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SPIRAL LAMBERT’S PROBLEM WITH GENERALIZED LOGARITHMIC
SPIRALS

Javier Roa⇤and Jesús Peláez†

Lambert’s problem subject to a continuous acceleration is solved using the family
of generalized logarithmic spirals. Thanks to the existence of two first integrals
related to the energy and angular momentum surprising analogies with the Keple-
rian case are found. A minimum-energy spiral transfer exists. Increasing the value
of the constant of the generalized energy yields pairs of conjugate spiral trajecto-
ries. The properties of such spirals are strongly connected with the properties of
conjugate Keplerian orbits. When the generalized constant of the energy reaches
a critical value the two solutions degenerate into a pair of parabolic spirals, one
of which connects the two vectors through infinity. From that point the spiral
transfers become hyperbolic. Generalized logarithmic spirals admit closed-form
solutions to all the required magnitudes including the time of flight, providing a
deep insight into the dynamics of the problem. In addition, the maximum accel-
eration along the transfer is found analytically so the solutions that violate the
design constraints on the maximum thrust acceleration can be rejected without
any further computations. When the time of flight is fixed there is still a degree of
freedom in the solution, related to a control parameter. Resonant transfers appear
naturally thanks to the symmetry properties of the generalized logarithmic spirals.
The problem of designing a low-thrust transfer between two bodies can be reduced
to solving the corresponding spiral Lambert’s problem. In order to show the ver-
satility of the method it is applied to the design of an asteroid tour and to explore
launch opportunities to Mars.

INTRODUCTION

The problem of finding the orbit that connects two points in a given time of flight has occupied
many authors throughout the years. Originally formulated by Leonard Euler and Johann H. Lambert
in the 18th century, the latter’s pioneering contributions motivated the problem to be called Lam-
bert’s problem. Even Gauss, the Prince of Mathematicians, said that this particular problem is “to
be considered among the most important in the theory of the motions of the heavenly bodies”. It is
the core of navigation algorithms, mission design tools, and orbit determination methods. Battin’s1

improved version of Gauss’ solution was implemented in the onboard guidance computer of the
NASA Space Shuttle. He was totally captivated by the beauty of the problem and explored di↵erent
approaches.2 He even devoted two chapters of his book3 to analyzing the problem, with an emphasis
on collecting relevant properties. The method from Lancaster and Blanchard, originally presented
in a short note,4 was further improved by Gooding,5 who focused on the computational aspects. He
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relied on Halley’s cubic iteration process to solve for the universal variable and showed that only
three iterations are required for convergence. Improvements in Lancaster-Blanchard’s method have
also been proposed by Izzo6

The rise of interplanetary exploration has brought renewed interest into Lambert’s problem for
mission design applications, as well as into low-thrust trajectories. The combination of the two is
a promising technique for mission analysts. Izzo7 solved the spiral Lambert’s problem using the
exponential sinusoid, a curve proposed by Petropoulos and Longuski8 when deriving a shape-based
method for preliminary design. Unfortunately, not having an explicit expression for the time of
flight forces the user to rely on numerical methods and obscures the structure of the solution.

Roa and Peláez9, 10 found a new family of solutions to the low-thrust problem, called the gen-
eralized logarithmic spirals. They admit closed-form expressions for all the required variables,
including the time of flight. The existence of two integrals of motion yields a natural classification
of the spirals in elliptic, parabolic and hyperbolic, that are closely related to Keplerian orbits. In
this paper we solve Lambert’s problem with the family of generalized logarithmic spirals. Thanks
to the structure of the solution surprising connections with the purely ballistic case are found. Fol-
lowing Battin’s approach, who “...collected (almost as a hobby) a number of delightful and often
useful properties of the two-body, two-point boundary value problem”, we pay special attention
to formally stating the properties of the solution. There is a minimum energy spiral, and pairs of
conjugate spirals bifurcate from it. From a practical point of view a spiral Lambert solver yields a
fast and simple method for exploring preliminary solutions for low-thrust missions. Recently, the
authors extended the method by introducing a control parameter11 and considering the out-of-plane
motion.12

The Paper is organized as follows. The next section introduces the generalized logarithmic spi-
rals and some useful equations. Then the two-point boundary-value with free time is solved. The
minimum energy spiral, the conjugate pairs and the di↵erent families of solutions are analyzed in
detail in this section. The following section addresses Lambert’s problem itself, fixing the time of
flight. Finally, an example of application is presented.

GENERALIZED LOGARITHMIC SPIRALS

The perturbed two-body problem is governed by the di↵erential equation

d2r
dt2 +

µ

r3 r = ap, r = ||r|| (1)

where r 2 R3 is the radiusvector of the particle, µ is the gravitational parameter of the attracting
body, and ap denotes the perturbing acceleration. Let  be the flight-direction angle (complementary
of the flight-path angle) and let the tangent vector be t = v/v, with v the velocity of the particle.
Roa et al.10, 11 proved that for a thrust profile of the form

ap =
µ

r2
⇥
⇠ cos t + (1 � 2⇠) sin n

⇤
(2)

the system defined in Eq. (1) admits two integrals of motion. Here ⇠ behaves as a (constant) control
parameter. In what remains of the paper the problem is normalized so that µ = 1. The first integral
of motion relates to the equation of the energy,

v2 � 2
r

(1 � ⇠) = K1, with K1 = v2
0 �

2
r0

(1 � ⇠) (3)
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where K1 is a constant of motion defined by the initial conditions and the control parameter. The
second integral of motion is a generalization of the equation of the angular momentum,

v2r sin = vr2✓̇ = K2 (4)

not a↵ected by the values of the control parameter. The constant K2 is given by

K2 = v2
0r0 sin 0 (5)

Combining Eqs. (3) and (4) provides a simple expression for the evolution of the flight-direction
angle:

sin =
K2

2(1 � ⇠) + K1r
(6)

Depending on the sign of the constant of the energy K1 three families of solutions are obtained:
elliptic (K1 < 0), parabolic (K1 = 0) and hyperbolic (K1 > 0). Elliptic spirals are bounded by a
maximum radius and never escape to infinity. Parabolic spirals are logarithmic spirals. There are
two types of hyperbolic spirals: spirals of Type I (K2 < 2(1� ⇠)) only have one asymptote, whereas
spirals of Type II (K2 > 2(1 � ⇠)) have two asymptotes. The transition between all the families is
continuous.9 Changing the value of ⇠ may yield transitions between spiral types.

Let S denote the set of generalized logarithmic spirals. Each member is defined by means of
five parameters: the constant of the generalized energy, K1, the constant of the generalized angular
momentum K2, two additional constants K3 (fixing the orientation in the inertial reference) and K4
(connecting the initial conditions with the time of flight), and the control parameter.

Symmetries

There are two relevant definitions regarding the symmetries found in the solution. The trajectory
r = r(✓) is said to be T -symmetric if r(� + ✓m) = r(� � ✓m). Here ✓m is the axis of T -symmetry.
Only elliptic spirals and hyperbolic spirals of Type II are T -symmetric.

Equation (5) shows that two di↵erent values of  0 yield the same value of K2, provided that
sin 0 is symmetric with respect to  0 = ⇡/2. The first possible value of  0 is  0  ⇡/2, whereas
the second is  0 � ⇡/2. This means that it is possible to find two trajectories with the same values
of K1 and K2, but di↵ering in the regime: the first spiral is in raising regime (ṙ > 0) and the second
is in lowering regime (ṙ < 0). These spirals are said to be C -symmetric. The C -symmetric of S
is denoted S†. Both spirals relate through a reflection R about the direction of the departure polar
angle ✓0.

Elliptic spirals

Elliptic spirals are defined by K1 < 0 and K2 2 (0, 2(1 � ⇠)). They are bounded by a maximum
radius

rmax =
2(1 � ⇠) � K2

(�K1)
(7)

so this family of spirals never escape to infinity. When the spiral reaches the maximum radius
it transitions naturally from raising regime to lowering regime, and falls towards the origin. The
velocity for r = rmax is the minimum velocity that the particle can reach,

v(rmax) = vm =

r
K2

rmax
=

s
�K1K2

2(1 � ⇠) � K2
(8)
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The equation of the trajectory is

r(✓)
rmax

=
2(1 � ⇠) + K2

2(1 � ⇠) + K2 cosh �(✓)
(9)

The spiral anomaly �(✓) can take two di↵erent values depending on the initial regime of the spiral,
leading to a pair of C -symmetric spirals:

�(✓) =
`

K2
(✓ � ✓m) or �†(✓) =

`

K2
(✓ � ✓†m)

where ` =
q

4(1 � ⇠)2 � K2
2 . Here † denotes variables corresponding to a spiral that is initially in

lowering regime. The orientation of ✓m = ✓(rmax) defines the axis of T -symmetry, that is equivalent
to the apse line. The axis of T -symmetry is given by

✓m � ✓0 = ⌥
K2

`

������arccosh
(

rmax

r
� 2(1 � ⇠)

K2

✓
1 � rmax

r

◆)������ (10)

The first sign yields a spiral initially in raising regime (ṙ0 > 0 and  0 < ⇡/2), whereas the second
corresponds to a spiral initially in lowering regime (and it is denoted ✓†m�✓0). These solutions define
di↵erent trajectories, that are C -symmetric. In sum, the equation of the trajectory can be written
r = r(✓; ⇠,K1,K2, r0, ✓0).

The time of flight is given explicitly by the expression

t(r) � tm = ±
rv
K1

s
1 � sin 
1 + sin 

± 2[2(1 � ⇠)k02�⇧ � K2�E]
p

1 � ⇠
(�K1)3/2

p
K2

(11)

where �E and �⇧ are the di↵erence between the incomplete and the complete elliptic integrals of
the second and third kinds, respectively, �E = E(�, k) � E(k) and �⇧ = ⇧(↵; �, k) � ⇧(↵; k). The
arguments of the elliptic integrals are

sin � =
vm

v

s
2

1 + sin 
, k =

s
�K1rmax

4(1 � ⇠) , ↵ =
K1rmax

2K2
, k2 + k02 = 1

The time of apoapsis passage tm is solved from the initial conditions.

Parabolic spirals

Parabolic spirals (K1 = 0) are equivalent to logarithmic spirals, and K2 2 (0, 2(1 � ⇠)]. The limit
case K2 = 0 is a rectilinear orbit and K2 = 2(1 � ⇠) corresponds to degenerate parabolic spirals.
Equation (6) shows that K2 = 2(1 � ⇠) )  = ⇡/2. Since the flight-path angle is constant it will
remain equal to ⇡/2. This cancels the thrust defined in Eq. (2), so the resulting trajectory is a circular
Keplerian orbit. The velocity in the spiral takes the form v =

p
2(1 � ⇠)/r, and does not necessarily

coincide with the circular velocity.

Given the expression for the velocity it follows that parabolic spirals reach infinity with zero
velocity, just like parabolic Keplerian orbits. The flight-direction angle remains constant and the
trajectory is not bounded. If the spiral is initially in lowering regime it will always fall towards the

4



origin, and if it departs from raising regime it will always escape to infinity. The equation of the
trajectory is simply

r(✓) = r0 e(✓�✓0) cot (12)

The time of flight when K1 = 0 reduces to

t(r) � t0 = ±
2
p

2(1 � ⇠)
3`

⇣
r3/2 � r3/2

0

⌘
(13)

where ` =
q

4(1 � ⇠)2 � K2
2 = cos . The particle requires an infinite time to reach infinity.

Hyperbolic spirals

Hyperbolic spirals are defined by a positive constant of the energy, K1 > 0, in analogy with the
definition given to hyperbolic Keplerian orbits. They reach infinity with a finite, nonzero velocity
v2
1 = K1. Two di↵erent subfamilies can be distinguished depending of the value of K2: i) Type I:

hyperbolic spirals with K2 < 2(1� ⇠). They only have one asymptote. ii) Type II: hyperbolic spirals
with K2 > 2(1 � ⇠). They have two asymptotes and they are T -symmetric. Type I and Type II
spirals are separated by the limit case K2 = 2(1 � ⇠), and the transition is continuous.10

Type I hyperbolic spirals The dynamics of Type I hyperbolic spirals is simple, since there are no
natural transitions between regimes. Like in the case of parabolic spirals if the spiral is in lowering
regime it falls towards the origin, and it escapes to infinity if in raising regime.

The equation of the trajectory takes the form

r(✓) =
⇣`2/K1

sinh �
2

h
4⇣(1 � ⇠) sinh �

2 + (⇣2 � K2
2) cosh �

2

i (14)

with ⇣ = 2(1 � ⇠) � ` and

� =
`

K2
(✓as � ✓), �† = � `

K2
(✓†as � ✓)

The direction of the asymptote is ✓as:

✓as � ✓0 = ±
K2

`
ln

"
K2(⇣ � ` � K2 sin 0 + ` | cos 0|)

r0K1⇣ sin 0

#

These expressions relate Eq. (14) with the initial conditions (r0, ✓0). The time of flight to a given
radius reads

t(r) = K4 ±
(

rv
K1

s
1 + sin 
1 � sin 

� 2 [E � (1 � ↵)⇧]
p

K2(1 � ⇠)
K3/2

1

)
(15)

with

sin � =

s
K1r sin 

↵K2(1 � sin )
, k =

1
2

s
2(1 � ⇠) + K2

1 � ⇠ , ↵ =
2(1 � ⇠) + K2

2K2

The constant K4 is solved from the initial conditions.
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Type II hyperbolic spirals Hyperbolic spirals with K2 > 1 are bounded by a minimum radius

rmin =
K2 � 2(1 � ⇠)

K1
(16)

so that the spirals can never reach the origin. If the spiral is initially in lowering regime it reaches the
minimum radius, transitions to raising regime and then escapes. The velocity at rmin is maximum,

v(rmin) = vm =

s
K1K2

K2 � 2(1 � ⇠) (17)

The trajectory is defined by the equation:

r(✓)
rmin
=

2(1 � ⇠) + K2

2(1 � ⇠) + K2 cos �
(18)

with the spiral anomaly defined as

� =
`

K2
(✓ � ✓m) or �† =

`

K2
(✓ � ✓†m)

depending on the initial regime of the spiral. In this case it is ` =
q

K2
2 � 4(1 � ⇠)2. The previous

equation is T -symmetric with respect to ✓m = ✓(rmin), which is aligned with the periapsis of the
spiral. The orientation of rmin is given by

✓m � ✓0 = ⌥
K2

`

(
⇡

2
+ arctan

"
2(1 � ⇠) � K2 sin 0

` | cos 0|

#)
(19)

The sign in this expression depends on the regime of the spiral.

The time of flight is referred to the time to periapsis passage tm by means of

t(r) � tm = ⌥
(

[K2 + 2(1 � ⇠)]K2E � K1rmin[K2F + 2(1 � ⇠)⇧]
K1

p
K1K2[K2 + 2(1 � ⇠)]

+
2(1 � ⇠)

K3/2
1

arcsinh
2
666664

p
2K1r(rv2 � K2)

2
p

K2rv2 + (rv2 � K2)(1 � ⇠)

3
777775 �

v
K2

1

q
r2v4 � K2

2

)
(20)

with z = 1 + K1r. In this case the arguments of the elliptic integrals are

sin � =
p

2(1 � ⇠)(1 � sin )

k
p

K2 � 2(1 � ⇠) sin 
, k =

2
p

1 � ⇠
p

K2 + 2(1 � ⇠)
, n =

2(1 � ⇠)
K2

The time of flight to the periapsis, tm, is solved from Eq. (20) particularized at r = r0.

Osculating elements

The orbital elements defining the osculating orbit can be referred to the constants defining the
spirals and the radial distance. In particular, the eccentricity reads

e(r) =
q

K2
2 + 1 � 2K2 sin (21)
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The angular momentum relates to the constant K2: Roa et al.10 connect Eq. (4) with the torque
from the perturbed forces, and from that derivation it follows

h(r) = K2

r
r

2(1 � ⇠) + K1r
(22)

The semimajor axis is obtained by combining Eqs. (21) and (22), and results in

a(r) =
h2

1 � e2 =
r

2⇠ � K1r
(23)

The semimajor axis always grows in raising regime and decreases in lowering regime, no matter the
type of spiral.

THE TWO-POINT BOUNDARY-VALUE PROBLEM

Consider the problem of finding a generalized logarithmic spiral S that connects a departure point
P1, defined by (r1, ✓1), with a final point P2, defined by (r2, ✓2), with ✓2 > ✓1, and given the value
of the control parameter. The position vectors for P1 and P2 are r1 and r2, respectively. In order
to account for the number of revolutions n, ✓2 is decomposed in ✓2 = ✓̃2 + 2n⇡, with n = 0, 1, 2 . . .
and ✓̃2 2 [0, 2⇡]. Changing the number of revolutions is equivalent to modifying the geometry of
the boundary value problem (BVP). No constraints are imposed on the time of flight in this section.
In order the trajectory to depart from P1 and arrive to P2 the following equation must be satisfied:

r2 = r(✓2; ⇠,K1,K2, r1, ✓1) (24)

The function r(✓; ⇠,K1,K2, r1, ✓1) is the equation of the trajectory and depends on the type of spiral;
the polar angle ✓ is the independent variable, the constants K1 and K2 define the shape of the spiral,
(r1, ✓1) are the initial conditions at P1, and ⇠ is the control parameter. Table 1 summarizes the
equations of the trajectory for the di↵erent families of solutions.

Table 1: Summary of equations for the di↵erent families of generalized logarithmic spirals

Type of spiral K1 K2 Trajectory Time of flight

Elliptic < 0 (0, 2(1 � ⇠)) (9) (11)
Parabolic = 0 (0, 2(1 � ⇠)] (12) (13)
Hyperb. T-I > 0 (0, 2(1 � ⇠)) (14) (15)
Hyperb. T-II > 0 > 1 (18) (20)

Note: The limit case K2 = 1 is omitted for brevity. It is formulated in the original paper.9

In the Keplerian case the minimum energy ellipse plays a key role in the configuration of the
transfers.3 The Keplerian energy (or equivalently the semimajor axis of the orbit) yields an intuitive
parameterization of the solutions. An analogous parameterization can be introduced for the spiral
case in terms of the constant K1. With this technique the solutions are easily classified in elliptic,
parabolic or hyperbolic spiral transfers.

Given the boundary conditions (r1, ✓1) and (r2, ✓2) there are two degrees of freedom. When fixing
K1 and ⇠ the problem reduces to solving for K2 in Eq. (24). The departure velocity reads:

v1 =

r
K1 +

2(1 � ⇠)
r1

and v2 =

r
K1 +

2(1 � ⇠)
r2
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If the initial and final radii are the same, r1 = r2, the departure and terminal velocities in a general-
ized spiral trajectory are also equal, v1 = v2.

From the definition of the semimajor axis Roa et al.10 found a practical property:

Property 1: (Change in the semimajor axis) Given ⇠, the change in the inverse of the semimajor
axis between two points of the spiral depends on r1 and r2 alone, and reduces to:

1
a2
� 1

a1
= 2⇠

 
1
r2
� 1

r1

!

Since K1, ⇠ and r1 are fixed Eq. (6) shows that solving for K2 is equivalent to solving for the initial
flight-direction angle,  1. In fact, due to the C -symmetry of the spirals it is more convenient to
solve for the departure angle  1 in order not to lose any solution, and then compute the value of K2
from Eq. (6).

Figure 1: Zeros of the function f ( 1) for in-
creasing values of K1 < 0

Elliptic spirals are those with the minimum value
of the constant of the energy K1, as shown in Table 1.
In this case the BVP reduces to finding the zeros of
the function

f ( 1) ⌘ r2

rmax
� 2(1 � ⇠) + K2

2(1 � ⇠) + K2 cosh �2
= 0 (25)

where �2 is the spiral anomaly at P2.

Figure 1 shows the e↵ect of the constant K1 on the
zeros of the function f ( 1) for an example transfer
geometry. This figure proves that a minimum value
of K1 exists: for K1 > K1,min there are two solutions,
that collapse to one double solution when K1 = K1,min. If K1 < K1,min the function has no roots: the
BVP has no solution. Similarly, there is a maximum value of ⇠, ⇠max, above which the problem has
no solution.

The minimum-energy spiral

Let S denote the set of all generalized logarithmic spirals S that are solutions to the BVP. The
elliptic spiral for which K1 = K1,min is referred to as the minimum-energy spiral, Sm 2 S. The
constant of the energy relates to the specific Keplerian energy Ek by means of

K1 = 2
✓
Ek +

⇠

r

◆

Consider two spirals Si, S j 2 S, with i , j. The corresponding values of K1 can be solved from the
previous particularized at r1 and Ek,i or Ek, j, respectively. If ⇠ is given and Si is the minimum-energy
spiral (i ⌘ m), then the osculating Keplerian energy at r1 is also minimum:

Property 2: (Minimum Keplerian energy) The osculating orbits at P1 and P2 for the minimum
energy spiral are those with the minimum Keplerian energy and semimajor axis.

In addition, from the definition of the velocity it follows

Property 3: (Minimum velocity) The departure and terminal velocities, v1 and v2, are minimum on
the minimum-energy spiral.
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The minimum energy spiral satisfies the following property regarding the change in the velocity
and semimajor axis in the transfer from P1 to P2:

Property 4: (Change in the velocity and semimajor axis) The change in the velocity from P1 to P2,
�v = |v2�v1|, is maximum along the minimum-energy spiral. Similarly, the change in the semimajor
axis, |�a| = |a2 � a1|, is minimum along the minimum-energy spiral.

The value of K1,min can be obtained through the following numerical procedure. The function
f ( 1) defined in Eq. (25) reaches a minimum at  ⇤1, so that f 0( ⇤1; K1, ⇠, r1, r2) = 0. The prime ( )0

denotes the derivative with respect to  1. The minimum value of K1 for which a solution to the
boundary value problem exists corresponds to the value that yields only one root of the function
f ( 1). That is, when the minimum of f ( 1) is exactly zero. Given the boundary conditions r1 and
r2, and the value of ⇠, the minimum-energy transfer, defined by K1,min and  ⇤1, is the spiral that
satisfies

f ( ⇤1; K1,min, ⇠, r1, r2) = 0 (26)
f 0( ⇤1; K1,min, ⇠, r1, r2) = 0 (27)

The first condition forces the minimum to be zero, so there is only one root, and the second equation
determines where the minimum is located. Note that K1,min is defined in terms of ✓2 = ✓̃2 + 2n⇡ and
takes di↵erent values depending on the number of revolutions n, even if ✓̃2 remains the same.

Figure 2: Minimum K1 for di↵erent tranfer ge-
ometries and fixed ⇠

Figure 2 shows how the value of K1,min depends
on the geometry of the transfer. As the transfer
angle increases the value of K1,min decreases in
magnitude, meaning that increasing the number
of revolutions reduces the energy of the transfer.
The evolution of the values of K1,min proves that
lim✓2!1 K1,min = 0�; transfers with negative K1
always exist, and the magnitude of the constant
K2 can be arbitrarily small. This yields an impor-
tant result, which is that the BVP defined by r1
and r2 will always admit three types of solutions:
elliptic, parabolic and hyperbolic spiral transfers.

Conjugate spirals

The existence of two solutions to Eq. (25) for each value of the constant of the energy and con-
trol parameter has already been anticipated. This behavior is intimately related to the conjugate
Keplerian orbits that appear in the unperturbed form of Lambert’s problem:3

Definition 1: (Conjugate spirals) Two generalized logarithmic spirals S , S̃ 2 S are said to be con-
jugate if they share the same value of the constant of the energy K1, and ⇠. The conjugate of S is S̃ .

Figure 3 shows the spiral transfer corresponding to K1,min and two pairs of conjugate spirals,
Si and S̃ i. A spiral and its conjugate are always separated by the minimum energy spiral. As K1
becomes more negative both trajectories come closer, and they collapse into one single trajectory,
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Sm, for K1 = K1,min. In this example both the spiral Si and its conjugate S̃ i reach P2 in lowering
regime, after having crossed the maximum radius rmax.

Given a pair of conjugate solutions to the BVP, one
will be faster than the minimum-energy transfer, whereas
its conjugate will be slower. Conjugate spirals can be
characterized by a collection of properties connecting the
values that certain variables take at departure and arrival.
In order to establish such properties it is important to note
that:
Lemma 1: If a certain variable � depends only on K1,
⇠ and r, � = �(r; K1), then �1 = �̃1 and �2 = �̃2 for
all pairs of conjugate spirals. Here �1 = �(r1) and
�2 = �(r2).

This Lemma is a powerful contrivance for finding vari-
ables that take the same values on a spiral and its conju-
gate (locally). Equation (3) shows that the velocity is a
function of the form

v =

r
K1 +

2(1 � ⇠)
r

= v(r; K1, ⇠)

Figure 3: Pairs of conjugate spiral trans-
fers

and by Lemma 1 it follows

Property 5: (Departure and terminal velocities) Two conjugate generalized logarithmic spirals S
and S̃ have the same departure and terminal velocity, i.e. v1 = ṽ1 and v2 = ṽ2.

Property 6: (Departure and terminal semimajor axes) Two conjugate spirals S and S̃ have the same
departure and terminal osculating semimajor axes, i.e. a1 = ã1 and a2 = ã2.

Consider the variables that also depend on K2 but that can be decomposed in � = g(K2) �⇤(r; K1, ⇠).
Here g is an arbitrary function of K2 and �⇤ does not depend on K2. The ratio between the initial
and final values of � for the transfer along S , �2/�1, no longer depends on K2 and Lemma 1 is
applicable. This technique yields a number of useful additional properties:

Property 7: (Angular velocities) The ratio between the initial and terminal angular velocities is the
same for two conjugate spirals, ✓̇1/✓̇2 =

˜̇✓1/
˜̇✓2.

Property 8: (Flight-direction angle) The ratio between the initial and terminal values of sin is
the same for two conjugate spirals, sin 1/sin 2 = sin  ̃1/sin  ̃2.

Property 9: (Circumferential velocities) The ratio between the initial and terminal circumferential
velocities is the same for two conjugate spirals, v✓1/v✓2 = ṽ✓1/ṽ✓2.

Property 10: (Angular momentum) The ratio between the initial and terminal angular momenta
(or equivalently the orbital parameter, p) is the same for two conjugate spirals, h1/h2 = h̃1/h̃2 and
p1/p2 = p̃1/p̃2.

10



Property 11: (Eccentricity) The initial and terminal values of the eccentricity of two conjugate
spirals satisfy the relation (1 � e2

1)/(1 � e2
2) = (1 � ẽ2

1)/(1 � ẽ2
2).

Families of solutions

Parameterizing the solutions of the BVP in terms of K1 (keeping ⇠ fixed) yields a natural clas-
sification of the solutions: starting from K1,min < 0, the spirals are elliptic in the interval K1 2
[K1,min, 0); solutions with K1 = 0 are parabolic spirals, and for K1 > 0 the spirals are hyperbolic.

Figure 4: Families of solutions

Figure 4 shows an illustrative example of the families
of solutions for a given ⇠. First note that the minimum-
energy spiral separates the fast and slow transfers along
elliptic spirals. Reducing the value of K1 makes the pairs
of conjugate spirals to converge to the minimum-energy
spiral. On the contrary, increasing K1 reduces the size of
the fast transfers and increases the size of the slow ones.
The limits are set by the corresponding parabolic spirals
(K1 = 0). The solution to the transfer along a parabolic
(logarithmic) spiral can be given in closed-form. The con-
straint in Eq. (24) combined with Eq. (12) provides

r2 = r1 e(✓2�✓1) cot 1 =)  1 = arctan
"
✓2 � ✓1

ln(r2/r1)

#
(28)

and defines the departure flight-direction angle. If the spi-
ral is in lowering regime, r2 < r1, the solution to Eq. (28) is negative and then the departure angle
takes the value ⇡ +  1. Equivalently the value of K2 results in

K2 =
2b(1 � ⇠)p

1 + b2
with b =

✓2 � ✓1

ln(r2/r1)
(29)

Figure 5: Departure flight-direction angle as
a function of K1

This value of K2 is unique no matter the regime of
the spiral, thanks to the C -symmetry of the trajec-
tory. It does not depend on ⇠ neither. Equation (28)
has only one solution: the second conjugate solution
is not real, since it connects both points through in-
finity. That is equivalent to an elliptic spiral with
rmax ! 1. If K1 increases it becomes positive and
yields hyperbolic spirals. Pairs of conjugate solu-
tions also exist in this case, one of them being a fic-
titious solution through infinity. The fast transfers
are below the parabolic transfer and connect the two
points directly. In the limit K1 ! 1 the hyperbolic
spiral degenerates into a rectilinear orbit along the
chord connecting r1 and r2. The conjugate solutions
connect the two points by reaching infinity, so the
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solution does not exist in practice. In the multi-revolution case the transfer for K1 ! 1 decom-
poses into two rectilinear segments connecting P1 with the origin and the origin with P2.

The existence of conjugate spirals and the discussed behavior can be understood from Fig. 5.
There are two elliptic spiral transfers with the same value of K1 and ⇠. For K1 = K1,min the pair
of conjugate spirals converge to the minimum energy spiral, and for K1 ! 0� the apoapsis of
the slow transfer becomes infinite. The branch of fast transfers ( 1 >  1,m) exists for both the
parabolic and hyperbolic cases, but the slow transfers ( 1 <  1,m) exist only for the elliptic case. The
branch of conjugate slow hyperbolic solutions corresponds to fictitious transfers through infinity,
just like Keplerian hyperbolas. Despite the fact that the minimum energy spiral Sm always departs
with  1 2 (0, ⇡/2), this constraint does not apply to generic fast transfers: arbitrary solutions with
 1 � ⇡/2 can be found.

The trajectory of a particle following a hyperbolic spiral (K1 > 0) takes di↵erent forms depending
on the value of K2, the transition being K2 = 2(1� ⇠). It is possible to find a limit value of K1, K1,tr,
such that if K1 < K1,tr then S 2 S is hyperbolic of Type I, and of Type II for K1 > K1,tr. It reads

K1,tr =
4(1 � ⇠)⇥2

p
(r2 � r1)2 + r1r2�✓2 � (r2 + r1)�✓

⇤

r1r2�✓(4 � �✓2)
(30)

with �✓ = ✓2 � ✓1. When K1,tr ! 0 all hyperbolic spirals in S are of Type II. It is interesting to note
that for transfers where r2 = r1 it is K1,tr = 0, which yields the property:

Property 12: (Hyperbolic spirals for r1 = r2) For r1 = r2 all hyperbolic spirals S 2 S are of Type II.

For r1 = r2 the direction of the axis of T -symmetry ✓m reduces to ✓m = (✓2 + ✓1)/2. In his book,3

Battin discusses a number of properties involving the bisection of the transfer angle. In the spiral
case we found that:

Property 13: (Axis of T -symmetry and the bisection) For transfers with r1 = r2 all spiral solutions
are T -symmetric and the axis of T -symmetry coincides with the bisection of the transfer angle.

The dynamics of the transfer depend on whether the spiral transitions between regimes or not.
For a formal treatment of the solutions we introduce the following definition:

Definition 2: (Direct and indirect transfers) A spiral transfer S 2 S is direct if the evolution of the
radius r from r1 to r2 is monotonic. On the contrary, if r reaches a minimum or maximum value
during the transfer, then the solution is an indirect transfer. Indirect transfers can only be elliptic or
hyperbolic spirals of Type II, and the axis of T -symmetry lies between ✓1 and ✓2, ✓m 2 [✓1, ✓2].

To determine whether a solution S 2 S is direct or indirect one should solve for ✓m in Eqs. (10a)
or (19b) and check if it lies between ✓1 and ✓2. Similarly, these relations are useful when looking
explicitly for direct or indirect transfers. A direct consequence of Prop. 12 is:

Property 14: (Indirect transfers for r1 = r2) All spiral transfers S 2 S connecting r1 = r2 are indi-
rect. The case K1 = 0 yields a degenerate indirect transfer, corresponding to a circular Keplerian
orbit.
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The thrust acceleration

The thrust acceleration profile is defined in Eq. (2), and depends on the radial distance, the flight-
direction angle and the control parameter. Figure 6 depicts the evolution of the acceleration due
to the thrust for di↵erent types of spirals. Initially the acceleration is maximum for slow elliptic
transfers. It decreases rapidly and vanishes for r = rmax. When the spiral transitions to lowering
regime the acceleration changes its sign. The figure shows how the acceleration profile resembles
the typical thrust-coast-thrust sequence. The minimum energy transfer separates the slow and the
fast elliptic spiral transfers. The acceleration along hyperbolic spirals of Type II is zero for r = rmin,
and also ap ! 0 as r ! 1. That is, the magnitude of the thrust acceleration decreases along the
asymptotes. The thrust along parabolic or Type I hyperbolic spirals never vanishes, because there
are no transitions between regimes.

Figure 6: Thrust acceleration (fixed ⇠)

Negative values of the acceleration oppose the
velocity. For indirect elliptic spiral transfers the
acceleration will always be positive at departure,
vanish when r = rmax and then become negative.
Similarly, the acceleration along indirect hyper-
bolic transfers of Type II will always be negative
at departure, vanish at r = rmin and then become
positive. For direct transfers the sign of the accel-
eration depends on the geometry of the transfer:
if r1 > r2 the acceleration will always be positive,
and negative when r1 < r2. When r1 = r2 Prop.
14 proved that all spiral transfers are indirect, ex-
cept for K1 = 0 that yields degenerate parabolic
spirals.

In practice, knowing a priori the maximum value of the thrust greatly helps in the design process,
since solutions that require a propulsive acceleration over the admissible maximum can be easily
discarded. The magnitude of the acceleration due to the thrust ap takes the form

ap(r) =
1
r2

q
⇠2 cos2  + (1 � 2⇠)2 sin2  =

q
⇠2[2(1 � ⇠) + K1r]2 + K2

2(1 � 4⇠ + 3⇠2)

r2[2(1 � ⇠) + K1r]

The thrust magnitude depends on K1, K2, ⇠ and the radial distance. Once the transfer spiral is
selected the problem of finding the maximum value of ap(r) reduces to finding the radius r⇤ that
maximizes ap(r), so that

ap,max =

q
⇠2[2(1 � ⇠) + K1r⇤]2 + K2

2(1 � 4⇠ + 3⇠2)

r⇤2[2(1 � ⇠) + K1r⇤]
(31)

Depending on the type of spiral r⇤ takes di↵erent forms. In particular:

Property 15: (Maximum thrust acceleration) The maximum acceleration exerted by the thrust ap
along a spiral transfer from r1 to r2 occurs at r⇤ = min(r1, r2), except for the case of hyperbolic
spirals of Type II, where r⇤ is given by Eq. (32).
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⇠ 2 [⇠�, ⇠+] :

8>>>>><
>>>>>:

min(r1, r2), rQ  min(r1, r2), D
max(r1, r2), rQ � max(r1, r2), D
rQ , rest

; ⇠ < [⇠�, ⇠+] :

8>><
>>:

rmin, I
min(r1, r2), rest

(32)
Here D and I denote direct and indirect transfers, respectively. The value of rQ is:

rQ =
6K1K2(1 � ⇠)

R1/3

"
(1 � 3⇠)K2 cos

 
# + 2⇡

3

!
� ⇠

p
2(1 � ⇠)(3⇠ � 1)

#

where

R = 54K6
1 K3

2⇠
3
q

2(3⇠ � 1)3(1 � ⇠)3, # = arctan

2
66666666664

q
2[K2

2(3⇠ � 1) � 2⇠2(1 � ⇠)]

2⇠
p

1 � ⇠

3
77777777775

The limits ⇠+ and ⇠� are the solutions to the equation

|1 � 2⇠|
r2

min
=

q
⇠2[2(1 � ⇠) + K1rQ ]2 + K2

2(1 � 4⇠ + 3⇠2)

rQ 2[2(1 � ⇠) + K1rQ ]

and determine the values of ⇠ that make the acceleration at the periapsis of the spiral to match the
acceleration at rQ . Property 15 helps in finding where the maximum acceleration due to the thrust
occurs. The constraint on K2 becomes:

K2
2 

a2
p,maxr⇤4[2(1 � ⇠) + K1r⇤]2 � ⇠2[2(1 � ⇠) + K1r⇤]2

1 � 4⇠ + 3⇠2

This expression leads to a criterion for bounding the search in the space of solutions.

Total �v

The total �v imparted to the particle by the continuous thrust is defined by the integral

�vtot =

Z t2

t1
ap dt =

Z t2

t1

1
r2

q
⇠2 cos2  + (1 � 2⇠)2 sin2  dt (33)

In general this equation needs to be evaluated numerically. Under the assumption that the specific
impulse is constant the rocket equation will provide the mass fraction from the value of �vtot. In the
special case ⇠ = 1/2 (purely tangential thrust) the previous integral can be solved in closed form.
For direct transfers it is:

�vtot =

������

r
K1 +

1
r1
�

r
K1 +

1
r2

������ = |v1 � v2| (34)

The total �v imparted by the thrust does not depend on the path, it only depends on the initial and
final velocities. From the property of the departure and terminal velocities along conjugate spirals
(Prop. 5) it follows:

Property 16: (Conjugate �vtot with tangential thrust) The total change in the velocity due to the
tangential acceleration from Eq. (2) with ⇠ = 1/2 along two conjugate direct spirals is the same.
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Property 4 states that the di↵erence between the departure and arrival velocities |v2 � v1| along
the minimum energy spiral Sm is maximum. Thus, if the minimum energy spiral defines a direct
transfer, then the resulting �vtot is the maximum among all the possible direct transfers.

If the spiral transfer is indirect it reaches a maximum or minimum radius rm during the transfer,
and the �vtot reads:

�vtot = |v1 � vm| + |v2 � vm| =

��������

r
K1 +

2(1 � ⇠)
r1

+

r
K1 +

2(1 � ⇠)
r2

� 2

s
K1K2

K2 � 2(1 � ⇠)

��������
(35)

This expression depends on K1 but also on K2, by means of the velocity at the extreme point. Since
two conjugate spirals are defined by di↵erent values of K2, the total �vtot is di↵erent.

The locus of velocities

Figure 7 depicts the locus of velocity vectors projected on skewed axes.3 The departure velocity
vector v1 decomposes in

v1 = v⇢ u1 + vc uc

where u1 = r1/r1 and uc is the unit vector along the chord connecting P1 and P2. The figure shows
that the locus of minimum departure velocities, vm = ||vm||, is tangent to the locus of solutions at the
point where K1 = K1,min. This was already anticipated by Prop. 3: the departure velocity for Sm is
the minimum among all possible transfers. Increasing the departure velocity yields two intersection
points with the locus of solutions. When the velocity becomes equal to

p
2(1 � ⇠)/r for r = r1 the

solutions are parabolic spirals, with

vp =

r
2(1 � ⇠)

r1
(cos 1 u1 + sin 1 u2)

Figure 7: Locus of velocity vectors on skewed
axes and ⇠ = 1/2

Here the vector u2 is defined by the inplane perpen-
dicular to u1, in counter-clockwise direction, and  1
is given in Eq. (28). The velocity vKep corresponds to
the magnitude of the departure velocity for the min-
imum energy ellipse in the Keplerian case. It is ob-
served that a spiral transfer allows to reduce the min-
imum velocity required for the transfer, vm < vKep.
The required �v for leaving the departure orbit will
be smaller than the one of the ballistic case. This is
an important improvement with respect to the loga-
rithmic spirals (Petropoulos et al.13 and McInnes14

show that logarithmic spirals typically require higher
v1 at departure than the ballistic case). Increasing
the magnitude of the departure velocity yields hy-
perbolic spiral transfers. This branch of solutions
converges asymptotically to the chord connectingP1
and P2.
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FIXING THE TIME OF FLIGHT

Generalized logarithmic spirals admit closed-form solutions for the time of flight, listed in Table 1
for convenience. They depend on the type of spiral. This section analyzes the spiral transfers from
r1 to r2 given a constraint on the time of flight. The simplest solution is the transfer along a parabolic
spiral (K1 = 0), which corresponds to a logarithmic spiral. Combining Eqs. (13) and (28) the time
of flight reduces to

t2 = ±
2
q

2(1 � ⇠)[ln2(r2/r1) + (✓2 � ✓1)2]

3 ln(r2/r1)

⇣
r3/2

2 � r3/2
1

⌘
(36)

This expression depends only on the boundary conditions and the control parameter.⇤

Figure 8: Time of flight in terms of K1

Figure 8 shows the influence of the constant of
the energy in the time of flight from P1 to P2. As
K1 ! 0� the branch of fast solutions converges to
the fast parabolic transfer. It defines the transition
from elliptic to hyperbolic spirals. Note that K1 = 0
behaves as a vertical asymptote: the parabolic solu-
tion along the slow branch requires an infinite time
to reach P2. This is due to the fact that the slow
parabolic transfer connects both points through in-
finity, as discussed from Fig. 4. Increasing K1 from
that point and along the slow branch yields the ficti-
tious set of hyperbolic solutions that connect P1 and
P2 through infinity. An entire family of solutions is
found for every time of flight, simply changing the
value of ⇠.

Figure 9: �v as a function of the control pa-
rameter for a given geometry

The parameterization used to construct Fig. 8
shows that the time of flight does not have any min-
ima. Given the time of flight and the geometry of the
transfer the value of ⇠ can be changed to have di↵er-
ent solutions for the same K1. This statement holds
for a given number of revolutions (defined as part
of the geometry of the transfer) and for prograde or-
bits. There is an equivalent retrograde spiral transfer,
 1 2 (⇡, 2⇡), with a di↵erent time of flight, unless the
transfer is symmetric with respect to ✓1. Figure 8 suggests that di↵erent solutions to Lambert’s prob-
lem can be obtained by changing the number of revolutions, i.e. the transfer angle. Similarly, Fig. 9
displays the �vtot for a family of solutions obtained by changing ⇠, and having fixed the geometry
and time of flight. It shows that, in general, there is a value of ⇠ that minimizes Eq. (33).

⇤ In the limit case r2 = r1 and ⇠ = 1/2 this expression provides

lim
r2!r1

t2 = lim
r2!r1

2
3

(✓2 � ✓1)
2
666664
r3/2

2 � r3/2
1

ln(r2/r1)

3
777775 = (✓2 � ✓1) r3/2

1

which is in fact the normalized time of flight corresponding to a circular Keplerian orbit of radius r1.
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The constraint on the time of flight leaves one degree of freedom (the value of ⇠), apart from
the number of revolutions and the selection of prograde/retrograde motion. The spiral Lambert’s
problem translates into solving for K1 and  1 in

r2 = r(✓2; K1, ⇠, 1, r1, ✓1) (37)
t2 = t(r(✓2); K1, ⇠, 1, r1, ✓1) (38)

The form of the functions r(✓) and t(r) is summarized in Table 1. Recall that the transfer angle ✓2
accounts for the number of revolutions n, so that ✓2 = ✓̃2 + 2n⇡ with ✓2 2 [0, 2⇡].

The retrograde solutions can be found by solving a complementary problem where ✓2 is replaced
by ✓2,ret, defined as ✓2,ret = 2(n + 1)⇡ � ✓̃2. The solution to Eqs. (37) and (38) obtained for the
complementary problem,  1,ret, is modified so that it yields a retrograde orbit, i.e.  1 = 2⇡ �  1,ret.

RESONANT TRANSFERS

Figure 10: Example of a 0 : 1
resonant transfer

The T -symmetry of elliptic and Type II hyperbolic spirals allows
finding resonant solutions to the two-point boundary-value prob-
lem. Assume that an elliptic spiral trajectory intersects the axis of
symmetry in raising regime. Due to the T -symmetry of the tra-
jectory it will always intersect again the axis at that exact point in
lowering regime after su�cient time. Hence, if the axis of sym-
metry is aligned with r2 and the spiral connects P1 and P2 in m
revolutions, then it will always pass again through P2 after n revo-
lutions. We refer to this as an m :n resonant transfer. The departure
flight-direction angle can be selected so that the integers m and n
take certain values.

When defining resonant transfers K1 is fixed and cannot be decided at convenience: it depends
on the geometry of the transfer. The simplest way to formulate the problem is to solve for K1 and
 1 in the system:

r2 = r(✓̃2 + 2m⇡; K1, 1, r1, ✓1)
r2 = r(✓̃2 + 2n⇡; K1, 1, r1, ✓1)

The solution depends on the configuration of the m : n resonance. Solutions only exist for elliptic
spirals and hyperbolic spirals of Type II.

Figure 10 depicts an example of a resonant transfer. The solutions are indirect, by definition. If
m + n is even then the maximum is oriented in the direction of ✓̃2, whereas if m + n is odd then the
maximum corresponds to ✓̃2 + ⇡. The magnitude of the maximum radius depends on n � m and on
the value of m, which indicates how soon the point P2 is reached for the first time.

Property 17: (Arrival velocity for resonant transfers) Given a m : n resonant transfer, the velocity
at P2 is the same after m revolutions and after n revolutions.

Property 18: (Arrival flight-direction angle for resonant transfers) Let  2 denote the flight-direction
angle at P2 after m revolutions, and  02 its value after n revolutions. Then  2 +  02 = ⇡.

Property 19: (Thrust acceleration atP2 for resonant transfers) The magnitude of the thrust acceler-
ation atP2 for resonant passes is the same, but one favors the velocity whereas the other opposes it.
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Figure 11: Time of flight for di↵erent m : n reso-
nant configurations. The size of the markers scales
with the values of the index n > m. Diamonds repre-
sent the time to the first pass, and circles correspond
to the second pass.

The search for resonant transfers is an addi-
tional technique for controlling the time of flight.
Although the configuration of the transfer is given
by discrete values of m and n, it might be useful
for di↵erent mission scenarios. Figure 11 shows
the time of flight for the two resonant passes, t2
and t02, for di↵erent indexes m and n. It is inter-
esting to note that increasing the number of revo-
lutions between the two passes reduces t2, while
the time of flight t02 increases. For constant n in-
creasing m yields slower transfers. Similarly, for
constant m larger values of n increase the time of
flight. When m ! 1 the di↵erence in the time of
flight for the two resonant passes decreases, and
the time of flight approaches a limit value. The
existence of a finite limit relates to the fact that in-
creasing the number of revolutions makes K1,min smaller in magnitude until Sm becomes parabolic
in the theoretical limit (see Fig. 2).

APPLICATIONS

Earth to Mars transfer opportunities

The problem of designing low-thrust transfers between two given bodies can be reduced to the
spiral Lambert’s problem, where the geometry of the transfer and the time of flight come from the
configuration of the system at a given epoch. This technique is applied to finding launch opportu-
nities to Mars. Given the Earth departure date and the Mars arrival date the boundary conditions r1
and r2, and the time of flight are fixed. This approach requires two additional impulsive maneuvers
in order to leave the Earth and to rendezvous with Mars. The thrust is assumed tangential (⇠ = 1/2).

Figure 12: Spiral transfer map from the Earth to Mars

Figure 12 maps the required �v for the corresponding Earth to Mars transfers. Woolley and
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Nicholas15 recently presented a more detailed map showing the delivered mass for di↵erent electric
propulsion systems. They required about 4-10 hours of CPU time for solving 5,000 transfers. In
the proposed simplified model using generalized logarithmic spirals it is possible to reduce the
computational time down to about 1 or 2 minutes. Although less rigorous this method might be
adequate for studying the preliminary space of solutions prior to applying more sophisticated tools.
No numerical integration is required and the only iterative process is that applied to solving for
K1 and  1. The solutions in the figure correspond to 0, 1, and 2 revolutions, and the one with the
minimum �v is plotted. By increasing the number of revolutions the minimum �v regions can be
expanded to stretch the launch windows. The optimal flight time is found to be between two and
three years, which is similar to that reported by Woolley and Richards.15

Asteroid tour

Decomposing the design problem in a series of spiral Lambert’s problems is interesting when
a number of bodies are to be visited sequentially, for example for an asteroid tour. We present a
hypothetical mission to visit four asteroids departing from the Earth. The duration of the mission
is limited to 20 years in order to let the Lambert solver to choose the number of revolutions that
minimizes the �vtot. Long times of flight allow multirevolution transfers and the solution will not
be restricted to the zero-revolutions case.

Table 2 describes each spiral arc in terms of K1,  1 and the number of revolutions, n. The solution
corresponds to quasi-circular spirals, as deduced from the values of the flight direction angle at
departure. The spacecraft does not chase the asteroids but rather finds the adequate phasing to meet
the asteroids in the vicinity of its quasi-circular trajectory. A purely tangential thrust (⇠ = 1/2) is
considered to limit the number of parameters.

Table 2: Characteristics of each transfer leg

Leg K1  1 n TOF [days] ap,max [µm/s2]

#1 �3.2512 ⇥ 10�5 89.99� 4 1713.0 2.5736
#2 +8.8102 ⇥ 10�6 90.01� 5 2093.7 3.7133
#3 +4.3874 ⇥ 10�4 89.93� 3 1559.0 27.286
#4 +2.0625 ⇥ 10�4 89.76� 2 1336.0 14.705

Figure 13 presents the time history of the thrust acceleration corresponding to the optimized
solution. The small acceleration along the first and second legs is a consequence of how close to a
circular orbit the solution is. This phenomenon reduces the discontinuity in the transition between
the two first spiral arcs, requiring a correcting maneuver of only 18.6 m/s. The plane changes for
the last two transfers require higher �v’s. About 1,000 tours can be evaluated per minute.

Figure 13: Timeline for the asteroid tour mission
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CONCLUSIONS
The connections with the Keplerian case found in the definition of the family of generalized loga-

rithmic spirals simplify the study of the spiral Lambert’s problem. The existence of two integrals of
motion provides a clear structure of the solution and yields dynamical properties of theoretical and
practical interest. Classical geometric and dynamic properties of the Keplerian Lambert’s problem
have an equivalent expression in spiral form. All the numerical computations reduce to solving a
system of two equations with two unknowns. No other iterative processes are required. The nu-
merical procedure is simplified thanks to having located special cases for which the transfer can be
solved analytically or there is a specific numerical procedure to compute them. When the time of
flight is fixed there is still a degree of freedom in the solution. The main advantage of the method for
computing low-thrust transfers presented in this paper is its speed and intuitive use. This technique
provides a simple tool for exploring wide spaces of solutions that would be intractable otherwise.
Global searches and optimization scenarios are some examples of problems where a cost function
that is expensive to evaluate will restrict the search process.
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