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This paper summarizes an approach for modeling, simulation, and control of tethered
systems in which the tether is actively controlled. Various aspects of the system model
are described, including tether dynamics, end-effector dynamics, contact interaction and
the model of the active tether material. We consider three scenarios: a tether made of
an electrically switchable material for small body sampling, a tether for close-proximity
operations such as capture and grappling, and a tether harpooning to a small body for
sample capture or planetary fly-by.

I. Introduction

This paper summarizes an approach for modeling, simulation, and control of tethered systems in which the
tether is actively controlled. Various aspects of the system model are described, including tether dynamics,
end-effector dynamics, contact interaction and the model of the active tether material. We consider three
scenarios (Figure 1): a tether made of an electrically switchable material for small body sampling, a tether
for close-proximity operations such as capture and grappling, and a tether harpooning to a small body for
sample capture or planetary fly-by.

Extreme planetary environments represent the next frontier for in-situ robotic space exploration. Missions
for exploration would be followed by robotic missions for exploitation, and by human missions. All these
missions would have one common problem: highly irregular topography, heterogeneous surface properties
(soft, hard), harsh, extreme environments, where temperature, radiation, and other factors make the missions
inconceivable at present. Also, asset delivery and sample capture and return could be at the heart of several
emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies,
such as Titan. Furthermore, the diverse geologic sites would require versatile in-situ science that can adapt
to the local geology and environmental conditions. An Active Tether System (ATS) would show much
promise to enable new types of mission concepts with lower risk sampling operations (being far away from
the surface), higher rate of science data quality and return (samples with stratigraphy, sub-surface samples),
and much more agility (sampling operations can be repeated multiple times at multiple locations without
landing). In a multistage architecture, the ATS would become highly scalable, and would represent an
advantage over existing asset deployment and potential sample capture mission operations because it would
have the potential of further decoupling the end-effector operation from the spacecraft operation during the
target interaction phase, thus enabling many new mission concepts. One example of application could be
the following: imagine approaching an asteroid and being able to reach the surface to deliver an asset or
to collect a sample without ever having to land. By phase-transitioning its material characteristics in a
multi-segmented boom, a long appendage (up to a few hundred meters long) would change its shape and its
compliance actively to conform to any surface irregularity in any body of the Solar System. By eliminating
complex proximity operations near the surface, this intelligent system could become the new way to interact
at-a-distance with primitive bodies and potentially bring pristine soil samples back to Earth.

Phase-Transition tether In this scenario, we investigate the modeling aspects of a tether system,
which, through changing equilibrium phases in the material, is able to change its compliance in response to
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Figure 1. The three cases considered in this paper for an active tether: a) vehicle rendezvous and docking; b)
harpooning and sling-shot from a small body; c) surface sample collection.

Figure 2. Active tether used for adaptive small body sampling.

different external stimuli and collects a sample from the surface of a planetary body (Figure 2). The paper
approaches this complex problem sequentially. The first step is the static and dynamic characterization of
the component behavior of an ATS element. Some phase-transitioning materials that are considered are
piezoelectric materials, electro-rheological materials, electro-active polymers, photo-strictive and magneto-
strictive materials. The second step is to investigate the system-level behavior under closed loop control,
which is dependent on the scenario of application. To achieve the full potential of distributed actuation,
it is necessary to develop models that characterize the hysteretic nonlinearities inherent in the constituent
materials, as well a distributed sensing methodology. We have investigated models that quantify the non-
linearities and hysteresis inherent to phase transition, each in formulations suitable for subsequent control
design. These models involve first-order, nonlinear ordinary differential equations and require few parame-
ters that are readily identifiable from measurements, hence we have selected to use these differential models
in our analysis. To investigate the system-level implications of using this concept, a multibody dynamics
simulation of the system behavior of the entire vehicle during sample captures has been developed and tested
in a simulation environment.

Harpooning and Sling-Shot Tether NASA is interested in designing a spacecraft capable of visit-
ing a Comet, performing experiments, and then returning safely. Certain periods of this mission would
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Figure 3. Mission Scenario

Figure 4. Space hitchhike maneuver for small body rendezvous and landing.

require a spacecraft to remain stationary relative to the NEO (Figure 3, taken from40). Such situations
would require an anchoring mechanism that is compact, easy to deploy and upon mission completion, eas-
ily removed. The design philosophy used in the project relies on the simulation capability of a multibody
dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity
environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity
can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Effective
NEO exploration requires vehicle/astronaut anchoring due to extremely low gravity. Simulation and testing
must be carried out with implications on system/mission design, system verification and validation, design
of combined vehicle/human/robot teams, design of proximity operations such as: landing, tethered opera-
tions, surface mobility, drilling, sub-surface sampling. The mission concept (Figure 3, taken from40) would
involve several phases: Deployment (Fire harpoon from 100m+ from spacecraft (S/C)); Sampler Stabiliza-
tion: (Sampler would be stabilized during flight to surface via tension in tether); Sampling: (sampler would
impact, sample, close and eject sample canister); Retrieval: (S/C would reel in tether while S/C thrusts,
possibly with pendulum cancellation maneuver); Sample Measurement: (Potentially compute from balance
of forces given the spacecraft acceleration); Canister Capture: (Pull back into chamber it was released from);
Canister Transfer to SRC: (S/C arm would grasp canister and transfer to SRC). The benefits of this approach
would primarily be: low mission risk and capability of providing desirable science data. In regards to risk,
the spacecraft would stay far from comet, and would never be on collision trajectory with comet. It would
rely on a passive sampler, with the canister retrieval constrained to tether. The canister capture would be
straightforward, and the canister transfer back to the spacecraft would also be straightforward. In terms of
the desirable science, this approach would allow for sampling subsurface to 10cm, maintaining stratigraphy,
would allows multiple samples from different comet locations, and would minimizes sample contamination.
Once the spacecraft points the sampler at the target, then the sampler would simply be released toward the
sample target. The tether spool would be on the sampler, and would be pulled out with constant tension,
although another design option for active tether tension control would have the spool on the spacecraft
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instead. The tether tension would stabilize the sampler during flight to surface. Since the spacecraft could
be at a stand-off distance, the tether could be long. It is assumed that a spacecraft would stand off from a
cometary nucleus by hundreds or even thousands of meters, and fire a harpoon-type sample capture device
into the comet.

As an example of the tether sling-shot maneuver, we describe the Comet Hitchhiker concept (Figure
4). The Comet Hitchhiker34 concept would essentially perform momentum exchange with a target body
using an extendable/retrievable tether. The momentum exchange would be performed in two ways: i) to kill
the relative velocity with the target, and ii) to accelerate the spacecraft in relative to the target. We call
the former a space hitchhike maneuver, while the latter an inverse space hitchhike maneuver. The key idea
of the Comet Hitchhiker concept is to use extendable/retrievable tether, which enables: 1) to control the
spacecraft acceleration within a tolerable level, 2) to harvest the kinetic energy of the target body, and most
importantly, 3) to change or completely kill the relative velocity with the target, hence enabling rendezvous
and landing. First, the spacecraft harpoons a target as it makes a close flyby in order to attach a tether to
the target. Then, as the target moves away, it reels out the tether while applying regenerative brake to give
itself a moderate (<5g) acceleration. If there is a sufficient length of tether, the spacecraft can eventually
make the relative velocity sufficiently small so that it is captured by the weak gravity of the target. At the
end of the hitchhike maneuver, the spacecraft is at a significant distance from the target - typically 10-1000
km, depending on the initial relative velocity. However, re-approaching to the target is very easy because the
relative velocity has already been killed. The spacecraft can simply retrieve the tether slowly to come closer
to the target, and possibly land on it. Figure 18 shows a sample sequence of a hitchhike maneuver. This idea
can be intuitively understood by the analogy of fishing. Imagine a fisherman on a small boat trying to catch
a big fish that runs at a high relative speed. Once the fish is on a hook, the experienced fisherman would let
the line go while applying a moderate tension on it, instead of holding it tightly. If the line has a sufficient
length, the boat can eventually catch up with the fish with moderate acceleration. In addition, by applying
regenerative brake, a Comet Hitchhiker can harvest energy from the target body. Assuming 25% efficiency
of a regenerative brake, a 2-ton comet hitchhiker can produce ∼25 GJ of energy, which is sufficient to drive
an instrument with 1 kW power consumption over 290 days. If future storage devices can achieve the energy
density of gasoline, 25 GJ can be stored in 500 kg of mass, making it a potential energy source in the outer
Solar System. Our concept brings important advantages over a related concept of tether-based flyby,36 which
uses a fixed length of tether in order to change the direction of the relative velocity like a gravity assist.
This concept cannot be used for landing and orbit insertion because it does not reduce the relative speed.
The comet hitchhiker concept is distinct in that it reels out a tether while applying regenerative brake force
to accelerate itself. This approach allows the spacecraft to match its velocity with that of the target, and
as a result, enables soft landings and orbit insertion. An inverse hitchhiker maneuver is performed by using
the stored energy in order to make a departure from the target. First, when the hitchhiker is on the surface
or in orbit, it attaches a tether to the target. Next, it slowly moves away from the target while deploying
the tether. Then, it uses the stored energy to quickly retrieve the tether and accelerate itself. Finally, it
detaches the tether.

Grappling Tether Finally, as a model of a grappling tether, we consider a tethered system that is
capable of being actuated in such as way as to rendezvous and dock with the target body, which could be
a piece of orbital debris, or another spacecraft. In this scenario, the spacecraft would first need to detect
the target relative to itself, then plan an approach trajectory for the end effector, eject the ATS towards the
target, wrap and lock around the target, then apply the necessary distributed control actuation to retrieve
or reposition the target.

This paper is organized as follows. First, we derive the equations of motion of a multibody system with
contacts and collisions. Second, we derive the kinematics and kinetics of a space tethered system in orbit.
Third, we focus on the tether material constitutive law, allowing for phase-transitioning behavior. Fourth,
we describe the interaction of the end-effector at the end of the tether with the contacting surface. Fifth,
we discussed the application cases, studied with simulation. The conclusions end the paper.

II. Modeling of Multibody Tethered System with Contact Interactions

Figure 5 shows the kinematic topology of the multibody chain for a tethered system contacting another
body. Body 0 is the free-flying spacecraft. Bodies 1 to 3 represent the tether. Bodies 4 and 5 represent
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appendages, such the solar panels hinged at the root via a spring tuned to the first fundamental frequency
of oscillation. Body 6 represents the free-flying small body.

In the past two decades, researchers have been developing complementarity based formulations to solve
contact and collision dynamics problems. A recent review is given in,32 in which the authors compare and
contrast the linear and nonlinear complementarity approaches to solving contact dynamics problems. Com-
plementarity based methods are an alternative to classical penalty based methods, that rely on a virtual
spring-damper model to apply restoring forces at the point of deepest penetration between two bodies in
contact. Penalty methods notoriously suffer from oscillatory effects and become numerically unstable when
bodies collide with a high velocity. Small time steps and excessively damped implicit integrators used to
counter this make the method slow and computationally expensive. Complementarity based methods, on the
other hand, assume that the bodies are truly rigid and compute contact forces at each time step to prevent
inter-penetration. Complementarity methods use impulsive dynamics to handle collision and contact inter-
actions. They avoid the small time step and stiffening issues encountered in penalty methods by impulsively
stepping over non-smooth events. There are two variants of the complementarity formulation - the linear
complementarity problem (LCP) formulation and the nonlinear complementarity problem (NCP) formula-
tion. In the LCP formulation, the dynamics is cast as a linear complementarity problem by discretizing the
friction cone using a polyhedral approximation. On the other hand, no such approximations are made in the
NCP case leading to an exact modeling of the friction cone.

Figure 5. Multibody dynamics model of contact event with tethered spacecraft system.

The state of a mechanical system with nb rigid bodies in three dimensional space can be represented
by the generalized positions q = [r1

T , ε1
T , . . . , rnb

T , εnb
T ]T ∈ R7nb and their time derivatives q̇, where ri is

the absolute position of the center of mass of the i − th body and the quaternion εi expresses its rotation.
One can also introduce the generalized velocities v = [r1

T , ω1
T , . . . , rnb

T , ωnb
T ]T ∈ R7nb , directly related

to q̇ by means of the linear mapping q̇ = L(q)v that transforms each angular velocity (expressed in the
local coordinates of the body) into the corresponding quaternion derivative ε̇i by means of the linear algebra
formula ε̇i = 1

2G(εi)ωi, with

G(εi) =

 +ε1 +ε0 −ε3 +ε2

+ε2 +ε3 +ε0 −ε1
+ε3 −ε2 +ε1 +ε0

 (1)

Mechanical constraints, such as revolute or prismatic joints, can exist between the parts: they translate
into algebraic equations that constrain the relative position of pairs of bodies. Assuming a set of constraints
is present in the system, for all i ∈ B they lead to the scalar equations Ψi(q, t) = 0. To ensure that
constraints are not violated in terms of velocities, one must also satisfy the first derivative of the constraint
equations, that is ∇Ψi

Tv + ∂Ψi

∂t = 0 with the Jacobian matrix ∇qΦi = [∂Ψi/∂q]T and ∂Φi
T = ∇qΨi

TL(q).
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Note that the term ∂Ψi
∂t is zero for all scleronomic constraints, but it might be nonzero for constraints that

impose some trajectory or motion law, such as in case of motors and actuators. If contacts between rigid
bodies must be taken into consideration, colliding shapes must be defined for each body, and a collision
detection algorithm must be used to provide a set of pairs of contact points for bodies whose shapes are
near enough, so that a set A of inequalities can be used to concisely express the non-penetration condition
between the volumes of the shapes, i.e. for all i ∈ A, Φ(q) ≥ 0. Note that for curved convex shapes, such
as spheres and ellipsoids, there is a unique pair of contact points, that is the pair of closest points on their
surfaces, but in case of faceted or non-convex shapes there might be multiple pairs of contact points, whose
definition is not always trivial and whose set may be discontinuous. Given two bodies in contact A,B, let ni
be the normal at the contact pointing toward the exterior of body A , and let ui and wi be two vectors in
the contact plane such that ni,ui,wi ∈ R3 are mutually orthogonal vectors: when a contact i is active, that
is for Φ(q) = 0, the frictional contact force act on the system by means of multipliers γ̂i,n ≥ 0, γ̂i,u, and
γ̂i,w, that is the normal component of the contact force acting on body B is Fi,N = γ̂i,nni and the tangential
component is Fi,T = γ̂i,uui + γ̂i,wwi (for body B these forces have the opposite sign).

Also, according to the Coulomb friction model, in case of nonzero relative tangential speed vi,T the
direction of the tangential contact force is aligned with vi,T and it is proportional to the normal force as
‖ Fi,T ‖= µi,d ‖ Fi,N ‖ by means of the dynamic friction coefficient µi,d ∈ R+. However, in case of null
tangential speed, the strength of the tangential force is limited by the inequality ‖ Fi,T ‖≤ µi,s ‖ Fi,N ‖
using a static friction coefficient µi,s ∈ R+., and its direction is one of the infinite tangents to the surface.
In our model we assume that µi,s and µi,dhave the same value that we will write µi for simplicity, so the
above mentioned Coulomb model can be stated succinctly as follows:

γ̂i,n ≥ 0, Φi(q) ≥ 0, Φi(q)γ̂i,n = 0 (2)

The first condition states that the friction force is always within the friction cone, i.e.

µiγ̂i,n ≥
√
γ̂2
i,u + γ̂2

i,w (3)

The second condition states that the friction force and the velocity between two contacting bodies are
collinear and of opposite direction, i.e.:

〈Fi,T,vi,T〉 = − ‖ Fi,T ‖‖ vi,T ‖ (4)

The third condition, which captures the stick-slip transition, is:

‖ vi,T ‖ (µiγ̂i,n −
√
γ̂2

i,u + γ̂2
i,w) (5)

Note that the condition γ̂i,n ≥ 0, Φi(q) ≥ 0, Φi(q)γ̂i,n = 0 can be also written as a complementarity
constraint: γ̂i,n ≥ 0, Φi(q) ≥ 0, see.47 This model can also be interpreted as the Karush-Kuhn-Tucker first
order conditions of an equivalent maximum dissipation principle,33 which can be written as:

i ∈ A : γ̂i,n ≥ 0,⊥Φi(q) ≥ 0, , (γ̂i,u, γ̂i,w) argmin
µiγ̂i,n≥

√
γ̂2
i,u+γ̂2

i,w

vT(γ̂i,uDi,u + γ̂i,wDi,w)) (6)

Finally, we must also consider the effect of external forces with the vector of generalized forces f(t,q,v) ∈
R6nb , that might contain gyroscopic terms, gravitational effects, forces exerted by springs or dampers, torques
applied by motors, and so on. Considering the effects of both the set A of frictional contacts and the set
B of bilateral constraints, the system cannot be reduced neither to an ordinary differential equation (ODE)
of the type v̇ = f(t,q,v) nor to a differential-algebraic equation (DAE), because of the inequalities and
because of the complementarity constraints, that rather turn the system into a differential inclusion of the
type v̇ ∈ F(t,q,v) , where F is a set-valued multifunction. In fact, the time evolution of the dynamical
system is governed by the following differential variational inequality (DVI):

q̇ = L(q)v

Mv̇ = f(t,q,v) +
∑

i∈B γ̂i,n∇Ψi +
∑

i∈A(γ̂i,nDi,n + γ̂i,uDi,u + γ̂i,wDi,w))

i ∈ B : Ψi(q, t) = 0

i ∈ A : γ̂i,n ≥ 0,⊥Φi(q) ≥ 0, , (γ̂i,u, γ̂i,w) argmin
µiγ̂i,n≥

√
γ̂2
i,u+γ̂2

i,w

vT(γ̂i,uDi,u + γ̂i,wDi,w))

(7)
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Here, to express the contact forces in generalized coordinates, we used the tangent space generators
Di = [Di,n,Diu,Di,w] ∈ R6nb×3 that are sparse and are defined given a pair of contacting bodies A and B
as:

Di
T =

[
0 . . . −Ai,pT +Ai,p

TAA˜̄si,A 0 . . .

0 . . . +Ai,p
T −Ai,pTAB˜̄si,B 0 . . .

]
(8)

where we use Ai,p = [ui,vi,wi] as the R3×3 matrix of the local coordinates of the i-th contact, and intro-
duce the vectors s̄i,A and s̄i,B to represent the positions of the contact points expressed in body coordinates.
A superscript tilde denotes a skew-symmetric operator. The DVI in (2) can be solved by time-stepping meth-
ods: in detail, the discretization requires the solution of a complementarity problem at each time step, and
it has been demonstrated that it converges to the solution to the original differential inclusion for h→ 0.47

Moreover, the differential inclusion can be solved in terms of vector measures: forces can be impulsive and
velocities can have discontinuities, thus supporting also the case of impacts and giving a weak solution to
otherwise unsolvable situations like in the Painlev paradox.47

III. Modeling of Tethered System Kinematics and Kinetics

We follow Figure 6. The motion of the system is described with respect to a local vertical-local horizontal (LV-LH)
orbiting reference frame (x, y, z) = FORF of origin OORF which rotates with mean motion Ω and orbital radius R0.
A general type of orbit can be accommodated in the model, as the orbital geometry at the initial time is defined in
terms of its six orbital elements, and the orbital dynamics equation for point OORF is propagated forward in time
under the influence of the gravitational field of the primary (Earth for LEO, Sun for Deep Space applications) and of
the Earth as third body perturbation effect. The origin of this frame coincides with the initial position of the center
of mass of the system, and the coordinate axes are z along the local vertical, x toward the flight direction, and y in the
orbit normal direction. The inertial reference frame (X,Y, Z) = FI is geocentric inertial for LEO (X points toward
the vernal equinox, Z toward the North Pole, and Y completes the right handed reference frame), and heliocentric
inertial for other applications. The orbit of the origin of FORF is defined by the six orbital elements a (semimajor

axis), e (eccentricity), i (inclination), Ωl (longitude of ascending node), $ (argument of perigee), ν (true anomaly),
and time of passage through perigee. The transformation between FORF and FI is given by FORF = RFI with
R = R3 ($ + ν) R2 (i) R3 (Ωl) where Ri (·) denotes a rotation matrix of (·) around the direction specified by the
subscript. It is useful to refer the translational dynamics of body i to the origin of FORF . From Figure ??, the
position vector of a generic structural point with respect to OORF is denoted by ρi, and we have ri = R0 + ρi. We

define the state vector as X = (rE , ṙE , R0, Ṙ0, ρ1, q1, ρ̇1, ω1, ..., ρi, qi, ρ̇i, ωi, ...ρN , qN , ρ̇N , ωN ) where rE defines
the position of the Earth in inertial space, and qi and ωi represent the quaternion and angular velocity vector of the
i-th spacecraft with respect to FI .

The tether is modeled with N point masses connected by massless springs and viscous dampers. Each tether-
connected spacecraft is modelled as a rigid body with internal angular momentum distribution, sensors and actuators,
and mass/momentum flow representing the effect of the variable length tether.

There are two possibilities to treat tether deployment and retraction with a lumped mass model: either the mass
of the masspoints is kept constant (and their number will vary, implying a mass creation and elimination procedure),
or the number of masspoints is kept constant (and their masses will vary). The first case, in which the number of
masspoints varies, is more complex than the second case, and requires a state vector of varying dimension which needs
to be updated during the simulation. This approach may pose significant problems when state vector variables are
received from the estimator and sent to the controller. Therefore, our model assumes that the number of masspoints
is fixed, and the varying length kinetics is included in the equations by the correct convective terms. A similar
analysis is presented in,? but our derivation is more general and is described in what follows.

Our approach makes use of a material coordinate s̄ which describes the arc-length of the tether in the undeformed
configuration. Therefore, considering the tether segment Ti, connecting masses I and J , we have that at time t,
0≤ s̄ ≤ s̄I (t) defines the tether reeled in on the I-th spacecraft, s̄J (t) ≤ s̄ ≤ ltotal defines the tether reeled in
on the J-th spacecraft, and s̄I (t) ≤ s̄ ≤ s̄J (t) describes the deployed part of the tether. Clearly, s̄I (t) and s̄J (t)
are prescribed functions of time representing the deployment and retrieval profiles, and we have that the currently
deployed tether length is l̄ (t) = s̄J (t) − s̄I (t). In FORF , the position vector of a generic tether point is defined by
ρ (s̄, t). Capital I and J denote the end masses, while lowercase i denotes tether points.

Let us operate a change of variables such that s̄ (ξ, t) = s̄I (t) + ξ l̄ (t) , so that ρ (s̄, t) = ρ (s̄ (ξ, t) , t) = r̃ (ξ, t).
Introducing the tether nodes ξi = i−1

N−1
, i=1,...,N, the tether element is defined by ξi ≤ ξ ≤ ξi+1. Within this element,

the average position ρi (t) = 1
4ξ

∫ ξi+1

ξi
r̃ (ξ, t) dξ and the mass mi (t) = µ4s̄, where µ is the tether mass density,

represent the position vector and mass of the lumped mass model. After the material differentiation operator, which
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Figure 6. Model of active tether.

introduces the convective terms depending on the current tether length and length rate, the kinematic equations of
the interior tether points may be written as (i = 2, ..., N − 1)

dρi
dt

= vi +
1

l̄4ξ

[
ds̄I
dt
r̃ (ξ, t) +

dl̄

dt
ξr̃ (ξ, t)

]ξi+1

ξi

(9)

while the dynamic equations may be written as

mi
dvi
dt

= −ṁivi (10)

+µ

[
ds̄i+1

dt

∂ρ (s̄i+1, t)

∂t
− ds̄i

dt

∂ρ (s̄i, t)

∂t

]
−mi

[
R̈0+2Ω× ρ̇i+Ω× ρi×ρi

]
+fgravi +faeroi +fsolari + τi+1 − τi

where r̃ (ξi, t) = 1
2

(r̃i−1 + r̃i) and ∂ρ(s̄i,t)
∂t

= 1
2

(vi−1 + vi). This is a finite difference approximation of the tether
partial differential equation. As such, the large angle tether dynamics is correctly captured, and the approximation
improves with the number of tether mass points.

The end body kinematic equations for the I − th spacecraft are

dρI
dt

= vI (11)

dqI
dt

=
1

2
〈ω̄I〉qI (12)

where ω̄ is the augmented angular velocity vector ω̄ =
[
ωT 0

]T
, and the 〈·〉 operator performs the quaternion

multiplication.
The dynamic equations for the I − th spacecraft are

mI
dvI
dt

= τI −
µ

l̄

(
ds̄I
dt

)2

uI (13)

−mI

[
R̈0+2Ω× ρ̇I+Ω× ρI×ρI

]
+fgravI +faeroI +fsolarI +f controlI
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JI
dωI
dt

+ωI× (JIωI + hI) = gextI + (14)

dtetherI ×

[
τI −

µ

l̄

(
ds̄I
dt

)2

uI

]
+

rcp2cm × fS
rI

|rI |3

ḣI = −grwI (15)

where JI is the moment of inertia matrix of the I-th spacecraft, hI represents the total internal angular momentum
distribution present in the I-th body (from reaction wheels), and rcp2cm represents the vector from center of mass
to center of pressure. Notice the presence of convective terms also in the end mass linear and angular momentum
balance equations. They represent the contribution of the momentum flux at the tether feed-out point.

Finally, the tether thermal equilibrium is described by the first order differential equation

ϑ̇ =
Qsolar +Qalbedo +Qinf rared − 2πrσεϑ4

ρcm
(16)

where ϑ is the tether temperature, Q[·] represents an input heat flux, r is the tether radius, σ is Boltzmann’s constant,
ε is the tether emissivity, ρ is the tether volume density, c is the tether heat capacity, and m is the tether mass.

Following,? since the spring mass frequency is too low for the natural material damping to be effective, a longitu-
dinal damper is added in series to the tether itself at one of the tether attachment points. This is a passive damper,
tuned to the frequency of the tether bounce mode with a damping ration of 0.9. An additional dynamic equation is
present, representing the linear momentum balance of the tuned damper as

ktlt = kdld + cd l̇d (17)

The total tether strain is

ε∆ξ =

[(
l̄ + lt + ld + lϑ

l̄

)
− 1

]
(18)

where l0 is the tether rest length, lt is the tether mechanical stretch, ld is the damper mechanical stretch, and lϑ is
the tether thermal stretch. The strain rate for the tether segment of length l∆ξ is

ε̇∆ξ =
l̄
dl∆ξ
dt
− l∆ξ dl̄dt(
l̄
)2 (19)

so that the tether tension in the tether segment of length l∆ξ, stiffness coefficient k and damping coefficient c, is

τ∆ξ = kε∆ξ + cε̇∆ξ (20)

The control laws applied to the spacecraft are of the feedback (proportional-derivative) plus feedforward type.
The translation control actually implemented on the spacecraft is of the form

f = Kp(sCmd − sEst) + Kv(ṡCmd − ṡEst) + Ms̈Cmd (21)

where s represents the position vector of the center of mass, Kp and Kv are translation control gain matrices, M
is the spacecraft mass matrix, sEst and sCmd represent the estimated and commanded translation state, respectively.
The rotational control instead is of the following form

τ = Γpλ(θerr) + Γv(ωCmd − ωEst) + Jα̈Cmd (22)

where Γp and Γv are rotational control gain matrices, J is the spacecraft moment of inertia matrix, λ is the
eigen-axis of rotation, and θerr is the magnitude of rotation corresponding to the difference between the commanded
and the estimated quaternions. A feedforward term is used to track a command defined up to an acceleration profile.
As per eq.(??), the torques in eq.(22) are applied with a negative sign to the reaction wheels.

IV. Modeling of Constitutive Law of Active Tether Material

The integrated model of the tethered system in which the tether material is an active material are derived in
this section. The tether is assumed to act as a generalized spring that undergoes a phase-transition and behaves
hysteretically, and the properties of the spring are controllable in a feedback loop. In the model, we also assume that
we can measure the position and attitude of the spacecraft, and that we can measure the contact force. Summarizing
the above assumptions in analytic form, the physics of the system is described by a structural dynamics equation of
motion for the physical displacements q in the second order ODE form
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M(q)q̈ + C(q, q̇)q̇ +K(q)q = f(q, q̇, q̈) (23)

a phase transition balance equation for the transitioning phases φ

φ̇ = g(φ, σ, θ) (24)

where σ is the stress on the tether), and θ is the temperature, a thermal balance equation

θ̇ = h(θ, φ, J) (25)

where J is the controlling current, and the set of initial conditions (q(0) = q0, q̇(0) = q̇0, θ(0) = θ0, φ(0) = φ0).
The actuation inputs are the contact force f , the temperature θ, and the current J . In conclusion, for a given
applied stress and Joule heat, we can evaluate the phase fractions and the temperature by integrating the system
of equations simultaneously, and then calculate the resulting strain. Alternatively, by prescribing strain and Joule
heat, we can compute the phase fractions, temperature, and stress. While the model in this section has been derived
with a shape-memory material in mind for simplicity, other active materials would follows the same model electro-
strictive, magneto-strictive, photo-strictive, electro-rheological, magneto-rheological, and others, such as electro-active
polymers.7

Figure 7 shows a block diagram of the adaptive behavior of an active tether. The central block describes the
dynamic constitutive laws of the material, as described above. The block at the bottom describes a tether element
between two structural nodes. The top block indicates an adaptation mechanism, implemented through feedback of
the tether state, in order to apply the adaptive control action.

Figure 7. Adaptive control of active tether.

Past studies39 with shape-memory materials (SMM) on metallic booms have shown that tip contact force mod-
ulation through distributed control of the boom elasticity is possible, provided that thermal equilibrium can be
maintained, which in turn dictates the type of smart material to be used. Also, contact force modulation through
distributed control of the metallic boom elasticity was shown not only to be possible, but also to cause weak dy-
namic coupling with the spacecraft, hence modulation of the sample collection dynamics by means of phase-transition
control is feasible. Distributed sensing along the boom length, which is needed for buckling control during contact,
is feasible by sensing the curvature along the length and feeding back an electric signal at the various stations as
the contact forces are monitored, using well-established distributed sensing and control approaches for continuum
robots,19.43 As an example, consider a 500 kg space-craft hovering at 250 m from the surface. To be able to collect
0.5 kg of unconsolidated regolith from the surface of an asteroid with a 30 kg end effector, 20 N of force at the
sampler are needed for a 2 seconds dwell-time to penetrate the soil. Assuming the tethered system modeled as a
250 m long spring contacting the surface, the spring axial tension needs to increase from 5 mN to 20 N and held
at that level for the duration of the sampling event. This implies a material stress increase of 0.25 MPa, which can
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easily be accomplished by switching the boom material phase at designated locations along the boom, for example,
via Joule heating of a shape memory material, or better with electrical activation of electro-active polymers (EAP).
EAPs have been proposed as artificial muscles in the space environment because they can induce strains that are
as high as two orders of magnitude greater than fragile electroactive ceramics, are superior to shape memory alloys
in higher response speed, lower density, and greater resilience, and they can switch phases with mW of power to a
maximum stress level of 40 MPa in milliseconds [BarCohen2004]. When the tethered system grasps the surface via
a harpoon, drill, some other end-effector, there will be a variable reaction travelling along the tether back at the
spacecraft. However, the duration of the contact event can be timed and the tether can be made to change phases
before the back-reaction affects the spacecraft adversely. During deployment, at rates of the order of 10 cm/s, the
angular momentum of the extended tether might be considerable, and the rotation rate of the parent spacecraft could
change substantially during the tether extension and retraction. However, this effect will be predictable and can
be controlled with the attitude control system, which will need to be designed for a maximum tether length. The
contact loads and spacecraft angular rates for terrain with slope have been shown39 to be higher than those with
flat terrain, and that lateral forces and lateral angular rates are larger for flat terrain but smaller bending stiffness
(more compliant member). Also, a comparison of the spacecraft body rates during contact for various lengths under
distributed control, indicated that there is little effect on the spacecraft attitude rates due to the boom stiffening
when control is applied to implement the boom stiffening, since the rates remain well within the maximum acceptable
0.1 degrees/s bound.

V. Modeling of End-effector Interactions with a Planetary Body Surface

In general, slow harpooning methods such as those based on drilling or melters would require the spacecraft
Attitude Control System (ACS) to be involved for vehicle stabilization. Conversely, fast harpooning method such as
those based on tethered spikes, telescoping spikes, and multi-legged with tethered or telescoping spikes would likely
require less ACS involvement. Early studies on harpooning for the ST4/Champollion mission selected a 1 kg 1.9cm
diameter truncated cone penetrator for harpooning onto the surface on materials of strength up to 10 Mpa with a
45 degree impact angle within a reasonable velocity range (100-200 m/s) with a minimum pullout resistance of 450
N in any direction. Several harpooning deployment/retrieval issues must be carefully considered that could impact
the mission design. A harpoon may ricochet adversely on surface instead of solidly emplacing on ground. Also,
drilling a helical harpoon requires a torque transfer to another object. PHILAEs landing gear uses ice screws and
three landing legs with two pods in each, for example. Harpoons could be easily launched before landing. More
than one harpoon would need to be deployed from the spacecraft to ensure static stability. Spacecraft ACS (reaction
wheels, not RCS) would probably be needed to be on during the harpooning Phase to avoid slack cables and vehicle
stability problems. Some harpoon designs would allow them to be pulled out, others would not. Behavior of the
regolith is likely governed by cohesion and surface adhesion effects that dominate particle interactions at small scales
through van der Waals forces. Electrostatic forces are are generally negligible except near terminator crossings where
it can lead to significant dust transport. The micro-gravity and solar radiation dominate system behavior prior to
soil engagement or penetration. Soil mechanics experiments have known issues when it comes to testing samples
of regolith in one-g. First, a reproducible preparation of a homogeneous soil sample is difficult to achieve. Second,
a characterization of the soil properties in depth is difficult, since static parameters are typically measured at the
surface. Third, under 1-g load, according to soil theory, the compressive strength in depth is significantly influenced
by overburden terms, i.e. the effective strength/resistance increase with depth. The soil shear stress can be modeled
as σc = c+ p tan(φf ), i.e. , the Mohr-Coulomb limit soil bearing capacity theory, where φf , is known as the friction
angle (or internal-angle-of-friction), p is normal pressure, and the zero normal-stress intercept, c, is known as the
cohesion (or cohesive strength, i.e. shear stress at p=0) of the soil. For typical regolith simulant, the cohesion is
40 Pa at loosely packed conditions and increases to 10 kPa at 100 relative density. The friction angle also increases
monotonically from 25 deg to 60 deg. The Rosetta Lander design takes advantage of this effect of greatly increased
cohesion by local compression of the cometary regolith under the landing pods during landing. Previous relevant
regolith modeling work,8 and22 covers both low-velocity (approx. 1 m/s) impact of blunt bodies into dust-rich, fluffy
cometary materials (Biele et al8), as well as high-velocity (approx. 10 m/s) impact of sharp projectiles on various
types of soil. (Allen1 and Anderson et al3). The lower limit of the tensile strength is of the order of 1kPa whereas
the probable upper limit can be taken as 100kPa. The lower limit of tensile strength corresponds to a compressive
strength of c ≥ 7kPa. This wide range of soil properties must be captured in simulation, which poses a significant
challenge. At very low gravity and vacuum conditions the biggest unknown is the material strength of the surface
material. Neither the Deep Impact mission nor other comet observations have provided firm data on the strength
of cometary material. Theoretical considerations and laboratory measurements for weakly bound aggregates and
the few observational constraints available for comets and cometary meteoroids lead to estimates of the quasi-static
tensile (or shear) strength of cometary material in the dm to m range as of the order of 1kPa, while the compressive
strength is estimated to be of the order of 10kPa.

Now that the foundations of the regolith behavior have been laid out, in the next section we delve into the analysis

Page 11 of 25 Fifth International Conference on Tethers in Space, 24-26 May 2016, Ann Arbor, Michigan, USA



(a) (b)

Figure 8. Soil bearing stress vs. depth as a function of (a) penetrator mass , and (b) cone angle.

of the soil interaction process during penetration. A complete and general solution describing the penetration of a

projectile into a solid body is not known, though there are several published models available which may be applicable

to the harpoon (see, e.g., those listed by Wang49). For current modeling efforts we consider the harpoon to be a

rigid, conically tipped cylindrical projectile, where θ is the half opening angle of the cone.3 Several possible forces

may contribute to the overall deceleration experienced by the projectile during penetration.1 These may depend on

penetrated depth and velocity as well as target material parameters. Most of the forces can be expressed as the

integral of decelerating stresses over the wetted surface Sw of the penetrator in contact with the target material. The

main force terms of clear (or plausible) physical origin found in the published literature are several. First, a constant

term associated with compressive strength, possibly including a contribution from the targets self-weight. The latter

should be negligible on the comet, where the surface gravity g is expected to be no more than about 1/2000 of that

on Earth. It may be more significant for ground-based experiments where the projectile is fired downwards into a

cohesion-less target, though the fact that it is also proportional to the diameter of the projectile means that the term

is still quite small for laboratory-scale experiments. Second, a term which increases linearly with depth due to the

weight per unit volume ρg of the overlying material (overburden pressure). As with the self-weight, this should be

negligible on the small body but needs to be considered for ground-based experiments, especially those with cohesion-

less targets. This term is also proportional to a factor Nq(φ). For the limit φ = 0, Nq = 1 and the term becomes

analogous to buoyancy in a fluid. Third, a dynamic drag term proportional to the target density ρ and the square of

velocity V , resulting from the transfer of momentum from the projectile to the target material. In many cases the

importance of drag is incorporated by adopting a drag coefficient CD (which may itself have a velocity dependence),

analogous to the parameter used in fluid dynamics. Fourth, a sliding friction term indicating the friction between the

projectile surface and the target material, governed by the coefficient of sliding friction µf and the total normal stress

from the three terms above. Fifth, a viscosity or damping term, proportional to the component of velocity parallel

to the projectiles surface. As with friction, this force acts parallel to the harpoons surface rather than normal to it.

The physical validity of this term seems to be a matter for debate. Finally, the weight of the projectile. This is only

important when significant compared to the other (decelerating forces. Collecting these terms together with the
appropriate geometric factors, one obtains the following equation for the overall deceleration:

−dV
dt

=
1

m

∫ ∫
Sw

[(
1

2
CDρV

2 sin2 θ
′
+ σ + ρgNqz)× (sin θ

′
+ µf cos θ

′
) + kvV cos2 θ

′
]dA− g (26)

In this equation, θ
′

= θ along the conical tip, but θ
′

= 0 along the cylindrical shaht of the penetrating
object. Also, from Komle,22 Nq(φ) = exp(π tanφ) tan2(π4 + φ

2 ), and kv is a constact with units of [Nsm−3],
i.e., those of viscosity divided by the thickness of a representative boundary layer around the projectile where
viscous flow occurs.. From,22 a parameter analogous to a drag coefficient can be defined in terms of the
material parameters as
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CD =
2

(1− η) cos2 θ
× [

(1− η) + 1/α+ η/(2− α)

ηα/2
− 1

α
− 1

2− α
] (27)

where α = 3λ/(3 + 2λ), λ = tan(φ), φ is the angle of internal friction, η = 1− ρ0

ρ is the volumetric strain,
ρ0 is the bulk density of the target material before penetration. The case η = 0 implies zero compression.

To get insight into the sensitivity of the system to the various parameters involved, we derived a simple
one-dimensional model of the system behavior during penetration in.41 Figure 8, taken from,41 depicts the
soil bearing stress vs. depth as a function of (a) penetrator mass , and (b) cone angle, confirming the fact
that a larger diameter harpoon would penetrate less, and that a heavier harpoon would penetrate deeper.
All these results assume an initial approach velocity of 1 m/s.

Now that we have insight into the system behavior, we apply these models to various scenarios.

VI. Example: Small Body Sampling with Phase-Transition Tether

The objective of the phase-transition tether (PTT)39 is to investigate the potential that intelligent ma-
terial actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface
and for sample capture and possible return. In the PTT example, we have focused on several intelligent
materials, but mostly on a shape memory material. Shape memory materials (SMA) possess an interesting
property by which the material remembers its original size or shape and reverts to it at a characteristic
phase transformation temperature.9 By training an SMA wire to remember a given straight or curved shape
when heated or cooled down to a given temperature, a long wire with low inherent bending stiffness may
be ejected or unreeled from a spacecraft and then transformed into a long thin beam via a controlled ma-
terial phase transition. Once the phase transition has been induced, the wire exhibits a bending stiffness
that did not exist before, and the deployed appendage operates now as a stiff robotic arm. Figure 1 shows
a conceptual view of how artificial manipulator tensioning would occur via an embedded SM wire, and a
proposed sequence for sample capture phase. Conversely, when the phase transition reverses, the original
state of string behavior dominated by axial tension is recovered and the appendage can be reeled back inside
the spacecraft. The transition is almost perfectly reversible and, in principle, many cycles can be performed
reliably, which would enable either deployment of an asset or retrieval of a collected sample. Shape memory
phase transition behavior is tailorable, and compositions exist that have been tested at 99 degrees C and
below. After plastic deformation at low temperature, the SMA returns to its original configuration upon the
supply of heat. The material seems to remember its former shape, which gives the name to the effect. At a
higher temperature, another important phenomenon can be observed. Here, the material can be reversibly
deformed up to 10% of its original length under a nearly constant loadthis behavior is termed superelasticity.
Both effects are a consequence of the load-deformation behavior, which is called quasiplastic at low temper-
ature and pseudoelastic at higher temperature. The underlying mechanism of the observed phenomena is a
phase transformation between different crystallographic structures, i.e., different variants of the martensite
and the austenite phases. A variety of asset deployment of sample capture scenarios would be possible that
could potentially minimize the dynamic interactions with the spacecraft during the maneuver. For example,
a minimum load of 20 N was shown to be required to be maintained on the end-effector for approximately
2 seconds so that enough soil sample could be collected from an asteroid, which translated in an adverse
reaction on the spacecraft and necessitated additional use of the thrusters to correct the attitude at the end
of the maneuver. With the new concept, the stiffness of the end-effector arm can be actively modulated so
that the back-reaction on the spacecraft can be greatly reduced. Since the rigidity of the link can now be
tailored electrically to specific values, innovative scenarios involving different end-effectors can be envisioned
that are highly repeatable, simpler in design, with lower mass, power, and cost. Consequently, we have
synthesized the following problem statement: given the spacecraft, manipulator, and terrain models, develop
an adaptive control logic and actuator location distribution for the manipulator stiffness that, in conjunction
with the attitude and altitude control of the vehicle, decouples the dynamics of the spacecraft from the
dynamics of the end-effector while collecting a sample, in a stable manner over a specified amount of time.
The adaptive control law is such that the curvature of the manipulator can be modulated over the time the
sample has to be collected. To achieve the full potential of shape memory actuation, it is necessary to develop
models that characterize the hysteretic nonlinearities inherent in the constituent materials. Additionally,
the design of SMA actuators necessitates the development of control algorithms based on those models. We
have investigated models that quantify the nonlinearities and hysteresis inherent to phase transition, each in
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formulations suitable for subsequent control design. Candidate models that have been proposed in the past
employ either domain theory to quantify phase transition behavior under isothermal conditions [,1012] or a
Muller-Achenbach-Seelecke (,3744) framework, where a transition state theory of non-equilibrium processes
is used to derive rate laws for the evolution of material phase fractions. These models involve first-order,
nonlinear ordinary differential equations and require few parameters that are readily identifiable from mea-
surements, hence we have selected to use these differential models in our analysis. Shape memory actuators
are typically driven by electric current heating. Using the Muller-Achenbach-Seelecke model, for example,
the stress-strain constitutive relationship (A=austenite, M=martensite) is given by:

σ(ε) =
EM [ε− (x+ − x−)ε0]

x+ + x− + EM
EA

xA
(28)

The maximum recoverable quasiplastic residual strain ε0 can be identified from experiment. The evolution
of the phase fractions xA, x+, x− is governed by the rate laws:

ẋ+ = −x+p
+A + xAp

A+ẋ− = −x−p−A + xAp
A− (29)

where the homogeneity law XA + x+ + x− = 1 holds. The quantities in the rates of the phase fractions
are transition probabilities, for example, p−A is the transition probability from M+ phase to A phase. The
transition probabilities are computed as the product of the probability of achieving the energy required to
overcome the energy barrier and the frequency at which jumps are tempted. SMA actuators are typically
driven by electric current heating. The temperature change coupled with the mechanical loading triggers the
phase transformation between martensite and austenite, and generates the material deformation. Assuming
uniform temperature changes through the material, the heat transfer equation becomes:

ρcθ̇(t) = −αCv(θ − θ0)− σRεR(θ4 − θ0
4) + j(t)− (hM+ − hA)ẋ+ − (hM− − hA)ẋ− (30)

where the specific heat c is assumed to be the same for the austenite and martensite phases. The first
term is the heat convection to the environment with temperature θ0. The second term is the heat exchanged
with the environment by radiation. The third term is the Joule heating. The last two terms represent the
rate dependent heat generation and loss due to the phase transformation, where the h-terms represent the
latent heats of transformation of each phase.

Figure 9, taken from,39 shows the properties used in the simulation of the phase-transition tether. Figure
10 shows the comparison of the material stressstrain curve during contact for various lengths. Figure 11 shows
a comparison of the global shape of the 100m boom configuration without (left) and with (right) distributed
phase-transition control. The results of these analyses demonstrates that contact force modulation through
distributed control of the boom elasticity is not only possible, but also causes weak dynamic coupling with
the spacecraft, hence modulation of the sample collection dynamics by means of phase-transition control is
feasible. The implementation issues of effective insulation and thermal control during the material phase
transition remain to be investigated, and will be the subject of future work.

Figure 9. Properties of phase-transition simulation.

VII. Example: Tether-Assisted Retrieval of Harpoon during Fly-by

In this section, we discuss the effect of adding a tether to retrieve the canister. Figure 12 summarizes the
various system parameters considered in this study. The pictorial depiction of the model and the parameters
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Figure 10. Stress vs. strain hysteresis curve during contact sampling.

Figure 11. Comparison of global shape of 100 m boom length without (left) and with (right) distributed
phase-transition control.

used in the simulation are shown in Figure 17 (a). A viscoelastic spring-dashpot is used to model the tether,
connecting the harpoon to the spacecraft. For simplicity, the problem is two-dimensional. At the initial
conditions, the system is hovering along the radial direction, with the canister on the ground at zero velocity
(just released from the harpoon casing), while the spacecraft is at 100 meter altitude and has velocity initial
conditions both in the vertical and the horizontal directions. These velocity initial conditions represent initial
dispersions in velocity accounting for control imperfections. Figure 17 (b) shows the timeline and a snapshot
of the tethered harpoon leaving the surface as the spacecraft pulls it. A 0.1 N-s ejection impulse from the
surface is applied to the Canister at 0 sec. Spacecraft fly-away acceleration (thrusting) is initiated at 0.2 s,
and tether retrieval is initiated after 5 seconds. The assumed Isp for the spacecraft fly-away thrusters is 220
s.

Figure 13(b) shows the trajectory of system from initial condition, bringing into evidence the system
transfer of angular momentum which takes place the moment the canister is released from the harpoon. The
results of the sensitivity study as the fly-away thrust varies from 10 to 30 N, are summarized in Figure 14.
These results indicate that the tether retrieval is achievable with reasonable dV fuel budget, and that the
tether pendulum mode angle amplitude angle is smaller with larger thrust.

Figure 14 also shows the sensitivity as a function of increasing the horizontal velocity dispersion from
1 to 10 cm/s, which increases both canister swing angle and tether tension. This case was important to
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analyze because the canister swing angle was bounded to stay within the camera FOV for visual tracking,
especially at close distances.

Figure 15 shows the sensitivity as the initial vertical dispersion velocity is varied from 1 to 3 m/s, and
shows that, except for the initial transient, the tether pendulum model amplitude angle is insensitive to
vertical velocity dispersion. Figure 15 also show the sensitivity as the tether retrieval rate is varied from 10
to 30 cm/s, and shows that the canister angle is practically insensitive to tether retrieval rate.

The tether pendulum motion could potentially be reduced with a S/C pendulum cancellation maneuver
using well-established techniques of vibration reduction using input shaping. This maneuver would track
the canister motion, e.g. visually, and the spacecraft would execute lateral motion to reduce overall tether
pendulum angle, repeating the cancellation motion to further reduce pendulum angle.

Figure 12. Parameters used in simulation of retrieval of tethered harpoon.

(a) (b)

Figure 13. (a) Simulation snapshot: with tether, and (b) trajectory during tether retrieval.
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Figure 14. (a) Tether tension and (b) tether angle varying thrust from 10 to 20 N. (c) Tether tension and (d)
tether angle varying the horizontal velocity dispersion from 0.01 to 0.1 m/s.

Figure 15. (a) Tether tension and (b) tether angle varying vertical velocity dispersion from 1 to 3 m/s. (c)
Tether tension and (d) tether angle varying tether retrieval speed from 10 to 30 cm/s.
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VIII. Example: Simulation of Sling-shot Fly-by Maneuver

The tether sling-shot gravity assist has already been covered in the literature by various authors (,25,?38).
The analysis of tethered systems with harpoons has also been considered41). Consider that the spacecraft
has already harpooned to the asteroid. The asteroid gravitational parameter is µa and is of radius r0. The
tether connecting the spacecraft to the asteroid is of length L, density ρ and area A(r), to allow for possible
tapering. The tether material has Young’s modulus E, and tether working strain δ. The spacecraft is rotating
about the asteroid at angular rate ω = Vrel

r0+L . The tether tension is T = σbA where σb is the tensile strength

of the tether material. The tether longitudinal sound velocity is CL =
√
E/ρ, the characteristic velocity is

Vc =
√
σ/ρ, the tether tension along the tether length at station r is T = σA = mω2L + ρAω2

2 (L2 − r2),
and the spacecraft-to-tether mass ratio is m/mtether = (Vc/Vrel)

2 − 1/2 = δ(CL/Vrel)
2 − 1/2. This last

equation shows that as the spacecraft mass approaches zero, there is an upper limit to the velocity that can
be constrained by the tether, namely, Vrelmax =

√
2δCL. This limit does not depend upon the spacecraft

mass or tether length. It is an intrinsic property of the tether material. For Kevlar 49, CL = 10km/s, and a
representative value for the working tether strain is δ = 0.01. (Actually, the breaking strain is δmax = 0.02,
therefore, we have an adequate, but not generous, safety factor of 2 in the working strain.) Then, the
characteristic velocity is Vc =

√
δCL = 1km/s, and the maximum spacecraft velocity is Vrelmax = 1.4km/s.

The equation above also places limitations on the achievable relative velocities for a given material and a
given spacecraft-to-tether mass ratio M/m. This is shown in Figure 17(a) for three different materials: Zylon
(E = 5.8GPa), Kevlar (E = 100GPa), Carbon Nanotube fiber CNT (E = 500GPa).

Figure 16. Parameters of hitchiker simulation

.

The balance of forces of a tether element leads to:

dT

dr
= ρA(r)(

µa
r2
− ω2r) (31)

In general we should be including asteroid gravity because a massive asteroid may be used for the fly-by,
and for a massive asteroid and short tethers it would be comparable to the centrifugal force on the tip mass
being ejected. For example, for the proposed Asteroid Redirect Mission, a 1, 000, 000kg asteroid of 6 meter
length, with a spin rate of 2 rpm was considered. Also, tether lengths of 10’s of thousandths of kilometers
have been considered for this application. However, for now let us neglect asteroid gravity, and include the
asteroid spin rate Ω and the angle φ between the deployed tether and the normal to the asteroid surface,
Ref.25 arrives at:

dT

dr
= −ρA(r)[r(φ̇+ Ω)2 + Ω2r0cosφ] (32)
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(a) (b)

Figure 17. (a) Velocity limitations for various payload-tether mass ratios and tether strength, and (b) Maxi-
mum ejection velocity as a function of material Young modulus.

Integrating this equation with Ω = 0, in the constant area case, leads to:

T (r, t) = σ(r, t)A = Lω(t)2[m+
ρAL

2
(1− r2

L2
)] (33)

and to

T (r, t) = σ(r)A(r) = mLω(t)2 exp[
ρφ̇2

0(L2 − r2)

2σ0
] (34)

in the constant stress case. At r = L, equation 34 leads to v =
√

2σ
ρ+ 2m

AL

. Assuming m = 0, or a very

long tether, it becomes v =
√

2σ
ρ Figure 17(b) shows the ejection velocity as a function of material Young

modulus, from the above equation.
In this case of constant area tether, we can write dT = dσA, and integrating the balance of forces between

the asteroid surface at r0 and the spacecraft at r = r0 + L, with L the tether length, we obtain:

σ(r) = σ0 + ρµa(
1

r0
− 1

r
) + ρ

ω2

2
(r2

0 − r2) (35)

where σ0 is the stress level at the anchor, equal to the anchoring force, divided by the tether area. This
equation shows that there is a maximum distance of rmax = (µaω2 )

1
3 at which the tether stress reaches the

maximum tensile strength. Therefore, a constant area tether will be limited in length. For a given tether
length L, we can rewrite 36 as:

σbreak = σ0 + ρµa(
1

r0
− 1

r0 + L
) + ρ

Vrel
2

2(r0 + L)2
(r2

0 − (r0 + L)2) (36)

which gives the attainable Vrel for a fixed breaking strength σbreak and a fixed tether length L. The total
attainable velocity at the end of the fly-by will be Vtotal = Vinf + Vrel. In case of constant stress tether,
we can write dT = σdA, and integrating the balance of forces between the asteroid surface at r0 and the
spacecraft at r = r0 + L, with L the tether length, we obtain:

A(r)

A0
= exp{ ρ

σ
(µa(

1

r0
− 1

r
) +

ω2

2
(r2

0 − r2))} (37)

where A0 is the area at the anchor. This equation shows that, at constant stress, the tether will be
tapered. A tapered tether will not break for any tether length, provided the stress is kept less than the
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breaking strength. However, it may be very difficult if not impossible to manufacture. For a given tether
length L, we can rewrite 37 as:

A(r0 + L) = A0 exp{ ρ

σbreak
(µa(

1

r0
− 1

r0 + L
) +

Vrel
2

2(r0 + L)2
(r2

0 − (r0 + L)2)} (38)

which also gives the attainable Vrel for a fixed breaking strength σbreak, a fixed tether length L, and a

fixed ratio of tether areas A(r0+L)
A0

.
In the simulation, we assume that the tension during the sling-shot is controlled in a manner analogous

to a fishing reel, which saturates at a certain level of tension. In particular, the amount of deployed tether is
held constant as long as the tension felt by the spacecraft is below a certain target tension; above this level,
tether is deployed in order to maintain the target level of tension. Accordingly, we model the force and rate
of deployment so that the segment acts as a fixed-length spring-damper until the tension reaches a certain
target level, at which point the tension is maintained at the target level and the rate of tether deployment
is equal to the rate at which tether mass point 1 is moving away from the spacecraft. The target tension
Tt depends on the phase of the hitchhiking maneuver. During the pre-anchoring phase, before the harpoon
has made contact with the comet, Tt = 0; that is, the tether is reeled out with no resistance. During the
post-anchoring phase, the aim is to maximize the tension felt by the spacecraft without the total tension
anywhere along the line exceeding some limit Tmax less than the tensile strength of the material. The total
tension in the tether material is a combination of the tension felt by the spacecraft and the tension needed
to accelerate the tether. Only the former can be directly measured and controlled; hence an estimate of the
latter must be formed in order to synthesize an appropriate target tension Tt. Assuming for the moment that
the motion is one-dimensional, we obtain the requirement (mS = spacecraft mass) −msv̇s − ṁsvs ≤ Tmax.
When tension is at the target level, −msv̇s = Tt, and hence we obtain the bound Tt ≤ Tmax +ṁsvs. Also, the
rate of change in spacecraft mass is bounded by ṁs ≥ −ρAvs, which results in the bound Tt ≤ Tmax−ρAv2

s .
We extend this bound to the two-dimensional case in a way that is conservative but reduces to the one-
dimensional bound for any one-dimensional motion Tt ≤ Tmax − ρA‖vs‖2. For a given tether material, the
spring constant K, which represents the tether tension due to unit strain, can be computed as K = Aσy,
where A is the sectional area and σy is Young’s modulus. The damping constant C is less readily available;
in the simulations to be presented below, we have chosen the damping arbitrarily, but we have investigated
the sensitivity of the results to changes in damping. With respect to the spacecraft velocity profile and the
amount of deployed tether, the sensitivity to tether damping appears minimal even when varied by several
orders of magnitude. The main observable sensitivity is in the tether dynamics, with ripples settling out
slower with decreased damping. This, in turn, results in larger peak tensions along the tether line. Figure
16 shows the parameters used in the simulation. Figure 18 shows a sample sequence of a space hitchhike
maneuver, simulated by the tether finite element simulator.

IX. Example: Simulation of Tether Grappling A Moving Polyhedral Object

In this last section, we deal with the simulation of a scenario in which the tether is grappling a moving solid
object. This simulation involves the use of a modeling, simulation, and visualization engine for dynamics,
such as the one used at JPL in the DARTSLab.14 It also involves non-smooth contact and collision between
bodies in motion, which was modeled as a complementarity problem with friction. Figure 19 shows a sample
sequence of the tethered grappling maneuver, in which the tether wraps around the cylindrical spacecraft.
This problem was modeled with the complementarity techniques described in.32 A minimal coordinate
operational space formulation is used to model the dynamics of this system. Since minimal coordinates
are used, the inter-link constraints are automatically eliminated. No loop-closure bilateral constraints exist
for the multi-link tether. Hence, the only constraints acting on the tether system are unilateral contact
constraints. The size of the complementarity problem is defined by the number of contacts, which varies as
the tether wraps around the target object.

X. Conclusions

This paper has described an approach for modeling, simulation, and control of tethered systems in which
the tether is actively controlled. Various aspects of the system model have been described, including tether
dynamics, end-effector dynamics, contact interaction and the model of the active tether material. Three
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Figure 18. A sample sequence of a space hitchhike maneuver, simulated by the tether finite element simulator.
The size of spacecraft is exaggerated for visualization purposes

scenarios were considered: a tether made of an electrically switchable material for small body sampling, a
tether for close-proximity operations such as capture and grappling, and a tether harpooning to a small body
for sample capture or planetary fly-by.
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Figure 19. A sample sequence of the tethered grappling maneuver.
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