
Staffing Strategies for Maintenance of Critical Software
Systems at the Jet Propulsion Laboratory

William Taber
California Institute of Technology

Jet Propulsion Laboratory
Mission Design and Navigation

Software Group
William.L.Taber@jpl.nasa.gov

 Dan Port
University of Hawaii

Shidler College of Business
Information Technology Management
Telephone number, incl. country code

dport@hawaii.edu

ABSTRACT
Context: The Mission Design and Navigation Software Group at
the Jet Propulsion Laboratory (JPL) maintains mission critical
software systems. We have good empirical data and models for
maintenance demand—when defects will occur, how many and
how severe they will be, and how much effort is needed to address
them. However, determining the level of staffing needed to
address maintenance issues is an ongoing challenge and is often
done ad-hoc. There are two common strategies are (1) reactive –
add/remove staff as needed to respond to maintenance issues, and
(2) capacitive – retain a given staff size to address issues as they
occur, proactively address issues and prevent defects.
Goal: To use our empirical models for maintenance demand to
address the issue of staffing from a risk perspective.
Method: We develop a staffing model that allows us to simulate
large numbers of maintenance histories. From these histories we
examine the risks posed to the institution as a function of the
staffing available to address issues as they arise.
Results: We find that the model developed matches our intuition.
There is a “sweet spot” in staffing levels that allows issues to be
addressed in a timely fashion. Below that level the institution
experiences substantial risk; staffing above that level does little to
improve the institutions risk exposure.
Conclusion: The models developed provide tools that, for the first
time, allow us to quantitatively discuss the level of staffing
needed to ensure that we can meet the time constrained demands
for maintenance on mission critical systems and thereby
determine staffing budgets that ensure mission success.

Categories and Subject Descriptors
D.2.4 Software/Program Verification: Reliability

General Terms
Management, Measurement, Performance, Design, Economics,
Reliability, Experimentation.

Keywords
software defect model, software maintenance, software reliability

1. INTRODUCTION
The software used for NASA’s deep space missions is critical to
the success of those missions. For many of these missions, defects
encountered and not repaired in a timely manner not only inhibit
operations, but may also lead to the loss of a billion-dollar
mission. Despite our many years of experience focusing on
quality development and control, achieving zero defects in a
delivered system has evaded us. We accept that defects in
software are not just a possibility – they are a certainty. As a
result, for every system in operation we must plan for
maintenance effort to find and repair these inevitable defects.
Given our limited budgets and staffing resources, and often a time
critical need for repair, maintenance effort should not be planned
ad hoc. It is simply too risky to have a critical system non-
operational for an unknown period of time. Many tough
experiences have shown us that poor planning for maintenance
increases risk of mission failure.
Good maintenance planning must address questions of how many
defects we may encounter, the likelihood of their surfacing at a
critical moment, and how long it will take to discover and correct
them. The JPL Mission Design and Navigation Software Group
has very good models for predicting defect rates and to inform our
users about the reliability of a release and how that reliability will
improve through a cooperative process of testing, reporting
problems and releasing repairs quickly. In addition, we use these
models to ensure that senior managers are informed both in
principle and empirically about the inherent risks in software
maintenance and that schedules and budgets must accommodate
the defect decay process to reach a desired level of reliability in
operation of these systems.

In spite of having high confidence in these models, we grapple
with the troublesome issue of determining an appropriate
maintenance staff level to meet our expected maintenance effort.
We view this as a supply-chain problem of balancing the costs of
“holding an inventory” of experienced maintenance staff who can
address maintenance needs on a continual basis with the “ordering
costs” of obtaining maintenance personal (e.g. identification,
training, etc.) to address maintenance requests as they occur or
“demanded” by projects that will pay for maintenance effort. This
is driven primarily by the ever present maintenance risk that the
longer a maintenance issue is unaddressed, the greater the risk that
the system will become non-operational or be exposed to a
catastrophic defect.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’16, .
Copyright 2016

2. MAINTENANCE DEMAND FOR TWO
CRITICAL SYSTEMS
The JPL Mission Design and Navigation Software Group has two
critical systems that have been operation over the last two decades
– a legacy navigation system and its replacement, Monte[2]. The
legacy system is composed of over one million logical lines of
heritage FORTRAN code. The initial development of this system
began in the late 1960s and continued until approximately 2006.
During the period from 1999 until the present, an effort was
undertaken to replace the legacy navigation system with a new
system, Monte, to be developed in modern languages using
modern software development methodologies. As a result, in
early 2006, the legacy system became a static (final release)
system. Defects in the system have been repaired, but aside from
this no new code has been introduced into the system. In addition,
until 2012, the software has been in regular daily use by a nearly
constant population of users during this time.
The adoption of Monte by flight projects was a slow process and
required continuous management pressure. Flight projects are
reluctant to accept new software. They readily accept bug fixes
and small additions, but entirely new systems are a major
challenge. During the period in question the navigation operations
staff was very stable and nearly all were employed full time on
flight projects: Cassini, Dawn, Deep Impact, Genesis, Hayabusa,
MER, MRO, Odyssey, Spitzer, Stardust. The user base for Monte
was initially a different population of users. These were the early
adopters and for the most part the new people who "grew up" with
Monte and never learned the legacy tools. The first mission to
operate using Monte was Phoenix which successfully landed near
the Martian north pole in May of 2008. Following this successful
first mission use, all flight projects gradually adopted the new
system. Monte has now successfully replaced the legacy product
on all flight projects with the final transition by Cassini in 2012.

Software maintenance is the ongoing activity performed on a
system post-delivery ostensibly to keep a system in operation. It
differs from pre-delivery development in a number of ways in so
far as how defects are discovered and removed and how requests
for capability enhancements are handled. The exact maintenance
needs are uncertain. However, what is certain is that maintenance
issues will arise – software will fail and new or revised
capabilities will be needed while the system is used.

We have been collecting empirical maintenance data since 2002.
In that time, we have received over 4,000 service requests (bug
reports and requests for new features. Using this large repository
of data, we and have found we can predict exceptionally well the
demand for maintenance [11]. For example, maintenance effort is
needed when users report defects from operating the system. Even
though we cannot know exactly what these defects are or when
they will be reported, Figures 1 and 2 illustrate that for both the
legacy system and Monte, the number of defect reports we expect
is quite predictable.

The main question is, what will you do about it? From nearly two
decades of experience here is what we have observed in regard to
software maintenance:
• We know that 7% of failures are critical.

o This is based upon the user categorization of
defects. It’s part of the bugzilla database. Critical
means that the reporter can’t do his/her job due to
the defect.

• The environment in which software operates is changing:

o The computer you are using today is not the one
you will be using in 3 years.

§ The OS will be different when you get
your new computer

§ Mission critical software will need to be
ported to the new system

o OS patches and upgrades are not entirely your
choice. Due to security vulnerabilities or
desire/need to employ other software on your
systems, your system operating system (OS) will
be upgraded. An OS upgrade requires porting of
your essential software. Moreover, a new OS is
likely to spawn new defects in working software.

• Your mission is evolving.
o You need to interface with other software that did

not exist when your software was created
o Your requirements were incomplete. You will

want the software to do things it didn’t do when it
was released.

Figure 2. Monte Defect Accumulation

3. MAINTENANCE STAFFING
MANAGEMENT
Recall the main question we are trying to address is how to
determine an appropriate maintenance staff level to maintain an
institution’s unique essential software e.g. Monte.
This is poses a serious challenge for several reasons:

• There will be an ongoing demand for maintenance with
issues arising at any time, therefore we cannot manage

y	=	0.5142x		
R²	=	0.99676	

0	

500	

1000	

1500	

2000	

2500	

3000	

4/20/05	 9/2/06	 1/15/08	 5/29/09	 10/11/10	 2/23/12	 7/7/13	 11/19/14	 4/2/16	 8/15/17	

De
fe
ct
s	R

ep
or
te
d	

Monte	Defect	Report	History	

Bug	Reports	

Linear	(Bug	Reports)	

Figure 1. Model of accumulated defect history for

legacy navigation software.

maintenance effort analogously to a schedulable software
development effort.

• Failure to meet maintenance demand carries significant risk
to the continued successful operation of the systems and
hence the success of the missions that depend on the systems.

• Funding for maintenance effort is complex and from multiple
sources - coming from projects that request maintenance or
from institutional “operating and programmatic” funds that
are limited and in high demand.

• It takes significant time and cost to hire and train
maintenance staff to address new maintenance issues.

• Experienced staff are generally not available on demand
when issues arise. They are working on other tasks.

• Maintenance staff may be “idle” when there are lulls in
maintenance demand, but costs (salary) for them continues.

• There is an “opportunity cost” in holding experienced staff in
reserve when they could provide value on another task.

Our experience in ad-hoc management of staffing (i.e. guessing at
our staffing needs and hiring only in response to demand) has
proven problematic in grappling with the above challenges. In
particular, we have frequently found ourselves in critical need of
maintenance effort with a very limited supply staff available or
that can be hired to meet our maintenance demands. This usually
has to do with a new project that wants some new set of features
in a short time span. But since there is no slack in the system, we
have been unable to respond. Hiring a new person isn’t feasible
since the work needed will only last a few months.

For much the same reasons listed above it is not feasible, and also
quite risky, for us to experiment with different staffing levels to
determine a sensible strategy. As a result, we are building a
justifiable and defendable model driven by our systems defect
models to justify resources (i.e. funding and staff) for maintaining
an appropriate maintenance staff level.

We formulate this model in terms of a supply and demand for
maintenance and compare strategies for meeting maintenance
demands. Here is an overview of this with details in subsequent
sections. Our defect models show us over time stochastically:
- the number of maintenance issues
- when they will occur
- how long it will take to resolve them

Maintenance effort is the "supply" to meet the "demand"
from maintenance issues that arise from defect occurrences. Note
that for us a defect may be a missing or desired capability for the
system and not necessarily an error.

The more the demand is not met (i.e. overdue or unaddressed
maintenance issues) the greater the system operational risk (i.e.
risk of faults + risk of errors + risk of inadequate capability for the
mission). Such risk is a significant component of mission risk as
missions critically depend on the continual operation of the
systems and their fitness for their use on their particular mission.

Business strategy involves leveraging the core competencies of
the organization to achieve a defined high-level goal or objective.
For us there are two basic strategies maintenance effort can be
supplied:

1. Reactive Maintenance (ad-hoc or "pure pull")

When the risk for not addressing outstanding maintenance issues
is over a certain tolerance (i.e. lots of little issues or perhaps one

critical one) hire staff to address the issues (based on expected
effort).

This strategy has the following benefits:

• Agility – adjusts to demand needed, no forecasting
• Custom configured – specialized to particular needs
• High utilization – staff will never be idle
• Low institutional operating cost – effort costs are

funded by maintenance requestors (projects)

This strategy has the following detriments:

• High risk of shortfalls – inability to hire sufficient staff
to meet demand

• Unaddressed issue risk – long times to hire staff cause
delays in addressing maintenance requests

• High staffing cost – use of non-dedicated staff, training
costs, emergency staffing to deal with critical issues

• Budget risk – projects do not budget for maintenance
contingency and high variability in staffing needs pose
the risk that funds will not be available to cover
maintenance demand

2. Capacity Maintenance (proactive or "push-pull")

Have an "inventory" of staff on hand to
address maintenance issues as they arise. We add and remove
staff in anticipation of need based on demand forecasts.

This strategy has the following benefits:

• Low risk of shortfalls – likely to have sufficient staff to
meet demand as it occurs

• Low unaddressed issue risk –maintenance requests are
addressed as they occur

• Stable staffing cost – low variability is staffing level
• Low budget risk – the majority of staff costs come from

operating and programmatic funds that projects budget
for in advance rather than unbudgeted maintenance
requests

This strategy has the following detriments:

• Risk of overage– staff level is driven by forecasted
demand. To maintain a high-level of service (i.e. meet
demand) a certain amount of “safety” staff will need to
be on hand to hedge variable demand

• Utilization costs – staff may be idle during maintenance
demand lulls.

• High operating cost – staff salaries must come from
highly constrained operating and programmatic funds.

The factors involved in comparing these strategies relative to
institutional goals are:

Maintinanc
e	

maintinece	
requests	

maintinece	 	
effort	

System	

Maintinan
ce	

vacancies	

hiring	

Maintinan
ce	 Group	

requests	

effort	
System	

Underage - cost of not having maintenance capability to address
issues (in terms of overdue maintenance issues risk that could
have been avoided)

Overage - cost of having maintenance capability available that is
not used to address issues
Supply cost - cost of acquiring maintenance staff

Lead time - time it takes to supply maintenance effort (we can
assume this is stochastic)

Maintenance demand - based on outstanding issues (stochastic)
over some period of time. This demand period can be
somewhat arbitrarily chosen to best suit the data collected or
organizational management. Since demand occurs over time, we
are just describing the demand over a window.

Maintenance risk - based on outstanding issues (stochastic) over
some period of time

There are risk and cost advantages and disadvantages in terms of
the "total cost" (i.e. overage + underage + actual costs over a
given maintenance demand period) using the above factors for
each of the strategies.

We can tune the capacity strategy (2) by finding the amount
of maintenance effort inventory that meets the institutional risk
posture.

Given the above, the questions we wish to use our model to
address are:

1) Are there significant differences in total cost for the two
strategies?

2) What level of risk reduction associated with the capacity model
is sufficient to justify full time employment (FTE) in terms of
salary commitment from restricted operating and programmatic
funds?

3) It is possible to combine these two strategies for a hybrid that
may be better in terms of total cost and organizational issues
(e.g. constraints or incentives for commitment of operating and
programmatic funds)?

4. MAINTENANCE SUPPLY
Maintenance requires a staff capable of modifying the source, the
build environment, and installing and training people in the
upgrade. However, the level of staffing needed for this task is not
well known. It is almost certainly greater than most
organizations, ourselves included, believe it to be.

Let us consider the risks:
• Critical failure

o The repair cost is not the issue. The organization
stands to have severe losses as a result of the
failure if it cannot be repaired in a timely fashion.
Hence time to getting to a repair becomes
important here.

o A year’s salary of a having a developer sit on
his/her hands would surely be less costly than the
loss from a critical failure

o It is important not to overstate likelihood of a
critical failure. Critical operations tend to have test
periods prior to putting the software into live use.
However, given the large magnitude of loss, the
risk is still significant even when the likelihood is
small.

• Environmentally induced defects
o An OS change gives rise to a new defect. These

defects expose a change in the computing
environment that may be more wide spread within
your systems. They are not as problematic, as you
can postpone the upgrade while your staff
addresses the change.

o If you have inadequate staff, new development
may be deferred.

o You can staff up—but the time to staff up is not
instant and measured in ½ years.

• New requirements
o New interfaces
o Extending capability
o This is a matter of opportunity. You might choose

not to take advantage of the opportunity; you let
the business go elsewhere and hence an
opportunity loss if you don’t take it. This is a
business decision with a potentially large long term
impact and this it is a risk.

o
In addition to constructing an accumulation model, a decay model
is constructed for the observed defect history. This model enables
us to forecast how much maintenance can be done and how long it
takes to address issues. An example model of this us shown in
Figure 3.

5. DEMAND-SUPPLY MODEL
With an understanding of the demand for maintenance and our
ability supply maintenance effort we now formulate and analyze a
model of the situation currently facing the software development
team for the Mission Design and Navigation Software group at the
Jet Propulsion Laboratory. Using historical data for over 2500
defect reports since 2004, we have on hand empirical models for
the time between defect discoveries, the priority of defects, and
the effort required to resolve a defect.

Using Monte Carlo sampling from these empirical models we
simulate a history of issues for a 1000-day period. This history is
then processed by staffs of various sizes (2 through 8 individual
staff members). From these simulated histories statistics are
gathered on the length of time issues remain unresolved, the
number of issues assigned to staff members as a function of time.

By simulating 1000s of such histories we have determined
empirically the ability of a team to keep issues from leading to
catastrophic consequences.

Figure 3. Model for the decay of defects in Legacy

Navigation software.

Issues: Issues are defect reports. They have a severity (major,
normal, minor), a creation time, an estimated expense (the number
of days required to resolve the issue based on historical norms), an
expense (the actual number of days needed to address the issue if
worked on without interruption), a due date, and a cost associated
with the issue if it is not resolved by its due date.

Staff Members: A staff member models a member of a
development team. A staff member has areas of expertise, and
ability to learn (and forget) new domains, and a list of prioritized
issues to be addressed that grows and shrinks as issues arrive and
are resolved.

Product Manager: A product manager has a team of staff
members. The product manager handles the assignment of issues
to team members to ensure that work is balanced across the team
so that backlogs of issues remain small. To do this, when a new
issue arrives the manager polls each staff member on the team to
determine the estimated cost that would be incurred if the issues
were assigned to that staff member. The issue is assigned to that
staff member who can work on the issue with the least overall
resulting cost (costs include other issues that might be delayed due
to work on the issue).

Minimum Team Size: Issues are produced at an average rate of r
issues per day. A staff member requires, on average, E days to
resolve an issue. Thus the number of issues a staff member can
resolve per day is 1/E. Staff members work independently so that
k staff members can resolve k/E issues per day. In order for the
unresolved issues to not produce an every growing backlog, the
number of issues a team can resolve per day must be greater than
the number of issues generated per day: k/E > r. Thus the number
of staff members, k, must be at least as large as rE. (k > rE).

Issue Details: Issues arrive at random in accordance with some
probability distribution of the times between issues. We have
used the historical record of defect reports as an empirical
distribution for the time between issue creation. This model is
shown in Figure 4.

Figure 4. Time between issue creation

Issues have 3 possible levels of severity: major, normal, and
minor. Using historical data, we have modeled the relative
frequencies of these severities as 7%, 78% and 15% respectively.
The effort required to resolve an issue, if worked on without
interruption, follows a Weibull distribution with mean 10.9 hours
and standard deviation of 13.1 hours.

Issues are associated with different portions of the software
system. The relative frequency the various categories of issues
are shown in Figure 5.

Figure 5. Occurrence of issues

Issue Histories: An issue history is a random sequence of issues,
ordered by creation date that span 1000 days. The issue history is
provided first to a Product Manager with a development team of 2
staff members, then to a Product Manager with a team of 3 staff
members and so up to a team size of 8 staff members. Data on the
average queue of issues across the team are recorded, the time
issues remain open, as well as other data relating to the resolution
of issues. This set of activities is called a simulated history. The
relationship between staff size and the risk of not resolving an
issue on time is determined by aggregating 1000s of simulated
histories and examining the likelihood of a critical issue not being
resolved in a timely manner.

6. Results
Initially, it was thought that we would look at the problem of
maintaining a system by starting with a small staff and then
adding staff as a backlog of issues grew. However, one quickly
sees that if one is shorthanded, issues become backlogged almost
immediately so that hiring a new staff member becomes inevitable
and the initial transient backlog fades back to the history of
having started with this number of experienced developers.

Thus the risk question associated with staff size is one of
determining how long you can wait for an issue to be resolved by
a team member. Does an issue need to be examined and resolved
in a day or two? Can you wait two weeks? Two months?

It also quickly became clear that picking due dates could not be
justified on the basis of experience. Our historical data does not
contain information about “need by” dates. In addition, we don’t
have data on the cost of issues that are not resolved in a timely
fashion. We only know that the cost can be very large: the loss of
a mission, the loss of future missions, the loss of enabling
infrastructure assets, etc. The losses in these situations is 100s of
millions of dollars. They are the magnitude 8 events that shake an
organization such as JPL. These issues are the outliers. They lie in
the “tails” of the cost distribution. They are the issues that better
not slip through the cracks. We don’t know when they will arise.
They are rare, but are clearly not one-in-a-million kind of events.
They seem to arise once every decade or so. Often they are not
obviously urgent but just some anomaly that shows up in some
part of the system that is not easily explained. Nevertheless, they
tend to require prompt attention. For an issue to receive prompt
attention, some staff member needs to be able to address it as soon
as it arrives i.e. some staff member needs to have an empty queue
of pending issues.

Since we are interested is discussing maintenance from a risk
perspective, we choose to model the distributions of queue depths
and resolution times as a function if staff size. Queue depth is the
number of issues a developer has waiting to be worked on at any

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.
05
09

0.
15
26

0.
25
44

0.
35
61

0.
45
79

0.
55
96

0.
66
14

0.
76
31

0.
86
49

0.
96
66

1.
06
83

1.
17
01

1.
27
18

1.
37
36

1.
47
53

1.
57
71

1.
67
88

1.
78
06

1.
88
23

1.
98
41

2.
08
58

2.
18
76

2.
28
93

2.
39
11

2.
49
28

2.
59
46

2.
69
63

2.
79
8

2.
89
98

3.
00
15

Days%Between%Issues

Distribution%for%Time%Between%Issues

P.D.D.for.time.between.defects

C.D.F..for.time.between.defects

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

unset	

trajectory	

visualiza8on	

w
eb	pages	

m
easurem

ent	

m
aneuver	

userinterface	

m
python	

library	

nido	

filter	

op8m
iza8on	

m
design	

events	

help	

Frac%on	of	Issues	By	Category	

time. Resolution time is the time it takes for an issue to be
resolved (worked and delivered to operations) once it has been
identified. The chart in Figure 5 shows the percentile queue
depths of queued of issues facing a staff member when a new
issue arrives for 80th, 90th, 95th and 99th percentiles based upon the
staff size. Depending upon your risk posture you can determine
the staff size you need to address a percentage of issues when they
arrive.

Figure 6. Percentile queue depths for given staff levels

As is evident from the chart, staff sizes of 2 and 3 are inadequate
to address even 80% of issues promptly (if we define prompt to
mean that there is no more than one issue present in a developer’s
queue when a new issue is assigned to the developer). The
minimum staff sizes to address 80% of issues promptly is 4, for
90% 5, for 95% 5 and for 99% 6.

A similar chart in Figure 6 shows the staff size needed to resolve
issues within a given time span.

Figure 7. Time to resolve issues given staff level

7. CONCLUSION
The models discussed here are being used in the Navigation
Software Group at the Jet Propulsion Laboratory to provide
insight into determining a strategic maintenance staffing level.
The institution has many demands for programmatic funds.
Committing a portion of these funds to cover staff salaries solely
for maintenance, especially when the normative is to have
individual projects pay for their maintenance requests, requires an
informed discussion of risks.

Prior to the development of these models we could only point to
our challenges in obtaining staff and inability to address possibly
critical maintenance issues as reasons that our ad-hoc maintenance
staffing is risky and inefficient. However, with these models we
are now able to provide the institution with a more informed
business case to identify the level of resources they need to devote
to maintaining reliable and continuous operation of our software
to help ensure mission success.

Without a strong, defensible business case, the budget for
sustaining a maintenance effort was largely a matter of opinion.

There was a natural tendency for the software development team
to request more than was needed. And there was a natural
tendency for the sponsoring programs to regard the development
teams asserted need as exaggeration and provide too little funding.
With the advent of these models, both the program and the
development groups can now reach a comfortable, informed,
agreement on the resources needed to sustain the institutional
investment in our mission critical navigation and trajectory design
software. This does not mean that budgetary pressures have been
removed, but both sides of the budget issue can now address the
issue from the perspective of a quantified level of risk and cost
and then debate can focus more on acceptable risk tolerance rather
than speculation on need and (usually wildly optimistic and over-
confident) ability to address need.
The models presented are selected on principles and backed by
our empirical defect models. There is certainly error in these
models and in the necessarily simplified view of maintenance
demand and supply we have formulated. However, we do not
require highly accurate results, rather we need to have insight into
the general characteristics and impacts of the two basic
maintenance staffing strategies. Our results are not greatly
sensitive to perturbations in the factors and so we can have a
reasonable degree of confidence in them despite the inaccuracies
of our models and estimates of their parameters.

8. ACKNOWLEDGMENTS
This research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

9. REFERENCES
[1] Casella G, Berger R. Statistical Inference 2nd Edition. Duxbury

Press. 511 Forest Lodge Road, Pacific Grove, CA 93950, USA

[2] Evans S., et al. “Monte: The Next Generation of Mission Design &
Navigation Software.” The 6th International Conference on
Astrodynamics Tools and Techniques (ICATT) March 14-17 2015,
Proceedings Darmstadt Germany

[3] Garrison Q. Kenny. “Estimating defects in commercial software
during operational use.” IEEE 1993.

[4] J.D. Musa. “Validity of Execution-Time Theory of Software
Reliability.” IEEE Transactions of Reliability, Vol R-28, 1979.
pp181-191. J.D. Musa, K. Okumoto

[5] Jelinski, Z., and Moranda, P. “Software Reliability Research,”
Statistical Computer Performance Evaluation, Freiberger, W. Ed.
Academic Press, New York, NY

[6] Kan S. Metrics and Models in Software Quality Engineering 2nd
Edition. Addison-Wesley, Boston MA, USA

[7] Li, P., Mary Shaw, and Jim Herbsleb. "Selecting a defect prediction
model for maintenance resource planning and software
insurance." EDSER-5 affiliated with ICSE (2003): p32-37.

[8] Li, Paul Luo, et al. Empirical evaluation of defect projection models
for widely-deployed production software systems. Vol. 29. No. 6.
ACM, 2004.

[9] Neufelder, A M. Ensuring Software Reliability. Marcel Decker, Inc.
270 Madison Avenue, New York, NY 10016, USA

[10] Savage, L.J. The Foundations of Statistics. Dover Publications, Inc.
180 Varick Street, New York, NY 10014, USA

[11] Taber W., Port D., “Empirical and Face Validity of Software
Maintenance Defect Models Used at the Jet Propulsion Laboratory”
ESEM ’14 Proceedings of the 8th ACM/IEE International
Symposium on Empirical Software Engineering and Measurement.
Article No. 7.

3.
51
	

5.
02
	

6.
50
	

10
.5
2	

1.
00
	 1.
67
	

2.
00
	 3.

00
	

0.
75
	

1.
00
	

1.
25
	

1.
75
	

0.
60
	

0.
60
	

0.
80
	

1.
20
	

0.
50
	

0.
50
	

0.
67
	

0.
84
	

0.
43
	

0.
43
	

0.
57
	

0.
71
	

0.
38
	

0.
38
	

0.
50
	

0.
63
	

0	

2	

4	

6	

8	

10	

12	

0.80	 0.90	 0.95	 0.99	

M
ea
n	
Q
ue

ue
	D
ep

th
	w
he

n	
ne

w
	Is
su
e	
ar
riv

es
	

Percen4le	

Percen4le	Queue	Depths		

Staff	of	2	

Staff	of	3	

Staff	of	4	

Staff	of	5	

Staff	of	6	

Staff	of	7	

Staff	of	8	

0	

5	

10	

15	

20	

25	

30	

35	

40	

0.8	 0.9	 0.95	 0.99	

N
um

be
r	
of
	D
ay
s	
O
pe

n	

Percen3les		

Days	an	Issue	may	be	open	at	differing	percen3les	

Staff	of	2	

Staff	of	3	

Staff	of	4	

Staff	of	5	

Staff	of	6	

Staff	of	7	

Staff	of	8	

