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INTRODUCING A DEGREE OF FREEDOM IN THE FAMILY OF
GENERALIZED LOGARITHMIC SPIRALS

Javier Roa∗and Jesús Peláez†

The versatility of the family of generalized logarithmic spirals is improved by
introducing a degree of freedom in the solution. The low-thrust acceleration profile
now includes a control term that affects both the magnitude and the direction of
the thrust. Exact and fully analytic solutions to the trajectory, the velocity, the
time of flight, etc. are made available. Two integrals of motion are preserved.
The first one is a generalization of the equation of the energy and depends on the
values of the control parameter. The second one relates to the equation of the
angular momentum. The problem of finding spiral transfers between two arbitrary
state vectors reduces to solving one algebraic equation with one unknown. The
degree of freedom allows fixing the time of flight of the transfer. If the time of
flight is fixed, then there are two equations with two unknowns. No other iterative
procedures are required. Coast arcs can be introduced in the solution naturally.
An explicit expression for the maximum acceleration reached along the transfer is
provided. Thanks to the symmetry properties of the solution a simple algorithm
for generating periodic orbits is presented. An arbitrary number of intermediate
nodes can be introduced to improve the flexibility of the solution when facing
optimization problems. An example of a low-thrust gravity-assist Earth-Mars-
Ceres trajectory shows that the solution is comparable to that obtained with other
preliminary design techniques.

INTRODUCTION

Generating an adequate initial guess for low-thrust trajectory optimization is a critical task. The
optimizer requires a sufficiently good seed in order to converge to an optimal. Providing an initial
guess for the indirect method is particularly difficult since the costates need to be initialized but they
lack an intuitive or physical interpretation.

Prior to the optimization phase the space of solutions is explored using simplified methods. These
preliminary design techniques are not conceived to find the optimal solution, but rather to bound the
intervals in which the accurate search will be carried out. Shape-based methods have been widely
applied to preliminary low-thrust mission design. The trajectory is assumed to have a certain shape
and the design problem reduces to adjusting a number of shape coefficients. This method dates
back to the 50’s, when Bacon1 and Tsu2 found the thrust required to follow a logarithmic spiral.
Petropoulos and Longuski3 proposed a more flexible curve, the exponential sinusoid, that they im-
plemented into an automatic mission design tool including gravity-assist maneuvers. Pascale and
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Vasile4 introduced the pseudo-equinoctial elements for mission design. Gondelach and Noomen5

proposed a different approach based on the definition of the trajectory in the space of velocities.

Analytic solutions are the core of preliminary trajectory design methods. Different authors have
explored specific thrust profiles looking for closed-form solutions. Variants of the constant radial
thrust problem are good examples. Originally formulated by Tsien6 in 1953, it has been recently re-
visited be Izzo and Biscani7 and by Urrutxua et al.8 The former introduced the Weierstrass functions
whereas the latter solved the problem with the Dromo formulation.9, 10, 11 An interesting property
of the radial thrust problem is the conservation of two integrals of motion. This allows following an
energy-driven approach and simplifies the interpretation of the solutions.12

Roa and Peláez13, 14 combined these three elements into a novel method: the design process
reduces to adjusting some shape coefficients, the motion is completely solved in closed-form (in-
cluding the time of flight), and there are two first integrals. They referred to this new solution as the
family of generalized logarithmic spirals, because the thrust profile is that used by Bacon to render
logarithmic spirals. The family is classified in elliptic, parabolic and hyperbolic spirals by means
of the constant of the generalized energy. In this paper we extend the flexibility of this solution by
introducing a control parameter, which yields an additional degree of freedom. This overcomes the
limitations of the method reported in the original papers, like the need of impulsive maneuvers in
order to leave a circular orbit. The result is a fully analytic solution, physically intuitive thanks to
the conserved quantities, and capable of finding preliminary solutions like the ones generated with
previous methods. Advantages with respect to them are the fact that the time of flight is solved ana-
lytically and that the trajectory admits constraints on the initial and final velocities simultaneously.

The paper is organized as follows. The next section formulates the equations of motion. In the
following three sections the problem is solved for the case of elliptic, parabolic and hyperbolic
spirals. Then spiral transfers between arbitrary state vectors are solved, and a method for generating
periodic orbits is presented. Finally we solve an example of a low-thrust transfer from the Earth to
Ceres with a gravity-assist maneuver at Mars.

EQUATIONS OF MOTION

Consider the motion of a particle in a central gravity field with µ = 1 and perturbed by a thrust
acceleration of the form:

ap =
1
r2 (ξ cosψ t + η sinψn) (1)

where ξ and η are constants that behave as control parameters, and ψ is the flight-direction angle.
The angle between the radial direction and the thrust vector will be denoted α. The acceleration ap
is written in the intrinsic frame T = {t,n,b}. Frame T is defined by the basis

t =
v
v
, b =

r × v
rv

, n = b × t

Setting ξ = 1/2 and η = 0 in Eq. (1) defines the tangential thrust profile that originated the family
of generalized logarithmic spirals.13, 14 The case ξ = 0 and η = 0 corresponds to Kepler’s problem.
Combining this thrust profile with the gravitational acceleration

ag = −
1
r2 (cosψ t − sinψn)
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yields the equations of motion projected on the intrinsic frame:

dv
dt

=
ξ − 1

r2 cosψ (2)

v
d
dt

(ψ + θ) =
1 + η

r2 sinψ (3)

dr
dt

= v cosψ (4)

dθ
dt

=
v
r

sinψ (5)

In the limit case ξ → 1 the thrust compensates the gravitational attraction of the central body and
the velocity remains constant. We consider this a natural limit to the control parameter, so ξ < 1.
The control parameters ξ and η can be bounded from limitations on the local ratio between the thrust
acceleration and the gravitational attraction. Figure 1 sketches the geometry of the problem.

Figure 1: Geometry of the problem

Equation (4) defines the radial velocity in terms of the
flight-direction angle and determines the regime of the tra-
jectory. The spiral is said to be in raising regime if it is trav-
eling away from the center of attraction, ṙ > 0. In this case
it is ψ ∈ (0, π/2) and cosψ > 0. If the spiral is approaching
the center of attraction, ṙ < 0, it is in lowering regime. This
yields ψ ∈ (π/2, π) and cosψ < 0. The limits ψ = 0 and
ψ = π are omitted since they correspond to degenerate recti-
linear orbits. When considering orbit transfers between two
given points the transfer is called direct if there are no transi-
tions between regimes. Conversely, for indirect trajectories
the spiral transitions between regimes during the transfer.

Dividing Eqs. (2) and (4) provides

dv
dr

=
ξ − 1
r2v

=⇒ v dv =
ξ − 1

r2 dr

The resulting expression is an equation of separate variables than can be integrated easily to define
an integral of motion:

v2 −
2
r

(1 − ξ) = K1 (6)

which introduces a control parameter in the generalization of the equation of the energy found by
Roa and Peláez.13 The constant of motion K1 is solved from the initial conditions

K1 = v2
0 −

2
r0

(1 − ξ) (7)

If ξ = 0 the integral of motion (6) reduces to the equation of the Keplerian energy Ek, with

K1(ξ = 0) ≡ 2Ek = v2 −
2
r

The values of the constant K1 yield a natural classification of the resulting trajectories: i) (K1 < 0,
Elliptic spirals) The trajectory is bounded and never escapes to infinity. ii) (K1 = 0, Parabolic spi-
rals) They are equivalent to the logarithmic spirals. The particle reaches infinity with zero velocity
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along a spiral branch. iii) (K1 > 0, Hyperbolic spirals) The spiral exhibits an asymptote when ap-
proaching infinity, where the velocity is finite and nonzero. Type I spirals connect the origin with
infinity. Type II spirals are symmetric, they have two asymptotes and there is a minimum radius that
bounds the trajectory.

Dividing Eqs. (2) and (3) provides the relation

dv
v

=
1 − ξ
1 + η

cotψ (dψ + dθ)

By virtue of Eqs. (4–5) it follows an equation of separate variables

dv
v

+
1 − ξ
1 + η

(
cotψ dψ +

dr
r

)
= 0

that can be integrated analytically and defines a first integral:

ln v +
1 − ξ
1 + η

[
ln(sinψ) + ln r

]
= ln C =⇒ rvγ sinψ = K2 (8)

where K2 is a constant of motion to be solved from the initial conditions

K2 = r0vγ0 sinψ0 (9)

and γ = (1 + η)/(1 − ξ). In the Keplerian case (ξ = 0 and η = 0) it is γ = 1, and the integral of
motion (8) shows that

K2 ≡ hk = rv sinψ

This means that K2 reduces to the angular momentum of the Keplerian solution, hk.

For γ = 2 (or η = 1 − 2ξ) the integral of motion (8) is the generalization of the conservation of
the angular momentum discussed by Roa and Peláez.14 In the following sections the original family
of generalized logarithmic spirals is extended by introducing the control parameter ξ in the solution
and assuming γ = 2, so η = 1 − 2ξ. Note that for γ = 1 it is η = −ξ. The equations of motion can
be understood as Kepler’s problem with a modified gravitational parameter.

The direction of the thrust vector

The tangent and normal vectors, t and n, can be referred to the orbital frame L = {i, j,k},

i =
r
r
, k =

h
h
, j = k × i

by means of t = cosψ i + sinψ j and n = − sinψ i + cosψ j. The thrust acceleration from Eq. (1)
becomes

ap =
1
r2

{
[ξ cos2 ψ − (1 − 2ξ) sin2 ψ] i + (1 − ξ) sinψ cosψ j

}
The angle between the thrust direction and the radial direction, α, is defined by

tanα =
(1 − ξ) sin 2ψ

3ξ − 1 + (1 − ξ) cos 2ψ
(10)

Roa and Peláez14 noted that the original family of generalized logarithmic spirals (ξ = 1/2 and
η = 0) requires an impulsive ∆v for departing from circular orbits. This comes from the combination
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of two factors: First, the velocity on the circular orbit is v = 1/r, what makes K1 = 0 and the
trajectory is a pure logarithmic spiral. In this case the flight-direction angle ψ is constant. Second,
on a circular orbit it is always ψ = π/2 so the thrust vanishes. Since ψ remains constant along the
logarithmic spiral the thrust acceleration will always be zero and the particle describes a Keplerian
circular orbit. In the general case η , 0, the presence of a normal acceleration overcomes this
limitation, and impulsive maneuvers are not required.

Symmetries

Two types of symmetries can be found in the original family of generalized logarithmic spi-
rals.13, 14 First, the concept of T -symmetry is an intrinsic property of the trajectory: if θm defines
the direction of the axis of T -symmetry then the trajectory satisfies r(θm − δ) = r(θm + δ). Here
δ denotes an arbitrary angular displacement. Second, the C -symmetry refers to pairs of spirals. It
arises from the fact that Eq. (9) relates to the departure flight-direction angle by means of its sine.
This function is symmetric with respect to ψ0 = π/2, meaning that there are two different values
of ψ0 that yield the same value of K2. One trajectory is initially in raising regime, whereas its
C -symmetric is in lowering regime. Both trajectories share the same values of K1 and K2.

ELLIPTIC SPIRALS

Elliptic spirals relate naturally to Keplerian ellipses; the particle never escapes the potential well
of the central body. When propagated forward and backwards in time the spiral falls towards the
origin. The trajectory is T -symmetric and the axis of T -symmetry is equivalent to the apse line.
There is a natural transition from raising regime to lowering regime at the apoapsis of the spiral.
They are defined by negative values of the constant K1. This determines the values of ξ that yield
elliptic spirals, ξ < 1 − r0v2

0/2.

From the integral of motion (8) and the condition sinψ ≤ 1 it must be

K2

rvγ
≤ 1 =⇒ r

[
K1 +

2
r

(1 − ξ)
]γ/2
≥ K2

Thanks to the assumption γ = 2 the previous expression simplifies to K1r +2(1−ξ) ≥ K2 and shows
that there is a maximum radius for the case of elliptic spirals (K1 < 0):

rmax =
2(1 − ξ) − K2

(−K1)

The condition on ξ that makes K1 < 0 ensures rmax > 0. The maximum radius can be seen as the
apoapsis of the spiral. The velocity at rmax is

vm =

√
K2

rmax
=

√
−K1K2

2(1 − ξ) − K2

It is the minimum velocity that a particle can have on an elliptic spiral.

The flight-direction angle can be solved from the integral of motion (8) and results in

sinψ =
K2

rvγ
≡

K2

rv2 =
K2

2(1 − ξ) + K1r
(11)
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Only positive values of sinψ will be considered. This restricts the solution to the case of prograde
motions. Retrograde motions can be solved in an analogous way but are omitted for clarity. From
Eq. (11) it follows

cosψ = ±

√
[2(1 − ξ) + K1r]2 − K2

2

2(1 − ξ) + K1r
(12)

The choice of the sign depends on the regime of the spiral. If the spiral is in raising regime it is
ψ < π/2 and therefore cosψ > 0. If the spiral is in lowering regime it is cosψ < 0. In what remains
of the paper the first sign will always correspond to raising regime, and the second to lowering
regime.

For K1 < 0 Eq. (11) shows that K2 is constrained to the open interval 0 < K2 < 2(1 − ξ). The
tangent of ψ is obtained by combining Eqs. (11) and (12),

tanψ = ±
K2√

[2(1 − ξ) + K1r]2 − K2
2

and introducing this result in the quotient of Eqs. (5) and (4) it follows

dθ
dr

=
tanψ

r
=⇒ dθ = ±

K2 dr

r
√

[2(1 − ξ) + K1r]2 − K2
2

(13)

Integrating this equation determines the evolution of the polar angle θ as a function of the radial
distance. This angle can be referred to the axis of symmetry, defined by θ(rmax) = θm, introducing
the spiral anomaly:

β =
`

K2
(θ − θm) (14)

The spiral anomaly evolves according to

β(θ) = ∓

∣∣∣∣∣∣arccosh
{

rmax

r
−

2(1 − ξ)
K2

(
1 −

rmax

r

)}∣∣∣∣∣∣ (15)

having introduced the auxiliary parameter ` =

√
4(1 − ξ)2 − K2

2 . The angle θm defines the orienta-
tion of the axis of symmetry, and can be solved directly from the initial conditions.

The equation for the trajectory r = r(θ) is solved in terms of the spiral anomaly by inverting Eq.
(15),

r(θ)
rmax

=
2(1 − ξ) + K2

2(1 − ξ) + K2 cosh β(θ)
(16)

The T -symmetry of the trajectory is easily verified from this equation. This proves that introducing
the control parameter ξ does not break the symmetries of the original family of solutions.

The time of flight

The time relates to the radial distance by means of the equation for the radial velocity, Eq. (4):

dt
dr

=
1

v cosψ
= ±

√
r[2(1 − ξ) + K1r]√

`2 + K1r[K1r + 4(1 − ξ)]
(17)
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This equation is integrated to provide the time of flight:

t(r) − tm = ±
rv
K1

√
1 − sinψ
1 + sinψ

±
2[2(1 − ξ)k′2∆Π − K2∆E]

√
1 − ξ

(−K1)3/2
√

K2

that is referred to the time of passage through the apoapsis rmax, denoted tm. The solution is given
in terms of the complete and the incomplete elliptic integrals of the second, E(φ, k), and third kinds,
Π(p; φ, k), namely ∆E = E(φ, k) − E(k) and ∆Π = Π(p; φ, k) − Π(p; k). Their argument, modulus
and parameter are, respectively:

sin φ =
vm

v

√
2

1 + sinψ
, k =

√
−K1rmax

4(1 − ξ)
, p =

K1rmax

2K2

The complementary modulus k′ is defined as k′ =
√

1 − k2. The time of apoapsis passage is solved
from the initial conditions through a direct particularization of the equation of the time of flight.

PARABOLIC SPIRALS

Parabolic spirals are equivalent to logarithmic spirals.14 For arbitrary values of ξ the velocity is
no longer the local circular velocity, but a generalization in terms of the control parameter:

v(r) =

√
2(1 − ξ)

r

This equation shows how changing the value of the control parameter yields logarithmic spirals but
with different velocity profiles. The value of the control parameter that makes the spiral logarithmic
given a set of initial conditions is ξ = 1 − r0v2

0/2.

Equation (11) governs the evolution of the flight-direction angle. Imposing K1 = 0 in this equa-
tion yields sinψ = K2/[2(1 − ξ)], so the flight-direction angle remains constant during the propaga-
tion. The differential equation connecting the polar angle θ with the radial distance is simply

dθ
dr

=
tanψ

r
= ±

K2

r`

The equation of the trajectory takes the form

r(θ)
r0

= e±`(θ−θ0)/K2 (18)

Observe that ±`/K2 = cotψ, which is constant, and therefore Eq. (18) is no other than the equation
of a logarithmic spiral. The thrust acceleration in this case is not tangential to the trajectory, because
the normal component defined in Eq. (1) is not zero in general. In fact, Eq. (10) shows that the
thrust vector forms a constant angle with the radial direction.

As long as K1 = 0 the trajectory will be a logarithmic spiral. If the flight-direction angle is fixed
then changing the value of the control parameter ξ changes the magnitude of the velocity on the
spiral, although the trajectory remains the same.
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The time of flight

Imposing the condition K1 = 0 in Eq. (17) results in a simple expression that can be integrated to
provide the time of flight

t(r) − t0 = ±
2
√

2(1 − ξ)
3`

(
r3/2 − r3/2

0

)
This expression is referred directly to the initial conditions of the problem. The sign depends on the
regime of the spiral like in the previous cases. It takes an infinite time to escape to infinity, meaning
that parabolic spirals describe a spiral branch.

HYPERBOLIC SPIRALS

The family of hyperbolic generalized logarithmic spirals is defined by K1 > 0. The integral
of motion (6) sets no limits to the values that the radius can take. In fact, from this expression
it follows that a particle traveling along a hyperbolic spiral reaches infinity with a finite, nonzero
velocity limr→∞ v2 = K1 ≡ C3. The constant K1 is equivalent to the characteristic energy C3 and
readily provides the hyperbolic excess velocity. Once the initial conditions are fixed hyperbolic
spirals appear for values of the control parameter satisfying ξ > 1 − r0v2

0/2.

Equation (11) sets a dynamical constraint that relates the radius with K1 and K2, because sinψ ≤
1. When K1 > 0 this expression holds even for K2 > 2(1 − ξ), unlike for elliptic spirals, but the
radius must then satisfy

r ≥
K2 − 2(1 − ξ)

K1

This equation defines the minimum radius that the spiral can reach. This behavior suggests that there
are two different subfamilies of hyperbolic spirals, as it has already been anticipated. Hyperbolic
spirals of Type I correspond to K2 < 2(1 − ξ). The previous constraint on the radius holds naturally
so they escape to infinity if they are in raising regime, and fall to the origin if in lowering regime.
Hyperbolic spirals of Type II (K2 > 2(1 − ξ)) exhibit a minimum radius where the spiral transitions
from lowering regime to raising regime. These spirals describe two asymptotes. The two types of
spirals are separated by the limit case K2 = 2(1 − ξ).

Hyperbolic spirals of Type I

This subfamily of spirals corresponds to K1 > 0 and K2 < 2(1 − ξ). The polar angle is solved by
integrating Eq. (13) and becomes:

θ(r) − θ0 = ±
K2

`
ln

{
r sinψ

r0 sinψ0

[
2(1 − ξ) − K2 sinψ0 + ` | cosψ0|

2(1 − ξ) − K2 sinψ + ` | cosψ|

]}
The limit r → ∞ determines the orientation of the asymptote:

θas = θ0 ±
K2

`
ln

[
K2(ζ − ` − K2 sinψ0 + ` | cosψ0|)

r0K1ζ sinψ0

]
(19)

having considered the auxiliary variable ζ = 2(1 − ξ) + `.

This type of spiral is not T -symmetric so the definition of the spiral anomaly given in Eq. (14)
cannot be applied directly. Redefining the angular parameter β(θ) as

β(θ) = ±
`

K2
(θas − θ)
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the equation of the trajectory becomes

r(θ) =
ζ`2/K1

sinh β
2

[
4ζ(1 − ξ) sinh β

2 + (ζ2 − K2
2 ) cosh β

2

]
The sign of β(θ) depends on the regime of the spiral. So it does the value of the orientation of
the asymptote given in Eq. (19). The regime of the spiral is easily determined from ψ0. It is
straightforward to verify the existence of an asymptote for θ = θas (β = 0).

The time of flight Inverting the equation of the radial velocity and integrating the resulting ex-
pression yields the time of flight,

t(r) = K4 ±

{
rv
K1

√
1 + sinψ
1 − sinψ

−
2 {E − (1 − p)Π}

√
K2(1 − ξ)

K3/2
1

}
written in terms of a constant K4. This constant can be easily solved from the previous equation
particularized at the initial time. The solution is given in terms of the incomplete elliptic integrals
of the second and third kinds, E = E(φ, k) and Π = Π(p; φ, k), being its arguments:

sin φ =

√
K1r sinψ

pK2(1 − sinψ)
, k =

1
2

√
2(1 − ξ) + K2

1 − ξ
, p =

2(1 − ξ) + K2

2K2

Hyperbolic spirals of Type II

For the case K1 > 0 and K2 > 2(1 − ξ) the condition sinψ ≤ 1 provides

rmin =
K2 − 2(1 − ξ)

K1
(20)

meaning that the spiral will never reach the origin. If the spiral is initially in lowering regime it will

reach rmin and at this point it transitions to raising regime. In this case ` reads ` =

√
K2

2 − 4(1 − ξ)2.

The polar angle is solved from Eq. (13) and yields:

θ(r) − θm = ±
K2

`

π2 + arctan

2(1 − ξ)[2(1 − ξ) + K1r] − K2
2

`
√

[2(1 − ξ) + K1r]2 − K2
2


 = ±

K2

`

{
π

2
+ arctan

[
2(1 − ξ) − K2 sinψ

` | cosψ|

]}

The angle θm defines the direction of the axis of T -symmetry. It can be solved from the initial
conditions and the previous equation. Note that its definition depends on the regime of the spiral,
because there are two possible C -symmetric trajectories.

This equation can be inverted to provide the equation of the trajectory

r(θ)
rmin

=
2(1 − ξ) + K2

2(1 − ξ) + K2 cos β
(21)

having introduced the spiral anomaly:

β(θ) =
`

K2
(θ − θm)
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Since the equation for the trajectory depends on the spiral anomaly by means of cos β the trajectory
is T -symmetric. The fact that there are two different values of β that cancel the denominator proves
the existence of two distinct asymptotes. The asymptotes can be solved from the limit r → ∞ in the
equation for the polar angle and correspond to

θas = θm ±
K2

`

{
π

2
+ arctan

[
2(1 − ξ)

`

]}
The two asymptotes are given by the two different signs that appear in this equation. They are
symmetric with respect to the apse line θm.

The time of flight The time of flight is obtained following the same technique applied to elliptic,
parabolic and hyperbolic spirals of Type I. Integrating the inverse of the radial distance renders

t(r) − tm = ∓

{
[K2 + 2(1 − ξ)]K2E − K1rmin[K2F + 2(1 − ξ)Π]

K1
√

K1K2[K2 + 2(1 − ξ)]

+
2(1 − ξ)

K3/2
1

arcsinh

 √
2K1r(rv2 − K2)

2
√

K2rv2 + (rv2 − K2)(1 − ξ)

 − v
K2

1

√
r2v4 − K2

2

}
The solution is given in terms of the incomplete elliptic integrals of the first, F ≡ F(φ, k), second,
E ≡ E(φ, k), and third kinds, Π ≡ Π(p; φ, k). The arguments of the elliptic integrals are

sin φ =

√
2(1 − ξ)(1 − sinψ)

k
√

K2 − 2(1 − ξ) sinψ
, k =

2
√

1 − ξ√
K2 + 2(1 − ξ)

, p =
2(1 − ξ)

K2

The time of flight is referred to tm. It denotes the time of periapsis passage and is solved easily from
the initial conditions.

ORBIT TRANSFERS

In this section the family of generalized logarithmic spirals is used for designing different transfer
orbits. The control parameter provides a degree of freedom that can be adjusted at convenience
to match certain requirements. In addition, the transfer can be decomposed in a number of arcs
with different values of the control parameter, or even considering Keplerian arcs. The transition
between two spiral arcs with different values of ξ is equivalent to changing the thrust magnitude and
direction. No adjustments in the orbital velocity are required. The control parameter only affects the
value of the constant K1. By imposing γ = 2 the constant K2 is made independent from the control
parameter. Changing the value of ξ adjusts the values of the constant of the generalized energy, K1,
but not the values of K2. If K2 needs to be changed along the transfer a coast arc will be introduced.

Bitangent transfers

Consider the spiral transfer between two circular orbits of radii r0 and rF . Along a spiral arc the
evolution of the flight-direction angle ψ is monotonic, so if it is initially ψ0 = π/2 (tangential de-
parture) it is not possible to have ψF = π/2 (tangential arrival) with one single spiral arc. Bitangent
transfers are the composition of at least two continuous spiral arcs with different values of ξ. When
ψ = π/2 the spiral is either a hyperbolic spiral at rmin or an elliptic spiral at rmax. Parabolic spirals
are not considered because of having a constant flight-direction angle.
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The value of the constant K2 corresponding to the first arc is K2,1 = r0v2
0 sinψ0 = 1. Since

the control parameter does not affect the value of K2 both spiral arcs share the same values of
K2 ≡ K2,1 = K2,2 = 1. The constant of the generalized energy on the first spiral arc takes the form

K1,1 = v2
0 −

2(1 − ξ1)
r0

=
2ξ1 − 1

r0

For transfers with r0 < rF the first arc is a hyperbolic spiral of Type II (with r0 = rmin) and the
second arc is an elliptic spiral (with rmax = rF ). The condition r0 = rmin is satisfied naturally when
imposing K2 = 1. The radial distance at the transition point A is solved from the equation of the
trajectory, Eq. (21):

rA

r0
=

3 − 2ξ1

2(1 − ξ1) + cos `1θA
(22)

Similarly, the arrival spiral arc is defined by

K1,2 = v2
F −

2(1 − ξ2)
rF

=
2ξ2 − 1

rF

and K2,2 = 1. From this equation it immediately follows that rmax = rF . The conditions at the
transition point are obtained from the equation of the trajectory Eq. (16):

rA

rF
=

3 − 2ξ2

2(1 − ξ2) + cosh{`2[θA − (2n + 1)π]}
(23)

The maximum radius occurs at θm = (2n + 1)π, where n is the number of revolutions. Dividing Eqs.
(22) and (23) provides a relation between ξ1 and ξ2,

rF

r0
=

3 − 2ξ1

3 − 2ξ2

{
2(1 − ξ2) + cosh{`2[θA − (2n + 1)π]}

2(1 − ξ1) + cos `1θA

}
(24)

Due to the conservation of K1 the values of K1,2 at F and A are the same. The velocity-matching
condition follows from the integral of the generalized energy,

2ξ2 − 1
rF

=
2ξ1 − 1

r0
+

2(ξ2 − ξ1)
rA

This condition yields an expression of ξ2 as a function of ξ1 and the boundary conditions,

ξ2 =
[(1 − 2ξ1)rF − r0]rA + 2ξ1r0rF

2r0(rF − rA )
(25)

The problem of designing a bitangent transfer then reduces to solving for ξ1 in Eq. (24). The value
of the control parameter on the second arc, ξ2, is given by Eq. (25). There is one degree of freedom
in the solution. Under this formulation it corresponds to the angular position of the node defining
the transition point, θA . In addition, the number of revolutions can be adjusted by changing the
values of n.

In a similar fashion, when r0 > rF the equation to be solved for ξ1 transforms into

rF

r0
=

3 − 2ξ1

3 − 2ξ2

{
2(1 − ξ2) + cos{`2[θA − (2n + 1)π]}

2(1 − ξ1) + cosh `1θA

}
(26)

Recall that `i =
√
|1 − 4(1 − ξi)2|. Equation (25) still holds in this case.
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Figure 2: Bitangent transfers with
◦ marking the transition point

Figure 2 shows two examples of bitangent transfers with 0
and 1 revolutions. The problem is based on an Earth to Mars
transfer, where rF /r0 = 1.527. The transition point is selected
arbitrarily. The departure spiral arc corresponds to a hyper-
bolic spiral of Type II in raising regime, whereas the second
arc corresponds to an elliptic spiral in lowering regime. Their
minimum and maximum radii are r0 and rF , respectively.

Low-thrust transfers are considered because they typically
allow increasing the mass delivered to the final orbit. Figure 3
compares the fraction of mass that can be inserted into the final
orbit using the Hohmann and the spiral transfers. The values
of the specific impulse for the electric propulsion system and
for the impulsive maneuvers are 2500 s and 250 s, respectively.
In this example the 0-revolutions spiral transfer allows to deliver over 50% of the initial mass, and
the 1-revolution case increases this percentage up to 75%. For the case of the Hohmann transfer the
fraction of delivered mass falls to roughly 10% of the initial mass.

Figure 3: Fraction of mass delivered to the
final circular orbit

The time of flight for the different types of trans-
fers is plotted in Fig. 4. The 0-revolutions spiral
transfer is geometrically equivalent to the Hohmann
transfer and the time of flights are comparable. De-
pending on the transition point spiral transfers that
are either slower or faster than the Hohmann transfer
can be found. Increasing the number of revolutions
can reduce the propellant consumption, but the time
of flight grows significantly. In this example the bi-
tangent spiral transfer with one revolution increases
the time of flight by a factor of three when compared
with the Hohmann transfer, and for two revolutions
the time of flight increases approximately by a factor
six.

Figure 4: Time of flight for Earth to Mars
bitangent transfers

Figure 3 suggests that there is a particular posi-
tion of the transition point θA that maximizes the
mass delivered into orbit. The 0-revolutions case
is geometrically equivalent to the Hohmann trans-
fer and can be compared directly in terms of mass
delivered into orbit and time of flight. When con-
sidering the optimal transition point the spiral trans-
fer delivers into Martian orbit 52.74% of the launch
mass, whereas the Hohmann transfer can only de-
liver 10.12%. The time of flight for the Hohmann
transfer is 259.38 d. The spiral transfer turns out to
be faster, reducing the time of flight to 257.05 d.

The optimum spiral transfer is found by adequately selecting the transition point θA . Under the
assumption that the specific impulse Isp remains constant the mass fraction is given by Tsiolkovsy’s

12



equation, where the ∆v due to thrust is the time integral

∆vthr =

∫ tA

t0
ap1 dt +

∫ tF

tA

ap2 dt

The integral of the thrust acceleration is decomposed in two arcs: the acceleration along the depar-
ture arc, ap1, is defined by ξ1, while the acceleration along the second arc, ap2, is defined by ξ2. The
change in the thrust profile at θA is the correction that the initial arc requires in order to meet the the
boundary conditions at arrival. Hence, the optimal solution is the one that the requires the smallest
correction, i.e. the transfer on which the difference |ap1 − ap2| at the transition point is minimum.
The optimum transition point for maximizing the mass delivered into orbit is the one that minimizes
the function fb(θA ) = |ap1 − ap2|.

Transfers between arbitrary state vectors. Introducing coast arcs

The integral of motion (6) readily shows that changing the control parameter ξ only adjusts the
value of K1. The first integral (8) is not affected by the control parameter when the value of γ is
fixed. If the values of K1 on the departure and arrival spiral arcs are the same no further corrections
are required. However, in a general case K2,1 , K2,2 and therefore the constant K2 needs to be
adjusted. A coast arc is introduced in order to connect the departure and arrival spiral arcs with the
adequate values of K2. The first spiral arc links the departure point with a node A . A Keplerian
orbit connects A and B, and the final thrust leg connects B and the final point, F . If the difference
between K2,1 and K2,2 is small the coast arc will be short.

The transfer from an initial position and velocity vectors, r0 and v0, to a given state rF and vF
imposes three constraints on the solution at θF . These are r = rF , v = vF and ψ = ψF . The
control parameters on both spiral arcs ξ1 and ξ2 can be adjusted to solve the transfer, together with
the orientation of the nodes A and B, defined by θA and θB . Having four variables for only three
constraints there is a degree of freedom in the solution. The preferred choice is to use the position
of the first node A as the free parameter and then solve for ξ1, ξ2 and the position of node B.

The initial conditions define the value of the constants K1 and K2 on the first spiral arc:

K1,1 = v2
0 −

2(1 − ξ1)
r0

and K2,1 = r0v2
0 sinψ0

just like the arrival conditions define K1,2 and K2,2 by replacing 0 by F and 1 by 2 in the previ-
ous. The first arc can be propagated to A using the corresponding equation for the trajectory. The
conditions at A provide the eccentricity, semimajor axis and argument of periapsis of the Keplerian
orbit:14

e =

√
K2

2,1 + 1 − 2K2,1 sinψA (27)

a =
rA

2ξ1 − K1,1rA
(28)

ω = atan2(− sin θA − K2,1 cos(θA + ψA ),K2,1 cos(θA + ψA ) − sin θA ) (29)

The values of K1 that a spiral will take if the thrust is switched on again at some point of the
Keplerian orbit are K1 = (2aξ − r)/(ra). The velocity-matching condition at B then yields

2aξ2 − rB

rBa
= v2

F −
2(1 − ξ2)

rF

13



Recall that the semimajor axis and eccentricity have already been solved from the conditions at A .
The state at node B is solved analytically from Kepler’s problem. The remaining two constraints
are set on the values of the radius and flight-direction angle at F . In sum, the variables {ξ1, ξ2, θB }

are solved from the system of nonlinear equations:

2aξ2 − rB

rBa
+

2(1 − ξ2)
rF

− v2
F = 0

rF − r(θF ; K1,2,K2,2, rB , θB , ξ2) = 0

ψF − ψ(θF ; K1,2,K2,2, rB , θB , ξ2) = 0

(30)

The conditions at B have already been obtained by propagating the Keplerian arc.

Figure 5: Evolution of K2 and ψ on a Keplerian
orbit (e = 0.3).

Similarly, the evolution of K2 on the coast leg
renders

K2 =
√

1 + 2e cos ν + e2 (31)

where ν denotes the true anomaly. In Fig. 5 it
is possible to study the evolution of the values
of K2 and the flight-direction angle depending
on the position inside a Keplerian orbit. Spirals
arriving/departing in raising regime correspond
to points in the Keplerian orbit that are between
periapsis and apoasis, whereas spirals in lower-
ing regime arrive to/depart from points between
apoapsis and periapsis.

At B the true anomaly is simply νB = θB −ω.
The position of the node B can be solved from
the compatibility equation on K2, which yields
the relation

cos νB =
K2

2,2 − (1 + e2)

2e
(32)

There are two possible solutions to this equation depending on which quadrant the solution is in.
As shown in Fig. 5 if νB ∈ (0, π) the second spiral arc will be in raising regime at B. If νB then
the second spiral departs in lowering regime. If rB < rF then νB ∈ (0, π), and if rB > rF then
νB ∈ (π, 2π). This criterion is valid for direct transfers from B to F . In most practical applications
the spirals are direct. If the spiral transfer is indirect then the previous criterion is inverted.

The velocity-matching condition provides the relation

ξ2 =
[2a − rF (1 + av2

F )]rB

2a(rB − rF )
(33)

Thanks to the previous expressions the system of equations defined in Eq. (30) reduces to one single
transcendental equation,

rF − r(θF ; K12,K22, rB , θB , ξ2) = 0 (34)

to be solved for ξ1. On every iteration the values of {ξ2, θB } are solved from Eqs. (33) and (32),
respectively. Recall that θB = ω + νB .
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(a) Circularization (b) Earth to Ceres

Figure 6: Examples of transfers between arbitrary
orbits with short coast arcs. The departure point is ♦,
the points A and B are denoted by ◦, and the arrival
point is ×. The coast arcs are plotted using dashed
lines.

Figure 6 shows two examples of generic spi-
ral transfers including a coast arc. The first
example is the result of circularizing an ellip-
tic orbit considering 0-revolutions spiral arcs.
The switch point A can be adjusted at conve-
nience. Two different solutions to the same
transfer problem are presented in the first ex-
ample. The second example corresponds to an
Earth to Ceres transfer. In this case the correc-
tion required on K2 is small and therefore the
coast arc is almost negligible. Different solu-
tions are displayed corresponding to different
positions of the transition point A . In this ex-
ample the coast arc is so small that it cannot be
distinguished.

GENERIC PERIODIC ORBITS

Relying on the symmetry properties of the generalized logarithmic spirals arbitrary periodic orbits
can be generated. Numerically the problem reduces to solving a bitangent spiral transfer where the
orientation of the arrival point is adjusted depending on the periodicity conditions. Periodic orbits
are constructed by combining elliptic and Type II hyperbolic spiral arcs; the exterior radius of the
orbit corresponds to rmax, whereas the interior radius defines rmin. Only two arcs are required to
build a periodic orbit; they are repeated sequentially according to the symmetries of the spirals.

Figure 7: Construction of an interior periodic
orbit with s = 3

Consider a periodic orbit with s = 3, 4, 5, . . .
lobes. If the spiral departs from the maximum radius
(θ = 0) then the minimum radius will be reached
at θ = πΛ(s). The parameter Λ(s) depends on the
number of lobes and determines the configuration
of the periodic orbit. Typical values of Λ(s) are
Λ(s) = (s − j)/s, with j = 1, 2, . . . , s − 1. Given
a transition point θA the method derived for solving
coaxial bitangent transfers can be extended to com-
pute the values of ξ1 and ξ2 defining a generic pe-
riodic orbit. When the periodic orbit intersects it-
self at least once it is called an interior periodic orbit
( j < s − 1), and exterior otherwise ( j = s − 1). Fig-
ure 7 depicts the construction of an interior periodic
orbit with s = 3 and Λ = (s − 1)/s = 2/3.

The symmetry properties of the spirals guarantee
that if the second spiral arc reaches a minimum rmin = rin at θm = (s − 1)π/s then the resulting
trajectory is a periodic orbit with s lobes. For r0 = rin or r0 = rex the equation to be solved for ξ1 is,
respectively,

rex

rin
=

3 − 2ξ1

3 − 2ξ2

{
2(1 − ξ2) + cosh[`2(θA − Λπ)]

2(1 − ξ1) + cos `1θA

}
,

rin

rex
=

3 − 2ξ1

3 − 2ξ2

{
2(1 − ξ2) + cos[`2(θA − Λπ)]

2(1 − ξ1) + cosh `1θA

}

15



Figure 8: Examples of periodic or-
bits

Figure 8 displays a number of example interior and exterior
periodic orbits generated by combining two spiral arcs. The
entire orbit is generated by symmetrically extending a bitan-
gent transfer defined by two arcs.

THE MAXIMUM THRUST ACCELERATION

The family of generalized logarithmic spirals originates
from a shape-based method, but it is actually the solution to
the dynamics defined by the thrust acceleration profile from
Eq. (1). This section is devoted to analyzing the details of the
this acceleration. In particular, we study the maximum accel-
eration reached along the transfer so transfers that violate the
limitations on the maximum thrust can be rejected.

The magnitude of the thrust acceleration is

ap =
1
r2

√
ξ2 cos2 ψ + (1 − 2ξ)2 sin2 ψ (35)

Unbounded spirals (parabolic or hyperbolic) in raising regime escape to infinity. The acceleration
when approaching infinity abides by limr→∞ ap = 0. For the case of parabolic spirals (K1 = 0) the
angle ψ is known to be constant so that ap is governed exclusively by the power law 1/r2. The max-
imum and minimum acceleration corresponds to the minimum and maximum radius, respectively.

The magnitude of the thrust evolves according to the law 1/r2 and to cos2 ψ. But if the control
parameter is ξ = 1 or ξ = 1/3 the dependency with the flight-direction angle disappears (ξ = 1 is
rejected because it has been considered to be ξ < 1). For ξ = 1/3 it is simply ap = 1/(3r2). Like in
the case of parabolic spirals the maximum acceleration occurs at the minimum radius.

The maximum acceleration for elliptic and parabolic spirals corresponds to the minimum radius
reached on the spiral. For hyperbolic spirals of Type I when the radius increases the value of cosψ
decreases, so the minimum acceleration corresponds simply to the maximum radius. Similarly, the
maximum acceleration corresponds to the minimum radius. When the spiral is hyperbolic and of
Type II the angle ψ decreases and transitions from lowering to raising regime occur. The evolution
of cos2 ψ can compensate the power law 1/r2 and additional extrema might appear. At periapsis
(ψ = π/2) the acceleration reduces to

ap,per =
|1 − 2ξ|

r2
min

(36)

Roa et al.14 already noted that in the case ξ = 1/2 the acceleration vanishes at periapsis, being the
minimum acceleration reached on the spiral. Provided that limr→∞ ap = 0 the acceleration reaches a
maximum value between rmin and r → ∞. Let Q denote this point. From the derivative of Eq. (35)
with respect to r having introduced Eq. (12) it follows that the maximum acceleration is reached at

rQ =
6K1K2(1 − ξ)

R1/3

[
(1 − 3ξ)K2 cos

(
ϑ + 2π

3

)
− ξ

√
2(1 − ξ)(3ξ − 1)

]
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where

R = 54K6
1 K3

2ξ
3
√

2(3ξ − 1)3(1 − ξ)3, ϑ = arctan


√

2[K2
2 (3ξ − 1) − 2ξ2(1 − ξ)]

2ξ
√

1 − ξ


As the control parameter separates from ξ = 1/2 the magnitude of the acceleration at periapsis
increases. There is an upper and a lower limit for which the acceleration at periapsis equals the
magnitude of the acceleration at rQ , ξ+ and ξ− respectively. If the control parameter is over/below
the upper/lower limit then ap,per becomes the maximum acceleration reached on the spiral. These
limits are the solutions to the transcendental equation

ap,per −
1

rQ 2

√
(1 − 2ξ)2 + (3ξ − 1)(1 − ξ) cos2 ψQ = 0 (37)

The constant K1 relates to the initial conditions and the control parameter by means of Eq. (7),
whereas K2 is completely determined by the initial conditions. In this equation ψQ = ψ(rQ ). If ξ ∈
[ξ−, ξ+] then the maximum acceleration on a hyperbolic spiral of Type II occurs at rQ . Conversely,
if ξ < [ξ−, ξ+] the maximum acceleration occurs at periapsis and it is defined by Eq. (36).

The results presented in this section are summarized as follows: the problem of finding the max-
imum acceleration in a spiral transfer from r0 to rF reduces to finding the radius r∗ that maximizes
Eq. (36). For elliptic, parabolic and hyperbolic spirals of Type I spirals it is simply r∗ = min(r0, rF ).
For hyperbolic spirals of Type II one first has to solve Eq. (37) in order to obtain the limits ξ− and
ξ+ between which ap,per < ap(rQ ). Then, the values that r∗ take are

ξ ∈ [ξ−, ξ+] :


min(r0, rF ), rQ ≤ min(r0, rF ), D
max(r0, rF ), rQ ≥ max(r0, rF ), D
rQ , rest

; ξ < [ξ−, ξ+] :

 rmin, I
min(r0, rF ), rest

Here D and I denote direct and indirect transfers, respectively. The maximum acceleration is solved
by substituting r = r∗ in Eq. (35).

MULTINODE TRANSFERS

We have shown that transfers between circular orbits require at least one transition node, whereas
transfers between arbitrary state vectors require a coast arc. An arbitrary number of nodes can be
introduced in order to increase the flexibility of the solution.

Consider the problem of finding transfers between circular orbits introducing N ≥ 1 nodes. Let θn

denote the orientation of the n-th node. There are 2N−1 degrees of freedom in the solution: the posi-
tion of the nodes (θ1, θ2, θ3, . . . , θN) and the control parameters of the interior arcs (ξ2, ξ3, . . . , ξN−1).
The arc connecting nodes n − 1 and n is labeled the n-th arc. With this, the initial arc connecting θ0
and θ1 is labeled “1”. The final arc, connecting θN and θF , is denoted by F . The problem consists
in solving for ξ1 given the position of the nodes and the values of the control parameter for the
intermediate arcs.

The trajectory is propagated sequentially through the nodes rn = r(θn; ξn), with n = 1, 2, . . . ,N
and considering the initial conditions (rn−1, vn−1, θn−1, ψn−1) defined by the previous node. The final
arc needs to satisfy two conditions: first, the velocity-matching condition

v2
N = K1,F +

2(1 − ξF )
rN

=⇒ ξF =
2rF − rN[2 + rF (v2

N − v2
F )]

2(rF − rN)
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Second, the boundary condition rF = r(θF ; ξF ). Figure 9 shows two examples of multinode trans-
fers between two circular orbits. Each figure presents two spiral transfers that depart/arrive from/to
the same exact state vectors. The differences between the transfers are the positions of the nodes
and the values of the control parameters. It is worth to emphasize that the transitions at the nodes are
continuous (no additional ∆v’s are required) and no correcting maneuvers are required at departure
nor arrival.

(a) 1 revolution (b) 2 revolutions

Figure 9: Examples of bitangent transfers
with N = 7. The nodes are •, ♦ is the
departure point and × is the arrival point.

Introducing multiple nodes in transfers between ar-
bitrary state vectors is a simple procedure: the prob-
lem reduces to solving a thrust-coast-thrust transfer,
but the boundary conditions are given by the for-
ward/backwards propagation of the additional spiral
arcs. Consider that there are N1 spiral arcs until the
thrust is switched off, and N2 arcs between the point
where the thrust is switched on again and the arrival
point. The initial conditions to be considered for solv-
ing Eq. (34) are defined by the final state after prop-
agating the spirals 1, 2, . . . ,N1 − 1. The arrival condi-
tions are obtained from the backwards propagation of
the N2,N2 − 1, . . . , 2 arcs in the second leg.

LOW-THRUST GRAVITY-ASSIST TRANSFER

In this section we design a mission launched from the Earth to rendezvous with Ceres after a
flyby about Mars. The mission has been analyzed in a number of publications.15, 3 We prove that
the controlled generalized logarithmic spirals (CGLS) can indeed reproduce preliminary solutions
that are known to be close to the optimized trajectory. The orbits are assumed to be contained in the
ecliptic plane, as defined in Table 1.

Table 1: Reference (coplanar) orbits

Units Earth Mars Ceres

a AU 1.0000 1.5237 2.7656
e − 0.0162 0.0936 0.0794
ω + Ω deg 103.93 336.06 154.60

Table 2: Spiral segments

Type ξ K1 K2

EM-1 H-II 0.4936 0.0885 1.1021
EM-2 H-II 0.5181 0.0111 0.9684

MC-1 H-II 0.4983 0.0912 1.1371
MC-2 Ellip 0.4938 -0.0279 0.9291

The specific impulse is assumed to be constant and equal to 3000 s. The spacecraft departs from
the Earth on May 6, 2003 with v∞ = 1.6 km/s at launch. The mass injected into orbit is 568 kg.
Transfer legs include an intermediate coast arc. In the EM leg both spirals are hyperbolic of Type
II (H-II). The spiral arcs are described in Table 2. In the Mars-Ceres (MC) leg the first spiral is
also hyperbolic of Type II, whereas the second spiral is elliptic. The performance of the CGLS is
compared with the solutions provided by Petropoulos and Longuski3 and Sauer15 in Table 3. The
MC leg is solved in order to rendezvous with Ceres. The times of flight are3 271 and 862 days
for the EM and MC transfer legs, respectively. The solution found with the CGLS yields the same
propellant mass fraction as STOUR-LTGA, but requires no additional impulsive ∆v for the final
rendezvous with Ceres. Given the relatively low specific impulses of liquid propellants this final
maneuver may increase significantly the propellant mass fraction. Note that Sauer used a more
sophisticated model for the thruster, and he selected June 8, 2003, for the launch date.
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Table 3: Comparison of the CGLS solution with STOUR-LTGA, GALLOP and Sauer’s solution

Units CGLS STOUR-LTGA3 GALLOP3 Sauer15

Launch v∞ km/s 1.600 1.600 1.600 1.600
Mars flyby v∞ km/s 1.590 1.435 1.920 −

Flyby altitude km 562 5432 200 −

Propellant mass fraction − 0.256 0.256 0.234 0.275
Arrival v∞ km/s 0.000 0.237 0.000 0.000
TOF Earth-Mars days 271 271 271 250
TOF Mars-Ceres days 862 862 862 (739) 845
TOF total days 1133 1133 1133 (1010) 1095

Figure 10: Earth-Mars-Ceres transfer. Dashed
lines are coast arcs.

The trajectory is plotted in Fig. 10. Both the
EM and the MC legs include coast arcs to gain
control over the final state. Right after launch
there is a short thrust arc in order to increase the
energy of the intermediate Keplerian orbit. The
thrust is switched on again when the values of
K1 and K2 are compatible with a feasible flyby
about Mars. The flyby is designed so it yields
adequate values of the constants of motion. The
MC leg is solved from Eq. (34) having selected
the switch point that minimizes the propellant
mass fraction.

The magnitude of the thrust required for the
mission is plotted in Fig. 11. It is worth
noticing that the required thrust exhibits some
peaks that exceed the limit thrust adopted by
Petropoulos and Longuski;3 they considered
that the available thrust is 95 mN at 1 AU and
it decreases with the power law 1/r2. However, due to the coast arcs the final result is a propellant
mass fraction that is comparable to the optimized solution, as shown in Table 3.

Figure 11: Thrust magnitude Figure 12: Thrust angle

The orientation of the thrust depends on the values of the control parameters (see Table 2) and on
the evolution of the flight-direction angle. Figure 12 shows how the thrust angle evolves compared
to the flight-direction angle. The orientation (and magnitude) of the thrust vector is adjusted in order
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to meet the constraints on the time of flight. In addition, in the MC leg the values of the control
parameter are defined so that the final velocity matches that of Ceres. Along the final spiral arc the
magnitude of the thrust decreases and the thrust angle separates from the flight-direction angle for
matching the velocities.

CONCLUSIONS
The main limitation of the original family of generalized logarithmic spirals, which is the fact

that the solution is unique given a set of initial conditions, is overcome by introducing a control
parameter in the thrust vector. This additional degree of freedom defines a family of solutions for
any given set of initial conditions. The improved flexibility of the method increases its versatility
when applied to mission design scenarios. In actual design problems the solution provided by this
method is in agreement with well-known optimized solutions. The fact that coast arcs are introduced
naturally compensates some high-thrust peaks. In the presented example the mass fraction differs
in only 2% when compared to the optimal solution.
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