 west = w + δw (14) 

Here δw is the noise in the measurement. In practice, the simple form of Eq. 14 should be replaced with a more detailed 
model representative of the actual methods used. 

The control problem is to choose values for u that minimize the cost function: 

 J = 0.5 (w – wnom)T(w – wnom) (15) 

Subject to: 

  (16) 

  (17) 

Here u stands for any or all of uRB, uDM, or uFCA. Substituting wc for w in Eq. 15, the solution comes at the stationary 
point dJ = 0: 

  (18) 

The non-trivial solution: 

   (19) 

  (20) 

This is the classic pseudo-inverse controller, easily implemented using constrained least-squares solvers such as 
Matlab’s quadprog. The δu term is actuator noise. 

5. END-TO-END WAVEFRONT PERFORMANCE SIMULATION 
We now can simulate the complete wavefront performance of our example telescope. Again lumping the controls 
together, the OPD prior to control, as driven by initial misalignments and figure errors, is:  

   (21) 

Specific values for the elements of x0, z0, and u0 consistent with statistical design specifications can be realized using 
simple methods. For instance, a specification for initial alignment of the PM segments might require a 1-sigma error of 
300 microns in each axis, based on achievable assembly tolerances and expected shifts during launch. Then a single 
realization of these errors can be computed using a normal-distribution random number generator, times the 300 microns 
standard deviation. Other distributions include uniform and worst-case, also handled in straightforward fashion.  

Substituting for west and u1 from Eqs. 14 and 19, the wavefront residual after WFSC is: 

    (22) 

   (23) 



 
 

 
 

Here the “control projection matrix” Pu will be zero only if the various actuators have full controllability of the OPD at 
the sampled ray density. This will not generally be true, and what leaks through – the imperfect correction residual – is 
known as fitting error. Other key terms are the sensing error – note that only the controllable part of the sensing error 
contributes to the post-control residuals – and the actuation error. Since actuator error levels are likely to be different 
between the RBAs, the DM and the FCAs, the overall impact of actuation error can be minimized through a control 
sequence that takes these differences into account. 

The combined system WFE, post control, is the RMS of the OPD: 

   (24) 

This gives the WFE for a single realization of the various errors.  

Given that the component specifications will be statistical, the overall WFE performance of the system will also be 
statistical, and no one realization will predict the likely performance of the as-built system. Many realizations, averaged, 
are required to do that. Monte Carlo analysis of the wavefront performance can be carried out by repeatedly generating 
initial errors x0, z0, and u0 from their (statistical) specifications and computing the combined post-control WFE for each 
realization. Then the overall expected residual WFE performance is the average of all of the individual WFEs, with error 
bars determined from the scatter of the individual WFEs. 

6.  COVARIANCE ANALYSIS 
There is another way to compute the expected system performance from statistical descriptions of the component errors, 
and that is by direct covariance analysis. The covariance of the end-to-end residual WFE w1 is: 

   (25) 

Substituting from Eq. 22: 

   (26) 

Here the X0, Z0, U, and West signify the covariance matrices of x0, z0, δu, and δwest, respectively. The expected value of 
the WFE, given these statistics and the linear model, is: 

    (27) 

Many of the initial component errors will have the same statistics – zero mean, same standard deviation – and be 
uncorrelated. An example might be the initial placement of the PM segments. Assuming that similar but independent 
metrology is used in their initial placement, the initial misalignment of each segment would have the same (e.g., 300 
micron) standard deviation, but each individual error is not related to any of the other errors. This would be the case, for 
instance, if the segments are installed within mechanical tolerances using laser tracker measurements. 

In these cases the component errors with the same statistics can be grouped together for covariance analysis purposes. 
The initial covariance of that subset xδ of the states that have placement error standard deviation σδ assumes a diagonal 
form: 

   (28) 

Plugging this into the W1 equation, the contribution of segment misalignment to the total, post-control WFE is: 

  (29) 



 
 

 
 

This is a scalar equation, with a single coefficient αδ multiplying the standard deviation σδ. The scalar coefficient, 
however, is computed from the product of very large matrices, which embed the full linearized optical model, including 
the effect of the WFSC controls: 

  (30) 

This approach can be carried out for all of the errors and noises in the linearize ray-trace model. For instance, the WFE 
due to DM actuator error is: 

   (31) 

Similarly the effect of estimation error can be written: 

   (32) 

These terms can be combined using root-sum-square to calculate the expected WFE due to all of the component errors: 

   (33) 

Thus we have re-derived Eq. 1, the classic RSS-form error model commonly used for error budgeting.  

By computing the coefficients following the approach here, the RSS model becomes a covariance analysis. As such, it is 
subject to certain limitations. In particular, it is assumed that the system is indeed linear, and that the sensitivities are 
accurate. This will be true for a well-designed system operating near its design condition. Second, the component errors 
in this derivation are implicitly assumed zero-mean and normally distributed. In practice, non-normally distributed errors 
are important.  

Equation 33 can be implemented in a spreadsheet form, as indicated in Fig. 5, which also rolls up the performance of our 
example system. In this spreadsheet, the white cells contain the input component error σ’s. The other cells are linked to 
the α coefficients on another worksheet, for pre- and post-WFSC wavefront error. The effect of each term, as well as the 
sum of all terms, are shown in the corresponding cells. This form allows the system engineer to rapidly change error 
distributions, accurately assessing the system WFE consequences of changes made to source-level error specifications, 
without having to run large simulations. 

The ATLAST segmented aperture telescope notional design used to illustrate the points made here was used to explore 
the performance requirements for a large-aperture telescope for astronomy prior to the 2010. As shown in Fig. 5, WFSC 
was shown to help reduce large initial errors to values consistent with an overall WFE budget of 20 nm. As NASA nears 
the 2020 Decadal Survey, LUVOIR, a large UV/optical/IR telescope concept, generally following the characteristics 
identified in recent studies7 has been selected as one of four studies for funded study leading to consideration for mission 
start in the decade of the 2020s. 

7. COVARIANCE VS. MONTE CARLO ANALYSIS 
Monte Carlo analysis can also be used to compute the coefficients α, by exercising Eqs. 22 and 24 (etc.) many times with 
only particular component errors included, isolating each individual error term, and using the average WFE response to 
determine the coefficient for that term. This can be done without assuming normal distribution for the error statistics. It 
can embed non-linear effects, such as sensor or actuator discretization, or nonlinear optics or controls. This approach can 
also be computationally more efficient than directly evaluating the covariance analysis coefficients, especially for highly 
correlated errors (such as PSD-based figure specifications).  

When the assumptions are the same between covariance analysis and Monte Carlo analysis, the results will also be the 
same. This is illustrated in Fig. 5, which overlays RSS-model and full Monte Carlo results (with many trials) for a case 
like our example, but with only 4 DOF control for the mirror segments. As shown, the results are indeed the same 



 
 

 
 

between the simple RSS model and the big elaborate Monte Carlo analysis. The performance error floor is set by design 
error in these examples. 

 
Figure 5. Spreadsheet excerpt for the RSS error model of the example system.  

 
Figure 6. WFE computed using RSS covariance analysis (solid lines) compared to WFE computed from Monte Carlo 
methods (points), showing good agreement.  

8. CONCLUSION 
The RSS error budget is a simple and useful tool. Properly constructed, it can be as accurate as much larger and more 
complex models, even for actively controlled optical systems, such as segmented-aperture space telescopes.  
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