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NASA’s Deep Space Network (DSN) is a complex, global project, in which the expertise of 
human operators remain crucial for its successful operation. To find ways to save costs in 
operations and to improve its services, a number of modernization efforts are underway in the 
DSN. One such effort is a research and technology development task at the Jet Propulsion 
Laboratory that is investigating the use of complex event processing (CEP) for intelligent 
assessment of situations, trend analysis, and advanced automation. The technology leverages 
the significant business intelligence (BI) and data science advancements made in the enterprise 
industries over the last several years. The open source big data processing engine Apache 
SparkTM and the high-throughput, distributed messaging system Apache Kafka form the core 
of the DSN Complex Event Processing (DCEP) framework. This paper discusses the system 
engineering perspective of why achieving efficient, lower-cost operations in the DSN is a 
challenging problem, how the DCEP system handles the use cases that help realize intelligent 
operations, and how this solution fits into the overall model of the planned DSN Follow-the-
Sun Operations (FtSO). 

Nomenclature 
3LPO = three links per operator 
API = application programming interface 
BI = business intelligence 
CEP = complex event processing 
DCEP = DSN Complex Event Processing 
DR = Discrepancy Report 
DSCC = Deep Space Communications Complex 
DSN = Deep Space Network 
DSS = Deep Space Station 
DRMS = Discrepancy Reporting Management System 
FtSO = Follow-the-Sun Operations 
GUI = graphical user interface 
JMS = Java Message Service 
JPL = Jet Propulsion Laboratory 
JSON = JavaScript Object Notation 
LCO = Link Control Operator 
LTPS = Light Time Physics Service 
MCIS = Monitor and Control Infrastructure Services 
MDS = Monitor Data Service 
MDR = Master DR 
MON-2 = DSN Monitor and Control Standard 
NASA = National Aeronautics and Space Administration 
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NMC = Network Monitor and Control (subsystem) 
NOCC = Network Operations and Control Center 
Pc/N0 = carrier power to noise spectral density ratio (signal-to-noise ratio) 
PL/SQL = Procedural Language/Structured Query Language 
REST = representational state transfer 
RO = remote operations 
SOE = Sequence of Events 
SPS = Service Preparation Subsystem 
SQA = Service Quality Assessment (subsystem) 
TDN = Temporal Dependency Network 
WAN = wide area network 
XML = Extensible Markup Language 

I. Introduction 
ASA’S Deep Space Network (DSN) is a global network of space communication facilities and powerful antennas 
capable of communicating with interplanetary spacecrafts. Operated by the Jet Propulsion Laboratory (JPL) for 

NASA, at any given time, between 40 to 50 space missions rely upon its services. The DSN consists of three Deep 
Space Communications Complexes (DSCCs) around the world, geographically spaced apart by approximately 120 
degrees on Earth for uninterrupted view of any spacecraft in deep space (see Figure 1). The DSCCs are operated onsite 
and—for the most part—independent of each other. Global mission support activities in the DSN are coordinated and 
monitored from the Network Operations and Control Center (NOCC) at JPL in Pasadena, California. At every DSCC 
and also at the NOCC, numerous heterogeneous hardware and software systems interoperate with each other. 
Operating and managing these critical components is not a straightfoward endeavor. To this day, human operators are 
heavily relied upon for their expert knowledge of these systems and space communication. Much of the heavy lifting 
in the day-to-day DSN Operations is still done by the operators themselves. With significant advances that have been 
made in computing over the years, both in hardware (e.g. affordable, faster processors and memory) and software (e.g. 
automation, rule engines, business intelligence, frameworks for processing big data, high-performance messaging 
systems, data science, and machine learning), this no longer may have to be the case. By leveraging the combination 
of these modern, advanced technologies, DSN Operations can be improved on multiple levels: quality of service, 
additional capabilities, and reduced operation costs. 

N 

 
Figure 1. DSN’s DSCC locations around the world. By dividing the circumference of Earth into approximate 
thirds, the DSCCs have a view to any spacecraft in deep space at any point in time, even as the Earth rotates. 
The three DSCC locations are: Goldstone, California, USA; Madrid, Spain; and Canberra, Australia. (Image 
credit: Deep Space Network Now; http://eyes.nasa.gov/dsn/dsn.html) 
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Taking a cue from other industries, a research and techonology development team at JPL has been exploring the 
application of complex event processing (CEP) in the domain of DSN Operations. CEP is a method of combining 
streams of data from multiple sources in order to identify meaningful events or patterns. What makes CEP now viable 
in the domain of DSN Operations are all of the computing advancements mentioned previously. CEP can enable a 
more comprehensive automation of DSN Operations, reducing the dependency on human intervention. By also using 
CEP to perform deeper analysis of situations and non-obvious trends, valuable intelligence can be garnered, possibly 
matching or surpassing a human expert’s ability to do so in real-time. Such operational intelligence is the DSN 
equivalent of business intelligence (BI) that is increasingly sought after in commercial industries. Furthermore, CEP 
perfectly fits into the model of the grander Follow-the-Sun Operations (FtSO) that DSN is moving toward. The DSN 
Operation’s CEP system—DSN Complex Event Processing (DCEP) system—provides the very building blocks 
needed to achieve the FtSO’s objective: significant reduction of operations cost. 

Currently still in the prototyping stages, the DCEP system has been developed to answer a number of questions: 
1) Can CEP really help realize better automation in the DSN? 
2) What current problems within DSN Operations does CEP actually solve? 
3) What new use cases can CEP handle, that serve as enablers for the FtSO? 
These are the questions that this paper addresses in the following sections. In the process of planning and 

developing the DCEP system, a number of hurdles that exist in the DSN have been identified, and they are distilled 
in Section II. After a brief description of FtSO (Section III), a more in-depth discussion of what CEP is and how it 
works is provided in Section IV. Section V presents a set of six real use cases, which the DCEP team used or is 
planning to use the DCEP system to handle, in order to validate CEP’s usefulness in the DSN. Sections VI and VII 
introduce two open source software that form the core of the current DCEP system; the sections explain why these 
were selected and what role they each play in the overall DCEP framework. Section VIII revisits the six use cases and 
describes the CEP solution for each. Section IX provides additional details on how the CEP rules can generally be 
categorized, and how machine learning can be incorporated to improve CEP. Section X lists some of the work that 
remains for the DCEP project, and Section XI concludes the paper. 

In this paper, when the term “CEP” is used, it refers to the processing of complex events, and not the specific 
system developed to perform CEP. When the term “DCEP system” is mentioned, it refers to the specific CEP system 
that the authors developed for the DSN (in other words, DSN’s CEP system). 

 
Figure 2. DSN facilities. Counterclockwise from top left: Goldstone DSCC, Madrid DSCC, Canberra DSCC, 
and NOCC (JPL). 
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II. Current Challenges in DSN Operations 
Currently 49 missions, ranging in wide variety including interstellar missions such as Voyager, planetary missions 

such as Mars Science Laboratory, and Earth satellite missions such as Spitzer Space Telescope, all use the DSN for 
their spacecraft communication needs. These are not just NASA missions but include those of other space agencies 
around the world, such as the European Space Agency (ESA), the Japan Aerospace Exploration Agency (JAXA), and 
the Indian Space Research Organisation (ISRO). The DSN has contributed to the successes of these current missions 
and numerous other past missions by continuously supplying reliable, high-performing space communication services. 
In addition to providing communication links to spacecrafts, the DSN itself serves as a valuable scientific instrument. 
Owing to its catalog of large antennas and precision equipments, it plays a significant role in radio astronomy studies, 
such as those involving near-Earth objects. 

However, the DSN has existed for over 52 years, and throughout those years it has gradually grown in terms of 
size, capabilities, and complexity. As technology advanced over those years, the computing industry adopted different 
system and communication standards that came and went in phases. Meanwhile, new subsystems continued to be 
developed for and delivered to the DSN during that time, and this resulted in modern systems coexisting and 
interacting with outdated, legacy systems that were introduced years—even decades—before. To address the ever-
growing complexity in the DSN and to bring its overall capabilities up-to-date, a number of modernization efforts 
were undertaken throughout DSN’s history. Series of improvements were made to its architecture and infrastructure. 
However, a complete revamp of the DSN and its comprising elements is simply too costly, and so despite the earnest 
reengineering efforts, much of the DSN remains outdated and heterogeneous. This situation has held back any 
improvements beyond what would be considered marginal, or at best incremental, in the DSN, particularly in its 
operations. 

A major goal for the DSN is to reduce the cost required for its operations. The financial budget allocated for the 
DSN is appropriated annually, and understandably, much of it is allocated to the maintenance and incremental 
upgrades of its existing infrastructure, which includes many aged equipments and physical structures. A significant 
portion of the budget is also spent on DSN’s day-to-day operations, and this is the area in the DSN where there is 
continuous concern about costs. The NASA Office of Inspector General recently audited the DSN, and they concluded 
that reduced budgets for the DSN have resulted in several deficiencies in its operation. This finding also warned that, 
as a result, some of DSN’s future plans may be in jeopardy.1 Finding ways to cut spending in DSN Operations is now 
more critical than ever. 

The current high cost of DSN Operations is a direct result of DSN’s legacy, complex, and heterogeneous 
infrastructure. DSN Operations still has a heavy reliance on human operators for much of its activities, particularly on 
the Link Control Operators (LCOs) who manage the spacecraft tracks.* There currently is an automation software in 
use by the DSN Operations, called Temporal Dependency Network (TDN). Actions based on planned sequence of 
events that the LCOs would normally perform manually are automated using the TDN in scripts. Although very useful, 
the capabilities and scope of this automation is limited, and a human operator still needs to be dedicated to monitor 
and control a link (in recent years, up to two links2) for actions that the TDN cannot perform. Also, virtually all analysis 
of anomalies, trends, and patterns need to be performed manually, as the current tools and processes in the DSN 
Operations provide no automation for those tasks. 

If a greater extent of operator and analyst responsibilities can be automated, it would lead to huge cost savings in 
operations and improved DSN performance. In addition, the groundwork established for such greater level of 
automation may give rise to opportunities in extracting new insights and faster operational intelligence. However, 
DSN currently has technical characteristics that presents a significant challenge in introducing such comprehensive 
automation. Here are some of those characteristics: 

A. Heterogeneous Data 
Table 1 shows a sample of the various forms of data being produced by their different sources, some of which the 

human operators in the DSN constantly monitor and inspect.† These include real-time streams of monitor data 
generated by the individual subsystems active in a link and also by the Network Monitor and Control (NMC) software 

                                                             
* In DSN Operations, the term “link” is used to denote the logical connection of subsystems and equipments that allow 
them to interoperate in support of one or more spacecraft tracks. 
† Not all of these types of data are required for automation of operations, but they are all valuable for analysis and 
gaining deeper insight into operations. 
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itself.* These monitor data flow through the Monitor Data Service (MDS), which is part of the Monitor and Control 
Infrastructure Services (MCIS). Monitor data is exchanged in a publish-subscribe fashion, and accessing this data 
requires the use of the NASA-proprietary MCIS library, which is based in the C language. Monitor data provides 
continuous indication of the health status—as well as some activity and configuration states—of the different 
subsystems. 

Logs are another important category of data. NMC, TDN, subsystems, and others generate activity and system 
logs that provide valuable information about both the real-time events that are occurring and also what have happened 
in the past. The LCOs, using a graphical user interface (GUI) running on their computer workstations, issue directives 
to NMC and subsystems in order to have them perform certain actions (e.g. lock on the signal) or change their 
configuration states (e.g. changing the bit rate). Both these directives and the resulting responses are recorded and 
retained in the NMC logs. Also, TDN-generated log entries (included as part of NMC logs) give indication of its 
automation status, and the LCOs will monitor this in case they need to intervene and resolve issues. 

The Service Preparation Subsystem (SPS) produces Schedule Items, and each contains information about a 
spacecraft’s track, such as start and end times, the antenna used, and to which higher-level support activity it belongs 
to. These Schedule Items are produced well in advance of the actual track, to support the operation’s planning 
activities. SPS also generates the Sequence of Events (SOE) files, which lists in time order the configuration and 
actions that subsystems need to take as well as the external events that are predicted to occur (e.g. Mars occultation). 
SOEs are provided in both human-readable text file format and—more recently—in XML. Both of these data types 
are available for the future, but they are also archived. This also makes them useful for post-analysis. TDN relies on 
SOEs and the aforementioned real-time monitor data for its automated execution of operator actions. 

Another type of useful data is produced by the Light Time Physics Service (LTPS), which provides highly accurate 
and precise astrophysics data in real-time. For example, a LTPS query can return the value of the one-way light time 
between a DSN antenna and the spacecraft of interest, such as Voyager 2, at a specific moment in time. This 
information can provide greater context during analysis: for example, helping to clarify the source of downlink signal 
and noise level fluctuations observed during a track. 

Also of important value and interest is the Service Quality Assessment (SQA) subsystem’s repository of historical 
monitor data. The real-time monitor data mentioned at the outset of this subsection is completely transient. SQA 
captures a key subset of the monitor data that and stores them in a database. The monitor data archived in this persistent 
                                                             
* NMC is a subsystem used to configure, control, and monitor other subsystems. It serves as the main conduit for 
LCOs. 

Table 1. Heterogeneous data in DSN Operations. (Italicized items are those data types that exist in the DSN 
but have not yet been determined as being required for DSN Operations.) 

Data Type 
Temporal 
Nature Producers 

Source for 
DCEP  Format 

Monitor Data Real-time DSN subsystems 
(includes NMC) 

MDS 
(Currently: 
MON-2/JMS 
bridge) 

Proprietary 
binary data 

NMC Logs (contains 
operator/TDN directives and 
responses) 

Real-time and 
historical 

NMC subsystem 
(also TDN) 

NMC FileSystem 
(NMCFS) 

Plain text 

Other Logs Real-time and 
historical 

Yet unknown Yet unknown Plain text 
(most likely) 

Other Real-Time Indicators Real-time Yet unknown Yet unknown Yet unknown 
Schedule Items Planned SPS SPS REST server XML 
SOEs Planned and 

predicted 
SPS SPS REST server XML 

Astrophysics Data Predicted LTPS LTPS REST 
server 

Plain text 

SQA Data Historical DSN subsystems 
(includes NMC) 

SQA server PL/SQL 
collections 

DRs and MDRs Historical Operators DRMS Form data in 
English 
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data store ranges in time from 24 hours to several years in the past. This information repository can be valuable for 
comparing patterns observed at the present time to snapshots in the past. 

The final type of data that needs mention is the reports filed by the operators themselves, called Discrepancy 
Reports (DRs). Anytime there is a failure to support a scheduled DSN activity or an interruption during a support, the 
operator writes a DR and enters it into an online repository called the Discrepancy Reporting Management System 
(DRMS). If there is a recurring problem, rather than file a separate DR with each incidence, a single Master DR (MDR) 
is filed. Previously filed DRs and MDRs are useful when assessing a newly encountered problem because they inform 
the operator whether or not the same problem has occurred in the past and what corrective actions were taken. 
Currently, trying to accurately match a new problem with any of the problem signatures captured in existing DRs and 
MDRs involves much manual analysis. 

All of these different types of data, in their own unique formats and properties, are only available from disparate 
sources. An intelligent system that can provide truly extensible automation and analytical capabilities must consume 
all of them, and this is not a trivial objective to accomplish. 

B. Inconsistent Naming Conventions 
As mentioned earlier, over the course of time new subsystems have been developed and then integrated into the 

DSN in stages, and the newer subsystems did not always stick to the conventions and interfaces of their legacy 
predecessors. An area where this presents a problem is the lack of standard naming, particularly with monitor data. 
For example, the Antenna Control Assembly (ACA) instances provide the monitor data of the 70-meter antenna in 
Madrid and Canberra and the 34-meter high-efficiency (HEF) antennas. ACA publishes the current azimuth value of 
its antenna using the character string “AZANG” and the elevation as “ELANG”. On the other hand, the Antenna 
Pointing & Control Assembly (APCA) instances, which provide the monitor data of the 70-meter antenna in Goldstone 
and the 34-meter beam waveguide (BWG) antennas, publishes the same pair of values under different character 
strings: “AzimuthAngle” and “ElevationAngle”. This is merely one example of the yet undetermined number of cases 
in the DSN where subsystems do not share a common naming convention. 

This situation causes additional complexity for automation and analysis, as additional associations need to be 
declared. In the example above, the system must somehow know that “AZANG” and “AzimuthAngle” monitor data 
are not distinct data items, but instead, that any computation performed on one can equally be done on the other. 

C. Distinct Attributes Among Same Subsystem Types 
The same class of subsystems may exhibit different properties, and these inherent uniquenesses also present 

challenges. Even among a single class of subsystems, one instance may produce data that have very different values 
than another instance, although both of them are effectively in the same state and the data indicates that. Using again 
the antenna pointing assemblies as an example, an assembly for an antenna at Canberra will generate “AzimuthAngle” 
and “ElevationAngle” pair of monitor data as 0.10 and 90.07, respectively, when the antenna is in the stow position. 
The assembly for another antenna in the same complex, however, will generate the pointing angle values of 45.00 and 
89.00 when stowed. These types of attribute discrepancies among seemingly identical subsystems serve to add another 
layer of complexity. 

D. Non-Scaling Monitor Data Service 
MDS, as well as its parent MCIS, were created in the 1990s to provide a common monitor and control 

communication infrastructure for the operators and the DSN subsystems. It had a robust design, with redundancies 
and failover features built in, and even to this day continues to provide its services reliably. In the years that followed, 
however, more and more MCIS client software were produced, and it became apparent that MCIS, particularly its 
MDS server software, is prone to suffer degraded performance and even failures if there are large number of clients 
taxing its services at the same time. This is an issue because we cannot freely introduce new software that subscribes 
to monitor data to the MCIS ecosystem, for the fear that DSN’s support of missions will be adversely affected, even 
causing complete outages. Furthermore, the MCIS client library also has its limitations, where it simply cannot handle 
large numbers of monitor data subscriptions. The subsystems in the DSN, as a collection, produce thousands of 
monitor data items at very high rates. A standard MCIS client is unable to subscribe to all of these items and not have 
its memory usage grow unbounded. 

Changing the MCIS design or even replacing it entirely with one that can scale to meet the growing demand on its 
services is deemed too costly—both in terms of finance and risk. So in order to augment the DSN to enable better 
automation and operational intelligence—which will definitely need access to monitor data in real-time—while 
maintaining the same level of service quality for the missions that it supports, the infrastructural handicap that exists 
in MCIS needs to be overcome. 
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E. Restricted Wide Area Network Bandwidth 
Another limitation in the current DSN infrastructure is in the network’s physical layer: Its wide area network 

(WAN) has a restricted bandwidth. This severely curbs many potential capabilities in the DSN, particularly remote 
operations and DSN-wide analytics. Much raw data generated at the DSCCs need to be downsampled, or perhaps 
curated, before they are transmitted over the WAN. This, in fact, is the case: DSN replicates in real-time just a couple 
of hundred monitor data items from the DSCCs to the NOCC, and the rate is downsampled. This reality is less than 
ideal, because products we can extract from analysis and operational intelligence can only be good as the data being 
collected. 

 
The sample of technical issues just discussed leads to a number of undesirable realities in the current DSN 

Operations. For one, automation becomes non-trivial. Also, analyzing situations and making decisions is slowed due 
to the fact that much of the process is manual. There are anomalies and deviations from the norm that go undetected 
because there is not a system or process that will take into account all the metrics available. Similarly, opportunities 
are being missed for recognizing patterns and trends that can provide knowledge that contribute to improving the 
operations. Because a system that can provide fast, intelligent notifications and recommendations to the human 
operators does not yet exist, the operators continue to monitor the subsystems and make all the decisions without any 
help, except for the small-scale automation that TDN currently provides. In the big picture, these all result in 
continuous heavy reliance on human operators, leading to the high cost of DSN Operations. 

III. Follow-the-Sun Operations 
JPL has undertaken a project called Follow-the-Sun Operations (FtSO) to improve DSN operation’s cost-

efficiency in the upcoming years.2 FtSO involves a pair of shifts from the current operational paradigm: 

A. Remote Operations (RO) 
Presently, LCOs are staffed at each DSCC twenty-four hours a day, seven days a week. There are three working 

shifts per day, at every DSCC, round-the-clock. FtSO aims to reduce this staffing load by making use of remote 
operations. In the new paradigm, each DSCC will have only one working shift per day during daytime, and LCOs on 
duty will not only operate the local DSCC assets but also remotely operate assets in the two other DSCCs. The term 
“follow-the-Sun” derives from this strategy, that all DSN Operations are handled at the DSCC where the sun is visible 
in the sky. 

B. Three Links per Operator (3LPO) 
As mentioned in the previous section, each LCO currently manages up to two links at a time. In FtSO, each operator 

will handle up to three links. This will reduce the required human staffing even further. 
 
FtSO is promising in that the efficient staffing of human operators will achieve significant savings in operation 

costs, while continuing to provide high-quality service to DSN users. In order to realize FtSO, however, the technical 
difficulties explained in the previous section need to be addressed. Feasibility of RO is contingent upon larger amounts 
of information being exchanged between the DSCCs over the WAN than what is currently taking place. If the switch 
to 3LPO happens without reducing the LCOs’ work load per link—by at least one-third, theoretically—it will lead to 
overburdening the staff. To solve these problems, the research and technology development task DCEP is investigating 
these challenges as part of the FtSO project. 

IV. Complex Event Processing 
CEP, as a technical term, is a method of taking as inputs a variety of real-time data from different sources, and 

then combining them to determine their significance and to take action.3 The data may be of different types, and they 
may contain information that are seemingly unrelated. A CEP system transforms the data as necessary, and then 
analyzes them to detect relationships, trends and patterns. This continuous process often results in real-time actions, 
in addition to producing artifacts for analysis that provide deeper insight into the collective data. 

Many industries have been using CEP successfully for years: financial markets, retail, homeland security, 
intelligence agencies, social applications, et cetera. As an example, when a person’s credit card is swiped at a sales 
register in Pasadena, California, but then the same card is swiped again at a register 2220 kilometers (1379 miles) 
away in Houston, Texas, merely five minutes later, the second transaction is automatically denied. This is because the 
CEP system at the credit card company quickly processed the credit card information of these two transactions, the 
times and geographical locations at which these transactions were made, and also probably the historical usage pattern 
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of the credit card, then it determined that there likely is a fraudulent activity among the two transactions that just took 
place. The different pieces of information involved in this analysis may have been collected from very different data 
sources. This is an example of how CEP detects meaningful events. 

CEP is also useful for predicting meaningful events that are likely to occur. In the stock market, for example, many 
of its traders depend on algorithmic and high-frequency trading systems to maximize their profits. The success of such 
trading systems is largely driven by their ability to simultaneously process large volumes of information, some of 
which that are discrete in nature. To illustrate, a CEP system in this domain may not only process real-time streams 
of global stock prices and foreign exchange rates but also news headlines. News of company mergers and wars in 
countries are just some of the data that can drive prices up or down in markets. A CEP system with the intelligence to 
accurately predict what events will likely follow (e.g. plummeting stock prices) will produce actions to make good 
use of opportunities and to avoid disasters (e.g. unload the entire portfolio of stocks that are about to lose value). 

The real advantage of CEP systems over other types of systems such as business rules engines is its ability to 
correlate data, thereby framing data into contexts. To illustrate its importance, we can use as an example a real-life 
incident that occurred in 2012. A young Irishman posted a message on Twitter, saying: “Free this week, for quick 
gossip/prep before I go and destroy America.”4 Few weeks later when he arrived at the Los Angeles International 
Airport, he was taken into custody by the Department of Homeland Security agents. The United States government 
constantly scans social networking services for information that may suggest upcoming acts of terror, and in this case, 
the young man’s tweet had become a serious item of interest because of his use of certain key words (“destroy 
America”). After interrogation, however, it was clear that the young man had no intention of committing terrorist acts. 
The word “destroy” is a common British slang for partying and getting drunk, similar to the American slang “(getting) 
trashed.” Had the word-watch system taken into account—or put into context—that the originator of the message is 
from the British Isles and in that region the word “destroy” may be used as a slang to mean something that is not so 
threatening, the traveler could have been spared from his ordeal. Although this particular incident did not result in any 
permanent or serious damages, there are situations where intelligent association of information to form proper contexts 
can either lead to important consequences or avoid disastrous ones. CEP systems can be used for processing, 
recognizing, and correlating such different types of relevant information, as well as for supporting temporal correlation 
of events. 

Many industries such as financial, retail, and social media have leveraged CEP to reduce their operating costs, 
while at the same time adding improved services and capabilities that simply would not have been possible without 
it. More recently, these enterprise industries seem to be investing in two areas to improve their operations: business 
intelligence (BI) and data science. According to Gartner, an information technology research company, BI “is an 
umbrella term that includes the applications, infrastructure and tools, and best practices that enable access to and 
analysis of information to improve and optimize decisions and performance.”* Data science is a relatively new, 
multidisciplinary field that is focused on extracting knowledge and insights from data in various forms. As many 
enterprises faced the challenge of extracting value out of their big data,† this naturally ushered in data science. By 
many definitions, DSN also is an enterprise, and using CEP as the enabling technology, BI and data science methods 
can equally be applied to DSN Operations much to its benefit. 

To begin with, CEP can provide solutions to the two main problems faced by the FtSO project, namely the 
bandwidth restrictions in the DSN’s WAN and the heavy workload imposed on the LCOs under the 3LPO scheme. 
Rather than transmitting the entire large scale of data produced at a controlled DSCC to the controlling DSCC (RO 
complex), the CEP system running at the controlled DSCC can process all the data onsite, and then transmit only the 
events or data items of interest to the RO complex. The objective is to ‘find signal from the noise’ of endlessly 
generated volumes of data and use the WAN resources only for these ‘signals’. This entails the CEP system processing 
all of the heterogeneous data available at the DSCC, from real-time monitor data to SOEs to DRMS records and 
correlating them. (See Figure 3.) Meanwhile, as the CEP takes over more of the data analysis and forensics on behalf 
of human operators, the amount of attention and routine actions required by the LCOs can be reduced. As automation 
is pushed towards a more lights-out process, LCO’s workload can be managed to reasonable levels. To that end, the 
following section discusses some of the specific use cases that the CEP system in the DSN Operations domain—the 
DCEP system—needs to handle. 

                                                             
* http://www.gartner.com/it-glossary/business-intelligence-bi/ 
† “Big data” can be defined as extremely large data sets that may be analyzed computationally to reveal patterns, 
trends, and associations, especially relating to human behavior and interactions. 
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V. Use Cases 
Many use cases have been identified for which CEP can make the case for its usefulness by providing novel 

solutions, as these use cases presently pose challenges to both the current DSN Operations as well as to the future 
FtSO. In this section, six of them are introduced. 

A. Standard Naming 
As discussed in a previous section, DSN data currently falls short of having a uniform, standard naming scheme, 

and this complicates automation and analysis. When an analyst queries for the azimuth and elevation values for all the 
antennas, for example, the analyst should not have to worry about whether he/she has queried for them all or if there 
is needed data that falls outside the query because of any naming differences. Someone who has many years of 
experience in the DSN and has extensive knowledge of it may not consider this too big of a hassle, but this sort of 
intricacy is what keeps the operating of the DSN heavily dependent on the domain experts. CEP should, therefore, 
handle these naming complexities rather than leaving it to the operators and analysts to figure out and determine. 

B. Framing Events in Context 
The DCEP system should go above and beyond simple limit checking when alerting (or not alerting) the operators 

about a situation. For example, when the downlink signal from the spacecraft is lost in the middle of a track, this can 
indicate a fault and operator intervention may be required. However, it is also possible that the spacecraft simply has 
entered a planetary, solar, or lunar occultation, in which direct visibility is lost. In this case, the loss of signal is not a 
fault but rather a normal event. The LCO need not be needlessly alerted by this event, since there is no action that the 
LCO can take to recapture the signal, and at the end of the occultation the downlink communication should resume 

 
Figure 3. Using DCEP as the building blocks for FtSO. The DCEP systems running at each DSCC process 
the voluminous, locally-generated data. After performing CEP on the data, only meaningful information is 
transmitted across the WAN. For instance, when everything is going well at the remote DSCCs, the DSCC 
serving as the RO Center does not need to receive much data—only periodic notifications that indicate all 
services are healthy. 
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by itself. To put it humorously, the LCO can continue to have his coffee. Even if it is desirable that the operator be 
alerted, he/she should be provided with the additional contextual information that the loss of signal was due to an 
occultation and therefore is not a deviation in the DSN service. 

It is worthwhile to consider the converse situation. If the spacecraft is in an occultation but the downlink subsystem 
reports that it is receiving signal (possibly due to a malfunction), this would be an anomalous situation and the operator 
may want to be alerted when this occurs, or at least have this incidence automatically recorded so that an investigation 
can be performed later. With systems that perform only simple condition or limit checking, this sort of anomaly would 
go undetected unless the LCO himself is monitoring the situation closely. 

C. Detecting Deviations from the Norm 
Some deviations happen so gradually over a long period of time that operations may not be aware of it until there 

is a total failure. To illustrate, Deep Space Station (DSS) 43 at the Canberra (Australia) DSCC regularly tracks the 
Voyager 2 spacecraft. Suppose that the operator notices the signal-to-noise ratio (Pc/N0) measured by the downlink 
subsystem to be 0.1 units lower than the day before. Nonetheless, the operator is not concerned because the signal is 
in lock and data is being received. Few days later, during another support for Voyager 2 (again on DSS 43 and at 
around the same time of day), the operator notices that the Pc/N0 is back up by 0.1 units. So it all seems that things are 
very stable. However, compared to the year before, the average Pc/N0 during those few days may actually be off by 10 
units. There can be any number of reasons for this, such as failing hardware or loss of calibration. The takeaway is 
that differences in these kinds of measurements may take place so gradually that unless statistical comparisons are 
made between the current and the historical, some deviations will never be caught until visible failures occur. 
Detecting these deviations early, thereby avoiding the after-the-fact investigation work and downtimes, would mean 
higher quality of service to DSN customers. 

D. Matching Incidents to Known Discrepancies 
During operations, when there is a failure or interruption of service, one of the things that greatly assist problem 

resolution is finding out whether or not the encountered anomaly has occurred in the past and how it was resolved. As 
mentioned previously, in DSN Operations, these issues are recorded as DRs. If a particular discrepancy is a recurring 
problem, it is instead documented as a MDR. So, for example, if a problem were to arise and the incident is quickly 
matched to an existing MDR, that alone would save the operator from the work of filing a new DR and also the work 
required to search through past DRs and MDRs to see if it is was a reoccurrence. This would be one of the most basic 
benefits that DSN Operations can gain from this use case. Furthermore, the ability to match the new problem to an 
existing DR or MDR in real-time will most likely provide the operator with useful knowledge of how to address the 
problem, without his having to analyze and do problem-solving from scratch. 

E. Generic Tools 
Currently there is no way to quickly create an application or write a script that will easily interface with the different 

data sources that exist in the DSN. Being able to do so will be extremely valuable, however, because over time new 
service requirements are placed on the DSN and providing new capabilities can be expensive without such a 
framework. For instance, in 2014, the JPL Executive Policy Committee asked that the DSN track the spacecraft 
command-loss timer for each mission as part of the NASA Continuity of Operations Plan (COOP). Many DSN mission 
spacecrafts carry a timer onboard: If a command from Earth is not received before the timer expires, the spacecraft 
will then enter safe-mode. The new requirement has been placed on the DSN in order to avoid those situations. To 
track when each of the spacecrafts will time out due to not receiving a command, the option that will provide the best 
accuracy is to process the command counter data contained in the downlinked spacecraft telemetry. However, there is 
no existing interface for the DSN to access each missions’ spacecraft telemetry in real-time. There is another option: 
keep track of the last CLTU radiation time for each spacecraft. At best this would help estimate the timeout values, 
since a spacecraft will not receive the command bits until the delay of one-way light time (OWLT) has passed, and 
also there is no guarantee that the radiated data will be captured by the spacecraft. However, both types of data that 
are needed for this estimation already exists inside the DSN: real-time monitor data that indicates when the last CLTU 
was radiated and the table of timeout values for each spacecraft. In order to produce an automated tool that will process 
these data and track the spacecraft command-loss timers, one would presently have to create a software application 
that uses the MCIS library, and also undergo scrutinizing reviews and testing to ensure that the existing MCIS services 
will not adversely be affected by the introduction of this tool into the real-time DSN Operations. Also, because of the 
dependency on the MCIS library, the software may need to be written in C or C++, severely limiting the 
implementation options. Ideally, analysts, engineers, and operators should be able to write custom tools quickly and 
easily, that can process DSN data without the heavy overhead and inflexibilities in implementation. 
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F. Postage Stamp 
As part of one of the latest DSN Operations modernization effort, the Human Interfaces for Mission Operations 

group at JPL is conducting a parallel study on a new user experience design for the LCOs. This new design would 
provide real-time link situation information to the LCOs in a more intelligent and user-friendly way than what is 
currently being provided. Figure 4 shows a sample of this new design. Because of the way the GUI elements are laid 
out on the display, the name given to this new design is Postage Stamp. In order to provide this user experience, the 
Postage Stamp system needs to process real-time data and produce higher-level, correlated information. The required 
real-time data include information on downlink and uplink ranging, commanding, symbol status, stage of track, 
predicts mode, antenna state, et cetera. In the existing DSN infrastructure, the Postage Stamp team would need to 
create an MCIS client software to subscribe to the various monitor data that carry the aforementioned real-time 
information, write their custom algorithms to derive the desired higher-level, correlated information out of those data, 
and then have the resulting data displayed on the GUI. However, similar to the previous use case, this entails much 
development and testing work. It would be far more desirable for the Postage Stamp system to access the data in a 
much easier way, so that the Postage Stamp design team can focus on their primary work which is user experience. 

 
So far, a number of use cases that CEP can address to improve upon the existing capabilities of the DSN have been 

described. Successfully handling these use cases will bring much benefit to DSN Operations. In the following sections, 
the approach that the DCEP team has taken to handle the use cases, with its design and implementation, will be 
discussed. 

VI. Fast Data Processing Using Apache Spark 
A CEP system that will process the large volumes of real-time, historic, and predicted (commonly referred to as 

“predicts”) data in the DSN needs to be high-performing and scalable. As a result of many years of development and 
experience in this field by the enterprise industries, several viable products—most of which are commercial—that 
provide CEP are available in the market: TIBCO’s StreamBase, EsperTech’s Esper, SAP’s Event Stream Processor, 
Red Hat’s Drools, to name a few. Products such as Splunk market themselves as a “platform for Operational 
Intelligence.” The DCEP team evaluated some of these commercial off-the-shelf (COTS) products. As with many 

 
Figure 4. Sample of the Postage Stamp display. Large numbers indicate the DSSes, and the smaller icons 
display the different states of the links. Icons change colors depending on whether things are going as expected 
(green) or not so much. (Image credit: Dr. Alexandra Holloway) 
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COTS products, these solutions have a number of 
significant disadvantages: high licensing costs, vendor 
lock-in, and lack of freedom due to the software being 
closed-source. It is unclear whether or not the DSN 
operation costs can ultimately be reduced despite these 
factors, but even just the investment in research and 
prototyping work using these COTS solutions alone 
would have incurred significant amount of cost. The 
DCEP team therefore eventually focused attention on the 
free and open source software solutions. 

With the advent of big data challenges in enterprise 
industries and other fields, a number of open source 
software platforms that can perform large-scale parallel 
and distributed data processing emerged. At present, one of the most popular of such platforms is Apache SparkTM. 
Apache Spark is “a fast and general engine for large-scale data processing.”* Unlike Hadoop MapReduce, which is 
another big data processing engine, Spark stores data in-memory rather than exclusively on disk. This allows Spark 
to achieve processing speeds that are ten to hundred times faster than Hadoop MapReduce.5 Using Spark, it is possible 
to process and combine large volumes of data from multiple sources fast, and so it can serve as a solid foundation for 
complex event processing. 

Apache Spark has a modular design where there is a core engine (Spark Core) and working on top of that engine 
are four built-in libraries: SQL, Streaming, MLlib and GraphX. Figure 5 is a visualization of this design. Particularly 
useful to the needs of CEP are the SQL and Streaming libraries (in future work, MLlib also). Spark SQL allows Spark 
applications to query structured data using SQL, and these queries can be uniform regardless of the data source. To 
show a simple demonstration on how this works, Figure 6 shows a sample Spark application code that uses Spark 
SQL to extract data of interest. This particular code is written in the Scala language, although there are other language 
choices, such as Java, Python, and R, for writing Spark applications. The example code loads the latest real-time 
monitor data captured (saved as a JSON object in an Amazon GovCloud S3 bucket, just to demonstrate) and also 
queries the historical monitor data repository in the SQA subsystem. The objective is to visually see if the Pc/N0 just 
observed for the Cassini spacecraft is same or different than the historical average. Because both data are structured, 
we can use simple SQL queries to extract the data. At the same time, we can use Spark’s MapReduce programming 
pattern to create a flow of data transformations and actions. In Spark, no work is actually executed on transformations 
of data but rather only on actions.† Multiple transformations therefore can be chained together without triggering any 
processing of the data. This lazy evaluation model is preferential when dealing with large streaming data sets, as it 
ensures that only those computations directly related to the chosen action are executed—others are ignored. 

                                                             
* http://spark.apache.org/ 
† This is called lazy transformations. 

 
Figure 5. The Apache SparkTM stack of engine 
(bottom) and libraries (top). (Image credit: 
http://spark.apache.org/) 

 

 val sc: SparkContext // An existing SparkContext. 
val sqlContext = new org.apache.spark.sql.SQLContext(sc) 
 
val monDataDF = sqlContext.read.format("json").load( 
  "s3n://bucket/latest-mon-data.json").filter(monDataDF("mdItemName") == 
  "receiver.pcno").filter(monDataDF("mission" == 
  "CAS").registerTempTable("latestCASpcno") 
 
val historicalDF = sqlContext.read.format("jdbc").options( 
  Map("url" -> "jdbc:oracle:thin:user/password@//sqahost:1521/archivedmondatadb", 
  "dbtable" -> "historydb")).load().filter(historicalDF("mdItemName") == 
  "receiver.pcno").filter(historicalDF("mission" == 
  "CAS").registerTempTable("historicalCASpcno") 
 
sqlContext.sql("SELECT mdItemName, value FROM latestCASpcno").show 
sqlContext.sql("SELECT mdItemName, AVG(value) FROM historicalCASpcno WHERE timestamp " + 
  "like '2015%'").show 

Figure 6. Sample Spark application code in Scala. 
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The Spark Streaming library allows 
Spark applications to consume 
continual streams of data in a scalable, 
high-throughput, and fault-tolerant 
way. It provides a number of (stream) 
receivers out of the box for TCP sockets 
and popular data streaming systems: 
Apache Kafka, Apache Flume, Twitter, 
ZeroMQ, and Amazon Kinesis. Custom 
receivers can be implemented (say, for 
example, one that subscribes directly to 
MCIS data). Same transformations and 

actions available in Spark Core can be performed on data received by Streaming. Figure 7 shows how Streaming 
divides an incoming data stream into small batches, which then can be processed as any other data in Spark. However, 
there are problems when the streaming data is blindly divided into microbatches: Two or more data items that should 
be computed together may end up being split apart (e.g. the azimuth value in batch N and the elevation value in batch 
N+1). With this in mind, the Streaming library provides windowed computations, which allow applications to apply 
transformations over a sliding window of data whose size can be larger than that of the batch itself. The library also 
offers configurable persistence levels, such as replicating the input stream of data into multiple nodes in order to 
provide fault-tolerance (i.e. no streaming data is lost even when one or more nodes fail). 

The DCEP team currently runs a Spark cluster of thirty-two CPU cores on different virtual machines in order to 
prototype and demonstrate the CEP use cases. (See Figure 8.) A set of perpetual Spark jobs are run to process the 
input stream of real-time monitor data from the DSCCs. As part of the processing, these real-time data are compared 
against the planned operational events (SOEs of the spacecraft tracks) to check if the DSN support is proceeding 
satisfactorily. Also, another job continuously correlates and translates the real-time monitor data to produce the JSON 
data consumed by the Postage Stamp system. Much of these operations include SQL queries on the streaming data, 
and all of the jobs are programmed as Spark applications in either Scala or Java. Further discussion on how this Apache 
Spark-based framework is being used to handle the different use cases introduced in Section V will be included in a 
later section. 

The CEP Spark applications need access to different data sources in order to handle the DSN Operations use cases. 
Some of the data types listed in 
Table 1 have RESTful APIs * : 
Schedule Items, SOEs,  and 
Astrophysics Data. The nature of 
these data types is also “on-
demand”—the CEP Spark 
applications only need to pull or 
fetch the data as needed, rather 
than consuming them as streams. 
Sizes of these data are small, in the 
order of kilobytes, and so it is fairly 
quick to retrieve them. Using 
REST’s GET operation directly in 
the application code is therefore 
suitable. Accessing the archived 
historical data in the SQA 
subsystem, on the other hand, is 
not as straightforward. The 
repository contains last nine years 
of collected DSN monitor data, and 
its size is in the order of tens of 
terabytes—which will only grow 

                                                             
* REST stands for representational state transfer. If a system or an interface conforms to the REST constraints and 
supports its operations, it is said to be RESTful. API stands for application programming interface. 

 
Figure 7. Spark’s Streaming library splits the incoming data flow 
into data batches of small sizes. These in turn can be processed just 
like any other data set in Spark. (Image credit: 
http://spark.apache.org/docs/latest/streaming-programming-
guide.html) 
 

 
Figure 8. Web user interface of the Spark cluster’s master node. 
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over time. The current API design for accessing this data involves use of PL/SQL functions*, with a set of historical 
metrics pre-calculated by the SQA. This strategy helps ensure that data retrievals take a reasonable amount of time 
and that the SQA subsystem’s resources are not overburdened (which would happen if the DCEP system directly 
submits SQL queries on non-indexed data via JDBC†). At this time, there is no interface for Spark applications to 
access the DRs stored in DRMS. Because DRs are written by the operators in human language, they require a measure 
of extract, transform, and load (or ETL, a common process in data warehousing) before they can be retrieved and 
processed in a programmable way. Alternatively, machine learning may be used to have the DCEP system 
automatically interpret the original DRs. This approach will be explored in future work. In the meantime, use cases 
that involve DRs are handled by implementing the discrepancy conditions directly inside Spark applications. 

The most critical data source for automating operations in the DSN is the real-time monitor data that are 
continuously generated by the DSN subsystems. For receiving the input stream of this data, rather than implementing 
a custom receiver in Spark that will tap directly into the MCIS infrastructure, the DCEP team implemented a more 
modular data streaming configuration using an existing MON-2‡ to Java Message Service (JMS) bridge and the 
Apache Kafka messaging system. In addition to monitor data, the DCEP system also leverages this messaging 
configuration to also consume real-time logs, such as the NMC (including TDN) logs. The following section focuses 
on this input data stream solution using Apache Kafka. 

VII. Scalable Messaging Using Apache Kafka 
Although Apache Spark allows for creating custom receivers for input stream data, the DCEP team opted for an 

alternative solution. When evaluating and prototyping with different processing engines, a more cost-effective 
approach is to modularize the data input stream separate from the processing system, so that different processing 
applications can be swapped in and out without having to write custom code for the input adapters. So rather than 
implementing a custom receiver in Spark that directly subscribes to the MCIS monitor data—DCEP system’s main 
real-time data type, the DCEP team created a “plumbing” software that receives the monitor data and pushes it out to 
a message bus. This is beneficial in at least two ways: (1) Because the monitor data is published to a common-access 
message bus, as long as the message bus is scalable, any number of clients can consume the data without adversely 
impacting the existing DSN service; (2) subscribing to the DSN monitor data actually requires much complicated 
logic, so it is better to abstract this away from the processing engines under evaluation. (DSN monitor data subscription 
contexts are dynamic and frequently change according to the current link configurations, so keeping track of these 

link states and performing unsubscribe-subscribe 
when these states change is imperative for assuring 
continual flow of data.) In this data streaming 
configuration, the DCEP team chose Apache Kafka 
as the message bus. 

Apache Kafka is a distributed publish-subscribe 
messaging system that works well with Apache 
Spark. Kafka shares many features in common with 
other message queueing systems, such as using topics 
as the primary abstraction for publishing and 
subscribing to related data. However, Kafka has some 
unique features that make it more advantageous over 
traditional messaging systems. One of those features 
is Kafka’s treating each topic partition as a log. A 
new message placed into the partition is assigned an 
incrementing offset and is simply appended to the 
end of the “log.” (See Figure 9.) The responsibility 
for ensuring reliable message delivery is on the 

                                                             
* PL/SQL stands for Procedural Language/Structured Query Language. It was developed by the Oracle Corporation 
to allow procedural operations to be performed on their databases, extending the capabilities afforded by the standard 
SQL alone. 
† JDBC stands for Java Database Connectivity. It is an API for the Java programming language. Java applications use 
this API to connect to databases and access their data. 
‡ Strictly speaking, MON-2 refers to the DSN Monitor and Control Standard. At times, however, the term is used to 
refer to the monitor data transport protocol, as is the case here. 

 
Figure 9. In Kafka, a message topic is nothing more 
than a partitioned log. Each appended message is 
assigned an incrementing offset. (Image credit: 
http://kafka.apache.org/documentation.html) 
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consumer: The consuming client needs to track the offset of the last message it receives. If the consuming client’s 
input stream is interrupted (or the client fails entirely), upon recovery, the consumer needs to provide Kafka the offset 
value from which it wants to resume receiving data. This design allows consumers to come and go without much 
impact on the Kafka cluster or other consumers. Coupled with other features such as replicable partitions and allowing 
no more than one consumer group per partition, Kafka also takes advantage of fast sequential disk access which 
reduces I/O overhead, resulting in high throughput.* Apache Kafka, like Apache Spark, is being widely embraced by 
industry for scalable data processing tasks. 

The plumbing software that does the actual subscribing to the DSN monitor data takes advantage of an existing 
MON-2 infrastructure between the DSCCs and JPL. This infrastructure converts a limited—but most important—set 
of monitor data from the DSCCs into JMS messages and makes it available for other software applications in the JPL 
network to subscribe to. As a precautionary measure, in order to not impact existing services that already make use of 
the MON-2/JMS bridge, the DCEP team uses a replicated JMS broker (i.e. repeater of the main broker) and its own 
MON-2/JMS bridge. This ensures that the DCEP team’s work does not have any impact on both the operational DSN 
services and other JPL services that rely on the bridged monitor data. Figure 10 shows the overall architecture of the 
DCEP system, its data sources, and the Kafka message bus. 

VIII. Operational Intelligence 
Using the CEP solution described thus far, each of the use cases that pave the way for fast and intelligent DSN 

Operations introduced in Section V can now be handled. This section revisits those individual use cases and presents 
the CEP solution for each. 

A. Standard Naming 
Addressing the lack of standard naming of data should be considered as a prerequisite for automating DSN 

Operations because handling of other use cases can be made simpler as a result. Using the current CEP solution, 
standard naming of the real-time monitor data is achieved by executing a name translation job in Apache Spark. This 
involves two topics in the common Apache Kafka message bus: a raw input topic and a standardized name output 
topic. Figure 12 shows how this flow of data and name standardization works. Currently the plumbing software adds 

                                                             
* http://kafka.apache.org/documentation.html#maximizingefficiency 

 
Figure 10. Current architecture of the DCEP system. The dashed boundary line shows what is included 
in the scope of the DCEP. NMC logs and DR/MDRs will be integrated in the future as additional input data 
sources.  
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additional metadata to each sample of monitor data to make it more meaningful, such as the originating subsystem, 
timestamp, unit of measurement, a lengthier descriptive name, associated Schedule Item, DSS and spacecraft(s). In 
the future, this task will be handled by the name translation job in Spark instead, so that all monitor data identity 
transformation and association work contained in a single module, in addition to making use of Spark’s fast processing 
capabilities. With the two Kafka topics, other client software have the option of easily consuming either or both the 
untransformed real-time monitor data and the transformed. CEP Spark jobs that handle other use cases can simply 
depend on the topic that carries the name-standardized data. 

B. Framing Events in Context 
By correlating the planned events data (Schedule Items and SOEs), operator/TDN log data (NMC logs), real-time 

monitor data, and others (astrophysics data), CEP can provide a more intelligent situational insight than that of simple 
condition or limit checking. A use case instance that has been demonstrated using the DCEP system is the 
determination of whether or not a loss of spacecraft signal in the middle of a track is a deviation from the planned 
service. For this demonstration, the Dawn spacecraft was selected as the candidate due to its frequent occultation 
around the dwarf planet Ceres (September 2015). During a sample pass, the downlink receiver would record the Pc/N0 
measurement (signal-to-noise ratio) as switching back and forth between -300 (which indicates that the measurement 
is not valid) to ~25 decibel-Hertz. This measurement is published in real-time as monitor data. The LCO supporting 
the track would not be startled to see this, since he would have the understanding that this is happening as a result of 
Dawn orbiting around Ceres. If we took out the human operator from this use case, however, then CEP is needed to 
indeed verify that the observed data is not a sign of an anomaly. Also, CEP itself can produce another metric that is 
useful: how accurately the various data correlate to each other. 

To apply CEP to this particular scenario, another type of data that the DCEP system needs to process in real-time 
is the SOE. SOEs for Dawn include the predicted occultation times, both when the spacecraft will enter and exit each 
occultation. In addition, Dawn’s SOEs even include the specific signal loss times as will be observed on Earth. This 
latter event provides the best accuracy when trying to correlate the SOE data to the Pc/N0 monitor data’s drop to -300 
dbHz. To allow DCEP’s Spark applications to access this SOE data on the fly, the DCEP team created a Java library 
that uses SPS’s RESTful API to fetch any SOE in the order of seconds. Fetched SOEs are cached in memory until 
their window for useful real-time correlation expires or new versions are available from SPS. The library also pre-
extracts a set of key events listed within the SOEs and makes them available through its API. (These events include 
symbol rate settings, downlink receiver activation/deactivation, uplink transmitter activation/deactivation, occultation 

 
Figure 11. DCEP’s name standardization Spark application(s) translates real-time data with nonuniform 
identifiers into those trivially recognized by the consumers. 
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times, signal loss times, 
and so forth.) This allows 
a Spark application that is 
performing CEP to easily 
and quickly access the 
events of interest from 
any applicable SOE in 
real-time. 

The demonstration 
showed that the instances 
where the Pc/N0 dropped 
to -300 dbHz in the 
particular Dawn pass 
closely followed (in time) 
the signal loss events 
predicted in the SOE. 
Figure 12 shows one 
sample of such instance 
from the demonstration. 
Therefore, the loss of 
signal observed is not a 
deviation of service, and 
the rest of the track can 
proceed normally. 
Although this result 
confirms what the LCOs 
can already determine 
fairly quickly during a live pass, it is meaningful because it demonstrates just one building block out of many that can 
be processed together and correlated to interpret situations within contexts—all without a human operator involved. 
Also, unless the LCO is very watchful, the fact that there was a time discrepancy of 7 seconds between the SOE’s 
predicted signal loss time and the actual drop to -300 dbHz in the Pc/N0 measurement may not have been clearly 
noticed during the track. These sort of metrics determined through CEP—in this case, the differences in predicted 
versus actual—can provide valuable information. They can indicate whether or not the DSN services are operating 
optimally and if there exist problem areas that need to be examined. 

C. Detecting Deviations from the Norm 
Going a step further, by adding historical data to the mix of the complex events processed, the DCEP system can 

automatically detect deviations from what has been the norm in the past. This opens up many possibilities for doing 
live statistical analysis and thereby improving operations with the additional intelligence. For example, if a spacecraft 
track is in progress at the moment, it can be useful to find out if the performance of the current pass is coherent with 
that of the last pass, given that the two tracks’ configurations are similar. This performance can be measured on several 
terms. If a track that has just ended recorded N number of good telemetry frames during its service duration time of 
T, then comparing the N/T ratio against the spacecraft’s last similar pass (e.g. same DSS), last few passes, or the 
historical average of such passes in the past Y years will undoubtedly yield useful information about pass performance. 
For such analysis involving historical data, the DCEP system uses the SQA subsystem’s repository via the PL/SQL 
interface previously mentioned. The interface allows CEP to retrieve those historical metrics that are periodically pre-
calculated so that correlations can be performed in real-time or near real-time. 

Another type of useful analysis made possible by the DCEP system is the comparison of one element under 
examination to its other counterparts in the DSN. For instance, comparing the historical performance of one 70-meter 
antenna to that of DSN’s other 70-meter antennas could yield valuable information. Lastly, it is possible to determine 
trends—generally over time or conditioned by external events—using CEP. 

D. Matching Incidents to Known Discrepancies 
When the DCEP system is able to use the DRMS repository as a data source and match ongoing situations in real-

time to incidents previously captured as DRs or MDRs, this will translate to saving much human effort when anomalies 
are encountered during operations. In order for this to be possible, the DCEP system will need to be able to understand 

 
Figure 12. Signal loss predicted in the SOE for Dawn (LOS) and the actual loss 
observed (pcnoEst value of -300). Automatic correlation of information from 
disparately different data sources will frame events in context, resulting in minimal 
false-positive and false-negative real-time situation assessments. 
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the problem symptoms written up in these reports. This presents a huge challenge because the reports are, for the most 
part, composed in human language (English). The contents of these reports will have to be either translated or encoded 
in some way in order for the DCEP system to accurately correlate the real-time situation with any recorded incidents 
in these reports. As one example in this use case, there exists an MDR that documents a recurring problem where the 
‘Downlink Channel Controller subsystem stops outputting telemetry to the Data Capture and Delivery subsystem.’ 
The report lays out what symptoms the operator should watch for: block count stopping when telemetry is in lock and 
missing low-criticality progress messages in the NMC logs. Detecting this anomaly alone thus requires three data 
sources: the MDR repository, monitor data (real-time), and the NMC logs (also real-time). Once the current situation 
is matched to an existing MDR, the DCEP system can both immediately notify the LCO and—if configured to do 
so—start the execution of the recovery procedure which is also documented in the report. Much work by the DSN 
operators have gone into documenting discrepancies that occur during operations. By leveraging upon that work, the 
DCEP system provides a way for future operational anomalies to be handled in much more effective ways. 

E. Generic Tools 
In line with the use of open-source software Apache Kafka and Apache Spark, the DCEP system is designed to be 

an open system. Interoperability through use of open standards and extensibility are two of the design choices made 
with regard to the DCEP system. This allows the system to be ‘tapped into’ by other tools, and these beneficiary tools 
can leverage the messaging and processing already performed by the DCEP system. There currently is a tool in use 
by the DSN Project that proves this point. As mentioned previously, a new requirement was added to the DSN recently: 
Track each DSN spacecraft’s on-board command-loss timer. Estimating these values requires access to the real-time 
monitor data. Because the DCEP system was already in place, consuming the real-time monitor data stream, the data 
was already on the Kafka message bus. From here, two choices could be made: implement the handling of the use 
case in Spark or create a separate tool that will only use the DCEP system’s message bus. Since the CEP engine 
(Spark) and its applications are still being experimented with (but the command-loss timer tracking is a real project 
requirement that needs to be satisfied now), the DCEP team created a Java application that consumes the data from 
Kafka and calculates the timer estimates from that data. (Missions-informed table of timeout values for each spacecraft 
and astrophysics data—for the OWLT values—make up the other sources of data.) The results are then published 
every few seconds on JPL’s intranet as a web page, so that DSN engineers and managers can readily access the latest 
information showing the risk of a command-loss timeout event. Because the scalable, distributed messaging 
infrastructure has been established as a part of the DCEP work, many generic tools such as the Command-Loss Timer 
Tracker can now be created and immediately access the data streams (both raw and complex-event-processed) with 
relative ease, extending the possibilities of operational intelligence further. 

F. Postage Stamp 
The use case to support the Postage Stamp user experience project is demonstrative of the processing that the 

DCEP system can handle on behalf of the external users, sparing them from the nitty-gritty, low-level nature of the 
DSN data. Postage Stamp requires real-time data that includes additional context. For example, not only does Postage 
Stamp require the current azimuth and elevation angle values of a DSN antenna, it also needs to know the antenna’s 
operating state at the moment: on point, slewing, stopped, stowing, stowed, et cetera. The subsystem that controls the 
antenna movement does not publish these state values. Therefore, determining the real-time operating state of an 
antenna requires an algorithm. For instance, to determine that the antenna is in the stow position, it is necessary to 
first obtain its current azimuth and elevation angles, then compare that to the angle values when it is in the stow 
position (known ahead of time), and also verify that the antenna angles have not changed in the last few seconds 
(which could indicate that it is slewing or stowing instead). Since there are mechanical parts involved, the algorithm 
also needs to take into account margins of error in the measurements. As a matter of fact, to complicate things, DSN 
antennas do not share uniform stow position angles, so the algorithm also needs to handle such differences. 

The DCEP team implemented these kinds of algorithmic data processing required by the Postage Stamp inside a 
Spark application. As the necessary calculations are completed by the Spark jobs (which happens periodically, since 
it is using the Spark Streaming library), a JSON data object is created and this is made available over the network 
using a WebSocket. Postage Stamp then consumes this data and reflects the information directly onto its GUI. The 
DCEP system takes care of much of the cumbersome processing work needed on the raw DSN data. In this way, future 
technology advancement projects may no longer require expert knowledge of the DSN. The DCEP system can be used 
to manage the complexity and shield the external users from being affected by DSN’s intricacies. 
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IX. Rule Implementation 
In order for the DCEP system to handle the aforementioned use cases and others, the set of logic that performs the 

actual CEP have to be implemented inside Spark applications. An individual unit of such CEP logic can be referred 
to as a rule. There are two key methods by which real-time decision-making, operator notification (e.g. alarms), and 
action rules can be implemented in the DCEP system. First, the rule can be based on an expert-driven model of the 
DSN system, such that threshold-based rules can be executed against incoming data streams and warehoused data 
repositories to indicate the presence of special conditions. The second method is a data-driven model, where machine-
learned relationships between the data constituents of DSN streams and repositories identify the presence of 
irregularities. The DCEP system will use both methodologies such that existing expert-based knowledge as well as 
machine-learned relationships can dually play a role in fault detection and correlation analysis. 

A. Expert-Based Rules 
Based upon decades of successful operation of the DSN, a body of operational threshold-based rules has been built 

up over the years, upon which real-time monitor data and other types of data can be judged. The DCEP team plans to 
fully leverage this expert-based knowledge and implement it as a set of rules within the DCEP system’s knowledge 
base, such that the system matches incoming data against relevant rules and makes decisions upon data arrival. 
Implementation-wise, this knowledge base consists of a set of procedures, which map incoming data points against 
rule conditionals that generate expert-driven decisions. This implementation model can allow for chaining of rules for 
more complex conditionals. Although the knowledge base is not necessarily a logical programming inference engine, 
the ability to add new rules or facts during runtime is not withheld and thus decision-making based on expert-rules 
can increase in capability over time. In fact, it turns out that implementing logical rules by this method is a sound 
means to adhere to the DSN operational requirements, where rules are—in many cases—explicitly specified and 
mandated. An example of such a case is the conditional alarm-sounding requirement for wind speeds at DSN antenna 
complexes. Each DSN antenna type has specific requirements that dictate safe operational use based on outside wind 
speeds. These conditions, for example requiring antennas to be driven to stow (pointing to zenith) if outside wind 
speeds surpass 50 miles per hour, represent well-documented thresholds that require operator action. The DCEP 
system can automatically match real-time situations to such predefined conditional rules, and it can then provide alerts 
continuously for all antennas based on such rules being available in the system’s knowledge base. 

B. Machine-Learned Rules 
Where high-quality training data is available and usable,6 the DCEP system is able to derive machine-learned 

relationships among constituent data that can help in more accurate automatic decision-making. The key idea is to 
leverage machine-learning algorithms to train classifiers in mapping expected fault detection scenarios against 
relevant input data, based upon relationships inherent in the training data. This methodology is in contrast to explicitly 
programming threshold conditions by which to judge and correlate data. Regression models as well as deep-learning 
techniques are viable candidates as methods to produce machine-learned, decision-making classifiers. The DCEP team 
ran a prototype study of the viability of machine-learning for CEP. In this study, over thirty-three million data points 
were processed to develop a spacecraft identity classifier. The results of this study showed that a machine-learned 
approach is viable for CEP in the DSN. In many cases, however, the low-quality labeling of training data and the lack 
of sufficient data points turned out to be a severe hindrance to effective classifiers. Irrespective of the exact machine-
learning approach used, one of the DCEP team’s goals is to leverage a knowledge base of procedures (in this case, 
classifiers), which will be invoked during runtime based on real-time data characteristics. In other words, the same 
high-level interface as the expert-driven rule system will be used so that the machine-learned and the expert-driven 
conditionals for fault detection can be used interchangeably. 

X. Future Work 
Much work still remains in order to raise the technology readiness level of the DCEP system so that it can qualify 

to assume operational responsibilities in the DSN. Upfront, there still remains additional data sources that need to 
serve as input to the DCEP system: logs (e.g. NMC logs), DRs and MDRs in the DRMS repository, and possibly 
others that have yet to be identified. Furthermore, to become operations-ready, the DCEP system’s existing data input 
have to be improved to become more robust. This will involve switching from consuming the real-time monitor data 
via the MON-2/JMS bridge to directly receiving them from the MCIS infrastructure at the DSCCs (in other words, 
closer to the source). This change will enable key improvements in CEP: the propagation delay from the data source 
to the DCEP system will be minimized, the entire set of monitor data at the DSCCs will be available for subscription 
(whereas via the MON-2/JMS bridge, only a limited set can be subscribed), and the DCEP system will receive 
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streaming data at its highest rate (whereas via the MON-2/JMS bridge, each individual monitor data item is metered 
to five seconds). Making this switch, however, will require careful engineering to make sure that the existing DSN 
services are not adversely affected by the introduction of the DCEP system in the operational ecosystem. Also, as the 
use cases become more comprehensively defined, the interface between the DCEP system and the SQA subsystem 
will undergo refinements, so that additional historical metrics can be made available for CEP. All of this work is 
critical and, at the same, extensive. 

It will be important for the operational DCEP system to work around the unavoidable WAN bandwidth limitation 
that exists in the DSN. As mentioned, the strategy for overcoming this challenge is to process all voluminous DSCC 
data locally, at the DSCC itself, and transmit only intelligent information that are smaller in size to the other DSCCs 
and NOCC. The ultimate goal is to enable FtSO this way. Design-wise, this strategy entails two levels of CEP: CEP 
being done at the local DSCCs and a global CEP that processes key events from the entire DSN. Forming the 
requirements and design for this multi-level CEP in the DSN is another area of work that will be done in the future. 

SQA is an excellent subsystem that warehouses a treasure trove of historical DSN monitor data that is valuable for 
CEP, but there never was a requirement placed on the SQA for it to serve as a data provider to the DCEP system. The 
current PL/SQL interface was designed to minimize the burden on the SQA subsystem when the DCEP system 
accesses its data. It is now clear that this is a big data problem, and for the DCEP system to make more flexible use of 
the historical data, a different solution may be needed. For instance, rather than using the SQA subsystem itself as a 
CEP data source, a separate big data database (e.g. Apache Cassandra) can be created and initialized with a copy of 
SQA repository’s data. As the DCEP system consumes real-time monitor data from the DSN, the data is also loaded 
into this new database, thereby keeping the historical data constantly up to date. With this new elastic database, the 
DCEP system will be able to access monitor data from the past and its statistics with greater freedom and with better 
performance. 

Another area of future work is devising a novel way for managing the CEP logic, or rules. As mentioned, there 
exists a number of rule-based systems in the enterprise industry for doing business intelligence. The DCEP team will 
investigate and glean from the solutions for rule management that already exist in these systems. Most likely, due to 
the unique set of requirements and operational nature of the DSN, a customized strategy will have to be devised for 
managing the CEP rules in the DSN. 

Finally, it is important to ascertain the performance capabilities of the DCEP system as a whole as well as that of 
its individual parts (i.e. Spark, Kafka, et cetera). Having the understanding of the system performance and its 
limitations will inform further design choices for the DCEP system. To that end, the DCEP team plans to establish 
testing scenarios that push the CEP and the messaging infrastructure to their limits, to get a clearer picture of what is 
possible (and what is not) with the DCEP system. 

XI. Conclusion 
The DSN currently provides reliable, high-quality services to the missions that it supports, but further 

improvements need to be made to its operational cost-effectiveness. Using complex event processing, greater 
intelligence can be extracted from operations in real-time: anomalies can be detected quickly; false positives and false 
negatives can be significantly reduced through the association of contexts; using the knowledge base of previously 
documented discrepancies, newly encountered ones can be automatically labeled and remediated directly by the DCEP 
system; and through machine learning, the DCEP system will train itself to detect events even smarter as time goes 
by. These benefits are in addition to the immediate, more basic solutions that the DCEP system provides, such as 
normalizing the irregularities in DSN’s data identifiers, deriving the higher-level state information through algorithms 
for outside systems like Postage Stamp, and so forth. Further development, prototyping with more use cases, and 
testing need to be done in order for DCEP to be formally accepted as part of DSN Operations; but so far, the progress 
up to this point indicates that CEP is a truly viable solution that will help usher DSN Operations into the future and 
serve as a key enabler for the Follow-the-Sun Operations. 
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