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In 2015 NASA chartered a partnership between the Jet Propulsion Laboratory (JPL) and the 
Johns Hopkins Applied Physics Laboratory (APL) to begin planning a mission to study the Jovian 
moon Europa. The project has adopted a Model-Based Systems Engineering (MBSE) approach to its 
architecting process since its early formulation, developing certain modeling practices and tools as 
needed, with the expectation that this process would result in a more consistent and verifiable 
architecture than with a more traditional document-based approach. A sound architecture is 
essential to provide the rationale for requirements on the system design, and to define the trade space 
of acceptable design points within which technical and programmatic concerns as well as project 
objectives can be addressed. 

This paper provides an overview of the framework used by the Europa project to describe the 
mission architecture and discusses how a system model was instrumental in providing a single-
source-of-truth for this description. Several key modeling patterns to represent the architecture are 
presented, along with audit methods to ensure the consistency and the correctness of the model. 
Finally, the benefits and challenges of using a model-based approach to generate traditional 
requirements documents and other gate products are assessed. 

Nomenclature 
AFID = Architecture Framework Identifier 
C2R = Concept-to-Realization 
FS = Flight System 
GNC =  Guidance, Navigation and Control 
JOI = Jupiter Orbiter Insertion 
MBSE = Model-Based-Systems Engineering 
MOS = Mission Operations System 
SSoT = Single-Source-of-Truth 
SysML = Systems Modeling Language 
WBS = Work Breakdown Structure 

 

I. Introduction 
n 2015 NASA chartered a partnership between the Jet Propulsion Laboratory (JPL) and the Johns Hopkins 
Applied Physics Laboratory (APL) to begin planning a mission to study the Jovian moon Europa. Europa is 

covered in water ice, and believed to harbor an ocean of liquid water below the ice that could potentially support 
life. The mission is currently in the specification phase of its lifecycle with an anticipated launch in the early 2020s. 
The spacecraft is projected to arrive at Europa later that decade and its main objective is to assess the habitability of 
the Jovian moon. 

The planned Europa mission faces many complex challenges and will require extraordinarily careful planning to 
ensure success. The project has adopted a Model-Based Systems Engineering (MBSE) approach to its architecting 
process since its early formulation, developing certain modeling practices and tools as needed, with the expectation 
that this process would result in a more consistent and verifiable architecture than with a more traditional document-
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based approach. While formal modeling techniques have largely grown out of domain-specific analyses (e.g. 
mechanical and electrical CAD), systems engineering has been slower to adopt model-based techniques in part 
because its scope necessarily spans multiple technical domains. It is up to the system architecture to reconcile 
disconnects or incompatibilities between those domain-specific analyses that intentionally abstract away details they 
are not directly responsible for. More importantly, a sound architecture is essential to provide the rationale for 
requirements on the system design, and to define the trade space of acceptable design points that address technical 
and programmatic concerns as well as project objectives. 
 

This paper provides the next chapter in a series of reports on the progress of the use of a model-based approach 
to perform systems engineering and architecting of the Europa project1,2,3. First, the paper discusses the need for 
properly describing a mission architecture and provides an overview of the framework used on the Europa project to 
capture this description. Section III then highlights the importance of keeping a single-source-of-truth in the form of 
a system model that captures the various elements, relationships, constraints and requirements composing the 
architecture, so that the information remains correct and consistent. Specific architectural patterns, such as those for 
constraints, requirements, and their traceability, are then presented in further detail in section IV. Section V 
describes how the usage of such well-established patterns enables audit activities on the architecture model in order 
to not only ensure that the information is captured correctly and completely, but also to check that the overall set of 
elements and relationships remains consistent. In section VI, the benefits and challenges of using a model-based 
approach to generate traditional requirements documents and other gate products are assessed. Finally, the paper 
concludes with a summary of the lessons learned from using a system model to capture the mission architecture on 
the Europa project. 

II. Overview of the Europa Architecture Framework 
A. What is a System Architecture? 

In the context of systems engineering, an Architecture refers to the fundamental organization of the system (i.e. 
functionality, composition and relationships), its relations to the environment and the bounding set of constraints on 
designs that would be acceptable for a particular purpose. In a simple sense, the architecture includes the 
requirements specifying a system along with the context needed to explain those requirements. For a given system, 
we distinguish the architecture from the system design which represents the response to the requirements specified 
by the architecture.  

The primary purpose of the system architecture is to decompose the system into implementable subunits around 
boundaries that most effectively enable parallel development. But it must also ensure that the over-arching mission 
objectives are achievable using that system. To that end, the architecture must have certain properties. The 
architecture must: 

1. Clearly and quantitatively capture the system objectives; 
2. Specify the functional components of the system including elements that must be developed, or used to 

perform essential functions, including operational teams and implementing organizations; 
3. Identify the environments and other “external” conditions in which this system must operate; or in the case 

of science missions, environments we intend to study; 
4. Identify a work breakdown, organization, and plan to ensure successful implementation, test, and operation; 
5. Identify the essential properties of the elements, and the driving interactions (state effects) between them in 

order to relate objectives to performance; 
6. Specify the analyses that prove that the objectives are achievable. 

 
Traditional document-based architectures will typically address all of these areas, but will have difficulty 

ensuring consistency, and completeness between documents. That makes validating the system performance against 
objectives all the more challenging. Items 5 and 6 strive to quantify all requirements and performance, and relate 
them in objective analyses that can be run continually through the development process to assess achievability. 
Achievability analysis must take into account appropriate uncertainty and probabilistic models to demonstrate 
achievability within a given margin of error or confidence. 
 
B. The Europa Architecture Framework 

The Europa Architecture Framework4,5 developed by the Europa Project Architect Robert Rasmussen is a set of 
guiding principles and patterns that the project used to guide the development of its architecture description. It is 
comprised of a number of categories of information relevant to systems engineering and their interrelationships.  It 
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uses ISO/IEC/IEEE 420106 as a point of departure, sharing a number of key concepts and definitions with this 
established standard. 
 

In this framework, the system Architecture is described by an Architecture Description, which is comprised of a 
number of Views. Each View is a description of the Architecture addressing a Concern held by one or more 
identified Stakeholders and conforms to a particular Viewpoint. Concerns are comprised of Success Criteria, which 
ultimately provide metrics of suitability for the system solutions that will realize the architecture. Each Concern is 
addressed by a number of Views featuring the elements, relationships and properties pertinent to that particular 
Concern’s set of Success Criteria, as illustrated in Figure 1. 
 

 
Figure 1. Stakeholder Concerns addressed through Views 

The Europa Architecture Framework goes on to further extend the basic metamodel described in ISO/IEC/IEEE 
420106 by adding a number of elements, properties and relations important to systems engineering.  In essence, it is 
intended to be a systems engineering metamodel, providing a shared set of concepts and definitions for the diverse 
body of project systems engineers to describe, deliberate and deliver architecture-related products over the project 
life cycle. 
 
C. Concepts and Realizations  

In addition to the right metamodel, appropriate organizing principles for structuring the elements and relations of 
our architecture model were also needed. The first impulse would simply be to model the elements of the system and 
apply properties directly to those elements. In a small model implemented by one or two people, this might result in 
a consistent set of properties. In a system with thousands of parts, tens of thousands of properties, and hundreds of 
people involved in specifying them, this process becomes much less tractable. The Europa Architecture Framework 
leverages the aspect-oriented design approach from software engineering7 to separate the conceptual definitions of 
properties and analyses from the specific real elements that compose the system. For example, the concept of a 
Power Load is defined once as a model aspect and then applied to any system component that consumes electrical 
power. This ensures a consistent definition of load properties and interfaces across the system, and the work of 
defining the aspect need be done only once. The real components of the system thus acquire most properties through 
this “realization” relationship with a conceptual aspect or prototype. We implemented this separation by using 
Conceptual and Realizational views. 
 

Concepts or Conceptual Views provide higher level, abstract, design-independent descriptions of the system-to-
be and are closely aligned with Concerns. In the spirit of separating concerns, they typically address one specific 
topic (e.g. “Observation Strategy”, “Data Transport and Management”, “Fault Tolerance”, “Risk Management”, 
etc.). These views promote the exploration of the solution space in terms of the desired outcomes (the “whys”) 
without prematurely encumbering the architects with direct consideration of the design (the “hows”). The Concepts 
tend to be organized around traditional analytical abstractions, which in turn map closely to engineering disciplines 
such as electrical power, propulsion, thermal analysis and data management.   
 

Realizational Views are sets of views which collectively explain how the Concepts converge into a realizable 
system. Realizational views describe how the many points of view articulated through separate Concepts converge 
on single elements that can be produced/delivered.  These elements comprise a “catalog” of items that can be 
included in any of the point designs of the solution space specified by the architecture, such as “High Gain 
Antenna”, “Mass Spectrometer”, “Avionics Flight Software”, “Flight System Testbed”, or “Mission Design and 
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Navigation Team”. Realizational views also explain why particular Realizational elements were selected, as well as 
the implications of that selection.  
 
D. Concept Structure and Hierarchy 

In addition to addressing Stakeholder Concerns, Conceptual Views also may address issues raised by higher-
level concepts. These higher-level issues are communicated to lower-level concepts as Derived Constraints. Derived 
constraints are assertions on the architecture that must be true in order for the approach described by a concept to 
work. The existence of incoming derived constraints from a concept makes the higher level concept a Parent to the 
receiving concept (the Child concept).   
 

 
Figure 2. Conceptual View internal structure and Hierarchy [Adapted from Ref. 8] 

Concepts address incoming issues (both success criteria from stakeholder concerns and derived constraints from 
parent concepts) by describing a general approach to dealing with the incoming issues. This general approach begins 
in the form of text narrative and is subsequently elaborated in descriptions of functions, performing conceptual 
elements, and behaviors of a general approach to satisfying the set of incoming issues to the concept.  The approach 
specification also results in a set of derived constraints which are in turn referred to selected child concepts for 
elaboration in their approaches. The concepts form a hierarchy consistent with the hierarchy of concerns that the 
architecture responds to.  The resulting concept hierarchy is represented as an acyclic graph flowing from top-level 
parent concepts to sets of attendant child concepts, as illustrated in Figure 3.   
 

 
Figure 3. Overview of the Europa Project Conceptual View Hierarchy  
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Issues and the specifications elaborating them become progressively fine-grained as one moves from the higher 
concepts (leftmost in Figure 3) to the lower tier elaborating child concepts (e.g. the highest level concept – Mission 
Concept – is shown on the left; the lowest level concepts are shown towards the right). The specifications generated 
by this process lend themselves easily to visualization techniques such as the example in Figure 3, which is a 
snapshot of the current Europa concept hierarchy. Each node represents a single concept, and a branch between 
nodes denotes that one or more derived constraints pass from a parent concept to a child for elaboration. Such 
visualizations have provided systems architects with valuable insights as to the present and evolving state of the 
architecture9. 

 
 
E. Realizational Views and Requirements 

Realizational Views describe how the parallel specifications of elements from the concepts result in a single 
Realizational element imbued with the complementary specifications from each applicable concept.  Elements from 
concepts may be realized by any number of Realizational elements. In the example in Figure 4, two Concepts 
(Electrical Power and Mass) independently make assertions as to the existence of conceptual elements (Battery and 
Inertial Body) in their respective approaches.  Each of these conceptual elements is characterized by one or more 
properties (Battery has Charge and Inertial Body has Mass). In the Electrical Power Concept, Battery is related to 
the function Store Electrical Energy. This relationship serves to justify the existence of Battery in the specification 
as it performs a function, which in turn is related to satisfying the concern(s) addressed by the Electrical Power 
Concept.  The two conceptual elements are realized by a Real Battery, which inherits the superset of specifications 
from the two realized conceptual elements.  The Realizational view of Real Battery goes on to explain how the 
specification of Real Battery realizes the conceptual elements and the implications of it doing so. 
 

 
 

Figure 4. A real battery "realizes" properties from conceptual aspects 

Requirement in our framework has the same definition as promulgated by the International Council on Systems 
Engineering (INCOSE). Requirements are derived by analysis of derived constraints and levied on Realizational (as 
opposed to Conceptual) elements. A Requirement is a specification that is authorized by a Work Package from the 
project Work Breakdown Structure (WBS) and must be satisfied by any acceptable design.  
 
 Conceptual constraints serve as a means of discovering Requirements and also provide rationale for 
Requirements. While conceptual constraints originate from multiple areas or disciplines (i.e., conceptual views), 
they ultimately are reconciled in realization space into actual Requirements that represent a binding agreement (i.e. a 
“shall” statement) between an Authorizing and Implementing Workpackage from the WBS regarding the thing that 
will be built/delivered (see Figure 5). The traceability of Requirements to Constraints provides a path of rationale by 
linking the Realizational element delivered (the "what") to the Conceptual Elements realized and ultimately back to 
the original Concerns of the Stakeholders. 
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Figure 5. Requirements from Constraints [adapted from Ref. 8] 

The following example illustrates how multiple constraints may be turned into one final requirement specified on 
a component of the architecture:                                                                                                                   

a. One constraint derived from the Operations Approach concept may require the Flight System to 
autonomously achieve and maintain a power-positive, thermally safe, and commandable state without 
requiring action from the Mission Operations System (MOS) for Nops days in the event of a Flight 
System fault occurring during the Jupiter tour. This constraint can be traced back to to the planned 
ground contact frequency discussed as part of the Operations Approach concept.  

b. On the other hand, the existence of solar conjunctions during which the Flight System cannot 
communicate with the Earth may provide a similar but different constraint on the autonomous 
maintenance of a safe state by the Flight System. Such constraints related to geometric considerations, 
e.g. a maximum of Nsol.conj days of solar conjunction, would be discussed in the Jupiter trajectory 
concept. 

c. Ultimately, one requirement that will be levied on the Flight System during the Jupiter tour would 
reconcile these two different constraints coming from different concepts (taking the maximum duration 
NJup.safe = max(Nops, Nsol.conj) in this case) and could read for example: 

“Given any single fault condition occurring on the Flight System after completion of the autonomous 
launch activities and until JOI critical activities, the Flight System shall autonomously achieve and 
maintain a power-positive, thermally safe, and predictable communications-enabled state without 
requiring action from the Mission Operations System for at least NJup.safe days.” 

 
As illustrated in Figure 6, the realizational view describes the realizational element and lists the conceptual 

elements it realizes as well as the applicable derived constraints on the realized element “inherited” from the 
conceptual elements. In addition to constraints applied to the conceptual elements, the realizational view also lists 
constraints on the realizational element due to practicalities of realization (such as allowances) which are not 
considered in the individual concepts. Systems architects and engineers can then use an element realizational view to 
assess how conceptual constraints should become actual requirements on the real element (hardware, software, team, 
etc.).  
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Figure 6. Notional Example of a Realization View for a Stellar Reference Unit (abridged)  
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III. Maintaining a Single-Source-of-Truth for the Architecture Description  
While the architecture framework aims at describing a cohesive set of elements, properties and constraints of the 

system, this effort would be vain if all the different views of the architecture were distributed in multiple local 
repositories managed by various groups of engineers independently and at different paces. Indeed, the existence of 
multiple sources of truth to describe the system architecture typically leads to inconsistencies and eventually 
incorrect information. Furthermore, when rapid changes to the architecture have to be made during the early phases 
of the project, systems engineers cannot iterate as rapidly as needed, because much effort is required to generate 
consistent and correct views. In traditional systems engineering approaches, the view consistency and correctness 
problem is typically managed, but not necessarily mitigated, using file-based configuration and version 
management, along with manual and laborious consistency checking among the files, as represented in Figure 7. 
 

  
Figure 7. Iterations of the system architecture in the traditional systems engineering practice of maintaining 

and exchanging information using files and emails. 

 The Europa project10 has instead been taking a MBSE approach to managing the technical representation of the 
Flight System11 and is now extending this methodology to capture the system architecture. The models then become 
the Single-Source-of-Truth (SSoT) through which no duplication of information occurs.  

Any environment considered to capture knowledge about the architecture and serve as the Single-Source-of-
Truth must be able to store the information in a queryable form so that the different views can either be 
automatically generated from the SSoT or checked for consistency with this SSoT. This makes conventional 
representation environments such as Microsoft Excel, Visio, or PowerPoint ineffective as the information is 
typically not captured consistently. Our general approach to managing consistency and correctness of the views is by 
allowing only a Single-Source-of-Truth that is captured as integrated models in a single (but potentially distributed) 
repository, as illustrated in Figure 8.  

Capturing this information in a model required the definition of modeling patterns to formalize the representation 
and semantics of essential relationships. The Systems Modeling Language12 (SysML) provides many foundational 
modeling patterns, but requires specialization to clarify some of the semantics needed to document a system 
architecture. Using specialized modeling patterns embedded in SysML, elements of the architecture model, such as 
conceptual components, properties, constraints, and relationships, are captured in a consistent and queryable 
manner. This architecture model information is then visualized through end-user specific views (e.g. “Mass 
Spectrometer” view in Figure 8 shows only mass spectrometer information) according to well-defined viewpoints.  
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Figure 8. The Architecture Model used as a Single-Source-of-Truth for conceptual and realizational 

descriptions of the system. 

 
Because a view is merely exposing a set of model information related to a specific domain, it provides an 

opportunity for the user to directly interact and modify the system model. One such interaction the user might 
perform is changing an element of a view (e.g. the value of a property). Once performed, this action will change the 
underlying system model to the new value. Another interaction the user might perform is to cross-reference an 
element from another view. This system model element would then be exposed by two views.  Because a user is 
now directly interacting with the system model, if the value of this element is changed in one view, its value is 
automatically updated in the other view. This feature promotes consistency across views and products that are 
generated from the system model. 

IV. Architectural Patterns 
A modeling pattern organizes information contained in a system model by assigning it to distinct model elements 

and by defining the proper relationships between these elements.  Some of the modeling patterns used on the Europa 
project to capture information about the architecture (such as those defining the relationships between Concepts, 
Constraints, Elements and Requirements) are listed in Table 1. A subset of the key modeling patterns are described 
in further detail in this section.  
 

Table 1. Examples of architecture modeling patterns used on the Europa Project (non-exhaustive list) 

Pattern Description 
Architecture Framework 
Identifier (AFID) Provides an approach to uniquely identify elements in the modeling environment. 

Constraint Allocation 
Tracking (CAT) 

Tracks the maturity of the agreement between parent concept and child concept of 
one constraint passed from parent to child. See Ref. 13 for more details. 

Constraint Elaboration 
(traceability) Captures constraint traceability inter- and intra-concepts. 

Defined Element 

Captures the definitions for Elements (such as Conceptual or Realizational 
Components), Properties, but also things that are not specifically identified in the 
Architecture Framework, such as engineering "Terms" (e.g. "Failure"). The pattern 
also provides a way to store an acronym associated with a particular Element or 
Term. The Defined Element pattern then supports the creation of local and global 
glossary, i.e. alphabetized lists of definitions and acronyms. 

Derived Constraint constrains 
Conceptual Element Describes how constraints derived in concepts constrain conceptual elements.  

Maturity 
Tracks the maturity of elements. The meaning of the maturity states (e.g. 
Identified, Draft, Preliminary, Baseline, Final) are usually agreed upon by the 
relevant team which can define specific criteria for each level. 
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Policy 

Describes how to capture a Policy in the realization space and how to link it to a 
constraint in conceptual space. Whereas a requirement is a limitation or restriction 
on a property or characteristic of an element, a Policy is more of a constraint on the 
way an action or process is carried out.  

Realizational Element 
realizes Conceptual Element 

Captures the relationship between a Conceptual Element and the Realizational 
Element. 

Stakeholder represents 
Concern 

Captures the relationship between a Stakeholder and its concern(s). Stakeholders 
promote and defend the matters that they concern themselves with, which is why 
the stakeholder not only represents the concern, but also owns it. 

Trade Study 
Describes how to capture a Trade Study, which is the systematic deliberation inside 
and between concepts on the proper configuration of Architectural elements 
(Element, Relationship, Property) to meet a stated need when alternatives exist. 

Verification Item verifies 
Requirement 

Captures verification items (VIs), which are the points of interface between a 
system engineering's requirement and the VnV engineer's planning and verification 
execution information.  Each VI currently tracks verification method(s) and a 
verification approach. 

 
 
A. Constraints and Requirements 

Constraints are derived from analyses in conceptual space and act to constrain conceptual elements, which can 
be components, data products, properties, etc. Requirements are realizational constructs that are authorized by a 
work package and specify a realizational element. As conceptual elements are realized into real elements, 
requirements occur at the intersection of conceptual constraints and the realized elements. For example, a constraint 
on the conceptual element Flight Hardware should result in requirements on all real elements that realize Flight 
Hardware, such as the Flight Computer, Solar Arrays, etc. The constraint and requirement pattern is shown in Figure 
9. 

 

 
Figure 9. Pattern for capturing constraints and requirements 

 
B. Constraint and Requirement Traceability 

Traceability is a key part of providing the justification for requirements and constraints. By examining the 
parents and children of a particular requirement, insight can be gained into the requirement’s justification and 
context. As discussed in section II, constraints are derived, or explained, from within a concept narrative in response 
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to incoming constraints.  The derived constraints are then allocated to an appropriate child concept of the parent 
concept according to the concept hierarchy.  An analysis of the child concept then elaborates the derived constraint 
from the parent concept, and during this elaboration, additional constraints may be generated and allocated to a child 
of the child concept.  Using this framework, constraints continue to get refined down the concept hierarchy until 
they are determined to be fully elaborated.   

The traceability of requirements can be determined from the union of two sources of information. First, the 
parents and children of a given requirement can be determined from the parents and children of the linked constraint. 
This approach utilizes the concept narrative analyses to “tell the story” of the requirements traceability, which can 
provide context that goes significantly beyond traditional approaches. The second method for capturing 
requirements traceability involves direct links between a requirement to its parents and children. This approach, 
while easier to implement and similar to existing techniques, provides less information supporting the assertion of a 
given requirement’s parents and children. These two methods are used in our architecture model to provide 
information concerning the traceability of requirements and constraints. 
 

 

Figure 10. Pattern for constraint and requirement traceability 

C. Maturity Pattern 
Tracking the maturity of model elements is critical as the model evolves. Maturity can be used to track how 

much development and review certain information has received. For example, as the text of a constraint or 
requirement undergoes review and revision, it can advance to higher maturity levels. Maturity can also be used to 
track the completeness of a model element. A complete requirement should include text, unique ID, both parents and 
children, a specified element, an authorizing workpackage, a verification method, etc. The maturity of the 
requirement can measure the completeness of the element’s specification. Any number of different maturity states 
can be defined, depending on the use case. Figure 11 illustrates the pattern for characterizing the maturity of a given 
model element. (Note that the «PatternWildcard» stereotype simply indicates that any element can be assigned a 
maturity). 
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Figure 11. Pattern for capturing the maturity characterization of a given model element. 

V. Auditing the Architecture  
 As discussed earlier, an objective of model-based architecting is to improve the consistency and correctness of 
the resulting specification. Previous sections have suggested methods by which the model-based approach helps to 
avoid simple errors of referential inconsistency through structure or design of the model. Auditing is an active 
process used to assert and assess rules of consistency in a model. Previous work13 presented a framework that can be 
used to evaluate validation rules on the model.  This section provides an overview of the audits being performed 
on the architecture, with: 

• Syntactic rules that restrict the kinds of things that can be defined in the model and what kinds of 
relationships can be expressed. Rules at this level are based on the SysML modeling language, modeling 
ontologies defined at the project or institutional level, and the embedding of those ontologies into SysML. 

• Performance audits that attempt to evaluate analyzing performance of particular point designs against 
constraints identified in the architecture. 

 Methods for evaluating such rules are discussed below, given the definition of some key architectural patterns 
provided previously. In addition to model auditing, the automatic correction of model errors is also discussed. 
 
A. Evaluating Syntactic Rules  

At the core of this model-based architecting approach is the notion of defining a single model element with a 
single definition to represent each subject of specification, and then using these elements by reference when 
referring to that subject. While this requires effort upfront to identify common subjects and agree on their 
definitions, it provides the strongest possible guarantee of consistency from that point forward. 

A large number of ambiguities arise from incompleteness of specification within the model. Finding such 
ambiguities in a model is often a matter of matching elements against established patterns. For example, every 
requirement should specify one thing. A requirement in the model lacking a specifies relation to something is 
relatively easy to locate. Similarly, given the definition of a pattern describing how a Component performs a 
Function, various queries can be performed to validate the architecture, such as finding Components that perform no 
Functions; finding Functions performed by elements that are not defined as Components; or finding Functions with 
more than one performing Component.  

Syntactic rules should ideally be evaluated during model construction. Software developers have learned that it 
is far less painful to be informed of errors immediately as code is being entered and to fix those errors immediately. 
The alternative of either ignoring errors, or not being aware of them, results in compounding the errors as references 
are made to invalid or inconsistent elements. Furthermore, it becomes increasingly difficult to remove erroneous 
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model elements from a highly-interconnected model the longer those elements are present and able to acquire more 
relations. 
 The evaluation of syntactic rules during model creation can be implemented in a number of ways. The SysML 
model is by nature a declarative structure. SysML modeling tools can inherently enforce and verify certain rules of 
SysML syntax and its extensions. On the Europa project, supporting tooling has been developed to assist in model 
construction from existing patterns. This tooling can be used to apply existing patterns to create new model content 
or supplement existing model content to complete a pattern. For instance, consider two different patterns where a 
conceptual constraint can constrain a conceptual element and a requirement can specify a real element. If a user 
erroneously tried to use the Europa tooling to add a specifies relationship between a conceptual constraint and a real 
element, this would violate the pattern and the software would not create the erroneous relationship.  
 In addition to validation during model construction, it is imperative to validate the conformance of existing 
model content to patterns throughout the lifecycle of the model. Although validation rules enforced during model 
construction can help maintain conformance between the model and its governing patterns, there are often 
opportunities for a divergence between model content and patterns. A pattern can be extended or further defined 
during model construction, which necessitates the validation of existing content. Furthermore, there are often 
avenues for model content creation that bypass existing pattern validations for various reasons. On the Europa 
project, several options are leveraged for the validation of existing model content. Views can be generated to show 
pattern violations or areas where a particular pattern is incomplete. One example is a view that displays 
requirements and their specified elements, which can show which requirements specify unacceptable elements or no 
element at all.  
 In addition to standard views, a validation framework was developed for Europa that provides a platform for 
creating, executing, and presenting the results from validation rules13. The rules are implemented as pieces of 
software that execute a set of logic over a certain scope of the model to generate lists of elements that pass, violate, 
or are skipped for the given rule. For example, a simple rule checks whether a requirement has a dependency 
relationship with the specifies designation (i.e., “stereotype” in SysML terms) to a realizational element, according 
to the pattern requirement pattern described previously.  A list of the violating elements can be presented in a view, 
as shown in Figure 12, or used elsewhere. 
 

 
 

Figure 12. Example of an audit of the architecture model using a simple validation rule. 

B. Correcting Syntactic Errors 
For the large system model on Europa, it is not enough to simply validate the model content and present the 

results. When the number of violating elements is significantly large, it quickly becomes infeasible to have users 
manually go into the model and correct the content. Each rule violation represents a discrepancy between model 
content and a given pattern, which inherently includes information on what the correct model content should be. 
Normally, a user would evaluate the results from the pattern violation and then decide what corrective action to take, 
but for many patterns, one or more corrective actions can be inferred from existing model content. On the Europa 
project, the validation framework includes the ability to associate corrective actions with rule violations. The 
corrective actions are automatically generated during validation and encoded as model actions that can be executed. 
In essence, when a rule is violated, supporting information is gathered from the model to create a corrective model 
action that addresses the violation. Depending on the nature of the corrective action(s), they may be proposed to the 
user or automatically implemented in the model. 
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One example is the Concept-to-Realization (C2R) mapping pattern, shown in Figure 9. The C2R mapping takes 
the form of a closed loop: a requirement is linked to a conceptual constraint, which constrains a conceptual element, 
which realizes into a real element, which must be specified by the same requirement. On the Europa project, a set of 
validation rules assess which edges and nodes are missing from the C2R loop and each missing element is captured 
as a rule violation. Consider the case where there is a requirement that is linked to a conceptual constraint that 
constrains a conceptual element, but the requirement does not specify anything. If the constrained conceptual 
element realizes into a real element, one proposed correction for the violation would be to suggest that requirement 
should specify that real element. 

By incorporating corrective model actions into the validation process, this framework provides a powerful 
interface for enforcing conformance between patterns and model content. The association of corrective actions that 
are easily executable with rule violations considerably reduces the overhead associated with fixing the model to 
address violations. The user can then re-execute the validation rule to re-assess the state of the model and make 
further corrections. 
 
C. Evaluating System Performance 

In addition to checking syntactic properties of the model, one of the current focus areas is the automation of 
analyses in order to compare the predicted performance of the system with the requirements specified in the 
architecture. While this is still work in progress, this subsection provides a description of the capability currently 
being developed and its future potential.  

One of the challenges of this type of approach is identifying how a particular point design relates to the 
architecture. The current approach is to relate properties bound by requirements to properties of the point design. 
These are augmented with mathematical relationships between the properties that describe the physics or expected 
design (for instance, the relationship between power usage and which components are active during a particular time 
period). When analyzing system performance, some of these bounds are likely to appear as inconsistent with some 
requirements on the system. A model-based approach to system architecting can capture these properties and 
relationships explicitly, allowing margins to be calculated and audits to be performed that compare a proposed 
design point (or space of design points) to the proposed requirements.  

SysML does not currently offer any intrinsic support for this sort of analysis (despite the existence of a number 
of emerging commercial software tools, which have been investigated by Karban et al.14,15 for example). The 
approach followed by the Europa project has been to transform model content from SysML into a more analyzable 
form, that is then augmented with content available from domain-specific sources, to finally perform simulations 
using available off-the-shelf tools such as Mathematica and System Modeler.  

To date, model extraction has involved the use of analysis-specific transformations in the form of scripts that can 
traverse the model content, identify needed information, and then translate that information into a form that can be 
interpreted by external tools. More recent efforts have focused on the use of intermediate forms for the extracted 
model content to enable the reuse of model flattening code that transforms the model into a form more consistent 
with the representation expected by solvers. For instance, removing unnecessary meta-data and replacing implicit 
usage-type combinations with explicit constraint and variable definitions.  

One key example of such analyses is the assessment of spacecraft power balance. This analysis requires 
evaluation of mission scenarios to ensure that power demand never exceeds what the system can supply (with 
margin for uncertainty). Since the current baseline for the Europa mission is a solar-powered spacecraft, the analysis 
needs to consider trajectory, orientation, shadowing of the solar panels, and energy storage in a battery, as well as 
many different components being turned on and off in support of different operations. The analytical model was 
manually developed in Modelica16 to reflect the content of the SysML model, but was not automatically generated.  
Over time, many of the intrinsic properties (e.g., element loads) were transcribed into the SysML model, and then 
transformations were developed so that those properties could be configuration managed in the SysML model and 
then delivered into the simulation model through model transformations. To date, requirements are not explicitly 
captured in this model, but parameters related to the requirements are reported by the performance models. These 
are used as part of margin reports which are reviewed manually, but the parameters are not re-ingested into the 
SysML model. This is one of the significant near-term focuses of the project. 

VI. Producing Gate Products and Other Documents from the Architecture Model 
The architecting effort ultimately results in the creation of traditional gate products supporting the standard 

NASA gate reviews. On the Europa project, a model-generated Mission Concept Report and Project Requirements 
Document (PRD) were used as part of the Mission Concept Review (MCR). Subsequent revisions of the PRD as 
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well as other system-level requirements document are among the key products to be generated from the system 
model for the next gate reviews, as listed in Table 2. The model-generated versions have appropriate project 
marking and formatting to satisfy JPL configuration management guidelines (such as appropriate cover pages, 
headers, footers, and ITAR markers). These are also signed by project leadership and accepted as the official source 
of information for the project. 

 
Table 2. Model-generated documents related to the architecture on the Europa Project (non-exhaustive list) 

Gate Product Acronym Responsible team Type 

Project Requirements Document PRD Project System 
Engineering Requirements Document 

Spacecraft Requirements Document SCRD Flight System 
Engineering Requirements Document 

Risk Management Plan - Project System 
Engineering Plan 

Flight System Integration & Testing 
Requirements Document FS I&T RD Flight System Integration  

& Test Requirements Document 

Payload Requirements Document PLRD Payload System 
Engineering Requirements Document 

Spacecraft-Payload Interface 
Requirements Document SC-PL IRD Flight System 

Engineering Requirements Document 

Mission Concept Report  Project System 
Engineering Architecture Description 

Mission Operations System 
Requirements Document MOSRD Mission Operations 

System Engineering Requirements Document 

 
A. Advantages 

The Europa project has already observed several advantages in using a model-based approach to create gate 
products, over the more traditional (or manual) approach, including: 
 
• The same object (e.g. requirement) can appear in multiple documents and still remain consistent across 

them since it is only represented once in the Single-Source-of-Truth repository (i.e., the architecture model). 
When various engineers make changes to an object in the SSoT (e.g., a requirement, a component, a function), 
queries are rerun and these changes are propagated to all the documents referencing these model objects. This 
process has proven useful on several occasions: for example for environmental requirements that need to be 
levied across most of the hardware elements and for which any change would need to propagate to a large 
number of elements; or when requirements are “developed” in one document and considered as “incoming” 
requirements to another. Another example relate to the definitions of various terms (e.g., “fault”) and model 
elements (e.g., “Project System”) which have been themselves documented and captured in the architecture 
model, as mentioned in Table 1. Lists of definitions that are relevant to each specific document can then be 
automatically generated in the form of glossaries. During conceptual development, this allows identifying 
discrepancies in how words are interpreted by different teams, and once such differences are resolved, it ensures 
that all definitions are consistent at the final delivery of the official project documents. 
 

• There is also an opportunity to separate the views used to develop requirements from the views used to review 
“final” requirements. For instance, specific views are used to allow authors to capture different aspects of the 
architecture (in the conceptual views), while others show the requirements for a particular implementer (in the 
realizational views). From this perspective, gate products are just another type of views that aggregate 
information in a traditional form for review by internal and external stakeholders.  

 
• Gate products are generated via query so they can be quickly re-organized or additional information can be 

quickly added (assuming the information is available in the model). When developing a requirements 
document, there is often an iterative process in establishing the structure and the information presented. Since 
the model-generated gate products are generated via query, when there is a change in the overall structure of the 
document this involves changing the query, not the underlying document. In other words, the applicable 



 
American Institute of Aeronautics and Astronautics 

 
 

16 

viewpoint(s) only need to be changed once instead of changing all the views composing the document 
individually, resulting in important time savings. As an example, there were three major restructurings of the 
Europa PRD during early Phase A which were each completed in a few days, since only the presentation of the 
information changed and not the underlying content, preventing also any manual transcription errors. 
Furthermore, since the gate products are generated from a consistent model representation, the information in a 
given document can be compared across versions even if the presentation structure changes by comparing the 
underlying model content. 

 
B. Challenges 
 While the generation of model-based gate products presents many benefits (as described previously), unique 
challenges exist that relate to the degree of formalism inherent to the use of a system model. 
  
• For example, queries need to be specifically crafted to present the information in a digestible form that 

guarantees a high formatting and presentation quality. In particular, the information needs to be stored in a 
way that facilitates the logical and systematic extraction of relevant pieces automatically and consistently via 
query, while such pieces would traditionally be arranged manually with a document-based approach. In 
traditional documents, requirements are placed in a certain order based on the “affinity” with other 
requirements. If queriable properties are not available to capture this “affinity” ordering, then requirements that 
would traditionally be placed together may show up in different parts of the document, hence causing 
confusion.  
 

• There are also challenges in allocating adequate schedule time and margin to document generation. Until 
the automatic process of generation of the gate products becomes fully mature, there can be technical issues that 
need to be troubleshooted immediately before delivery of the document and need to be accounted for in the 
overall schedule. During the Phase A of the Europa project, two to three days have been allocated to the 
generation process to account for these uncertainties.  

 
• While the ultimate goal of a model-based generation of gate products is to completely eliminate any manual 

(and therefore time consuming) adjustment of the documents during the generation process, some manual steps 
are currently still needed to put the “final” presentation touches on the official documents.  

VII. Summary and Future Work 
Properly defining the mission architecture in the early stages of a project is a crucial systems engineering 

endeavor that can ensure that a sound design solution is ultimately implemented and that stakeholders concerns and 
high-level requirements get successfully addressed. Capturing the extensive information set necessary to describe 
the architecture using traditional document-based methods can quickly become daunting in a large project like 
Europa, especially as all the constraints, requirements, functions and elements are supposed to remain consistent.  

This paper presented the architecture framework used by the Europa project to address this challenge and 
discussed how the architecture model represented in the SysML language was used as the single-source-of-truth for 
this description. In that context, several key modeling patterns were presented, including the ones used to capture 
constraints, requirements, their traceability, as well as their maturity as it evolves throughout the project lifecycle. 
Audit methods used in conjunction with these patterns were then discussed, as a helpful way to ensure the 
consistency and the correctness of the model. Provided this model-based approach is used consistently, one 
additional benefit can be the improved quality of requirements due to the rigor necessary to properly model 
requirements subjects (i.e., elements and properties). In addition, this approach provides opportunities to generate 
traditional requirements documents and other gate products in a more automated fashion, allowing shorter turn 
around times and a more objective organization of requirements. 

Although significant progress has been achieved in setting up the infrastructure and devising the methods to 
enable the modeling of the architecture on the Europa project, many challenges remain, as it was learned throughout 
the implementation of these techniques.  
• When the tooling does not support workflows in a way that is easy and efficient, the more traditional practices 

re-emerge and compete with the model-based approach, which may result in some confusion about the official 
process to follow.  

• Developing the entire toolset and defining the corresponding processes ahead of time –that is, before they are 
actually exercised on the project by an entire team– is therefore critical to produce an architecture description 
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on time and on budget. 
• On the audit side, while finding syntactic errors can be relatively easy, fixing them may at times require 

significant additional work. Semantic errors still remain hard to detect due to the difficulty to express certain 
subtle notions in the modeling language.  

• Changes in the workforce can also impact the relevance and efficiency of the architecture modeling. For 
example, rapid staff-ups with engineers used to a traditional process but not familiar with the model-based 
paradigm can make the application of these methods more challenging. 

• Getting an entire team to define an architecture that will be the source for the requirements appears more 
difficult than obtaining consensus on the description of a point design, which can also hinder the modeling 
activities. When pursueing the goal of modeling the mission architecture, one should expect to observe at times 
some confusion between the intended/required architecture and the baseline design point. In general, it seems 
easier to describe a specific design that seems to work than it is to express acceptable variations around that 
design. 

• Ultimately, managing the expectations for such modeling activities remains essential. Despite some obstacles 
like the ones listed previously, many discrepancies that would have persisted in the requirements have been 
found and corrected via the model. However, fixing everything downstream cannot be achieved solely by the 
model-based approach and be a substitute for the proper upstream systems engineering work. (In fact, when 
discrepancies are found, the architecture model is often at risk of being the “messenger” that gets blamed when 
it is actually the one that provided the query mechanisms to detect the inconsistencies!) 
 

Future modeling activities on the Europa project will build on and extend the work presented in this paper. Three 
major areas of interest include: 
• Design verification: Continuing the work described in Section V.C, one future modeling activity will focus on 

comparing various point designs to the requirements codified as the architecture in a structured fashion. 
Although it is unlikely that such an analysis can be completely automated because of the wide variety of 
assertions in the requirements, providing a structured semi-automated approach will allow more rapid 
verification of design points and identification of disconnects. In order to support this work, more analyses that 
are tied to the information in the Architecture model will need to be developed, along with efficient approaches 
to relate individual design points11. 

• Enhanced modeling of scenarios and behaviors: Currently, the capture of time-varying information about the 
architecture in the Architecture model is limited. Although significant progress has been achieved in identifying 
and describing scenarios, and the project is utilizing modeling tools to develop stand-alone models of mission 
phases, these are currently disconnected.  One of the challenges is capturing scenario- and behavior-related 
information efficiently and accurately. Although SysML and UML provide a number of constructs for the 
modeling of system behavior, one of the difficulties has been finding a formalism that has appropriate semantics 
for capturing the desired behavior of a physical system. Statements such as “the heaters should be turned on for 
2 hours before utilizing a component”, regardless of the number of heaters, are difficult to capture. Also, the 
formalism can be intimidating at first for domain experts without software backgrounds. Future work will focus 
on developing tools that are more accessible to domain experts and deploying those to the project.   

• Change propagation and tracking: While the Europa architecture model certainly helps to ensure consistency 
between different elements across the entire architecture, maintaining that consistency over time as various 
changes are made to the architecture represents an additional challenge. Explicit links between elements, 
functions, and requirements could be used to identify the impact of a particular change, but no automated 
approach is currently utilized for this purpose yet. One method to support a more automated change propagation 
is simply to track changes in an efficient manner. The tools utilized currently allow tracking changes in the 
name or documentation of a particular element, but not yet in the relationships that the element participates in. 

 
In summary, despite the existence of various tooling and cultural challenges, the system modeling work on the 
Europa project has already proved to play an important role in delivering high-quality representations of the 
architecture to a variety of stakeholders, and presents promising opportunities to continue to improve the overall 
system engineering effort. 
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