
(Preprint) AAS 16-323

THREE-DIMENSIONAL GENERALIZED LOGARITHMIC SPIRALS

Javier Roa∗and Jesús Peláez†

The family of generalized logarithmic spirals including a control parameter is ex-
tended to the three-dimensional case. The in-plane motion is decoupled from the
out-of-plane motion in such a way that the integrals of motion found in the planar
problem are still preserved in the three-dimensional case. Designing a low-thrust
orbit transfer decomposes in two stages: first, orbits are projected on a reference
plane and the planar transfer is solved with a generalized logarithmic spiral. Sec-
ond, the out-of-plane component of the motion is included in order to target the
final orbit. The projection of the three-dimensional transfer orbit on the reference
plane is a generalized logarithmic spiral. Arbitrary shape-based laws for the 3D
motion can be considered. This paper explores a polynomial and a Fourier series
shaping method, together with a polynomial steering law. A fictitious low-thrust
sample return mission to Ceres is designed to show the versatility of the method.

INTRODUCTION

During the preliminary phases of mission design fast shaping methods are preferred over more
accurate but slower techniques. The mission analyst needs to explore large spaces of parameters
with little or no a priori information about the solution. Methods based on analytic solutions are a
typical example: the patched-conic technique, for instance, was extensively used during the concep-
tion of the planetary Grand Tour that took the Voyager spacecraft out of the Solar System.1, 2 Despite
ignoring all sources of perturbations the solution was sufficiently close to the actual trajectory for
initializing the detailed design phase.

In the last decades electric propulsion systems have progressively been replacing chemical thrusters.
Low-thrust solutions are particularly attractive for those applications in which the time of flight can
be extended significantly in order to improve the delivered mass fraction. Interplanetary missions
such as Dawn or Hayabusa were powered by electric propulsion. The continuous acceleration due
to the thrust changes the dynamics of the spacecraft and a new design paradigm is required. In gen-
eral, given a thrust profile the equations of motion need to be integrated numerically. The solution
lacks an intuitive interpretation and this approach is not convenient for preliminary design. Only
particular cases such as the constant radial thrust problem admit fully analytic solutions.

Shape-based methods3 arose as techniques for fast and approximate design of low-thrust trajecto-
ries. Instead of integrating the equations of motion given a thrust profile the trajectory is assumed to
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describe a certain curve, and then the thrust required to follow such trajectory is obtained. Depend-
ing on the complexity of the curve closed-form solutions to variables such as the orbital velocity
or the time of flight can be found. The simplest curve is the logarithmic spiral. Analyzed in the
late 1950’s by Bacon4 and Tsu5 the motion can be completely solved analytically. But these spirals
are of little practical interest because the flight-path angle remains constant along the trajectory.
Improving the flexibility also increases the complexity of the solution. Petropoulos and Longuski6

set a milestone in the area of shape-based methods when they published the exponential sinusoid.
This new curve has been proven useful for solving many mission design problems.

Roa and Peláez7, 8 found that solving the equations of motion for the simple thrust profile found
by Bacon4 yields not only logarithmic spirals, but an entire family of solutions that they called
generalized logarithmic spirals. The dynamics admit two integrals of motion, generalizations of the
conservation of the energy and angular momentum. The spirals are endowed with a collection of
properties that make them qualitatively similar to the Keplerian orbits. For example, the sign of the
constant of the generalized energy classifies the spirals in elliptic, parabolic and hyperbolic. The
spirals have been recently improved by introducing a control parameter,9 and the spiral Lambert’s
problem turns out to be surprisingly similar to the unperturbed case.10 This Paper extends the
spirals to the three-dimensional case. The in-plane dynamics are completely decoupled from the
out-of-plane motion, which has two clear advantages: first, the integrals of motion are preserved
and expressions such as the one for the time of flight are still valid; second, the transversal steering
law can be designed at convenience with no effects on the planar motion.

The Paper is organized as follows. First, the equations of motion are derived and the integrals
of motion are presented. After a brief summary of the generalized logarithmic spirals we present
different control laws and show that the design problem reduces to adjusting four coefficients for
the out-of-plane motion, to be solved from a system of linear equations. Finally, a non-planar
interplanetary transfer is designed.

DYNAMICS

Let r ∈ R3 be the radiusvector of a particle P , which is the solution to the two-body problem

d2r
dt2 +

µ

R3 r = ap, R = ||r|| (1)

Figure 1: Geometry of a 3D generalized
logarithmic spiral

perturbed by an acceleration ap due to a given thrust pro-
file. In what follows the problem is normalized so that the
gravitational parameter µ becomes unity.

Vector r can be represented by the set of cylindrical
coordinates (r, θ, z). Here r is the distance to the vertical
axis, θ denotes the polar angle and z is the out-of-plane
component. The inertial frame I is centered at the origin
O and defined as I = {O; iI, jI,kI}. The climb angle is
α. Figure 1 depicts the geometry of the three-dimensional
trajectory. The position of the subpoint P ′ is given by r‖,
so that

r(θ) = r‖(θ) + z(θ) kI
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The main hypothesis we adopt is that r‖(θ) defines a generalized logarithmic spiral. It is called the
base spiral. Under this notation it is ||r‖|| = r and R2 = r2 + z2.

Let F = {P; t,n,b} denote the Frenet-Serret frame, where t is the unit vector tangent to the
trajectory, i.e.

t =
dr
ds

=
v
v

Here s denotes an arclength along the curve. The unit vectors n and b are the normal and binormal
unit vectors, an relate to each other and to t thanks to the Frenet-Serret formulas. In particular, the
first of the Frenet-Serret formulas provides

n =
1
k

dt
ds

Figure 2: The Frenet-Serret frame

where k is the nonzero curvature of the trajectory, defined
explicitly as

k =

∣∣∣∣∣∣∣∣∣∣ dt
ds

∣∣∣∣∣∣∣∣∣∣
The binormal vector completes an orthonormal dextral ref-
erence frame,

b = t × n

Figure 2 shows the configuration of the Frenet-Serret frame.
The auxiliary frame F‖ = {P; t‖,n‖,b‖} is defined so that
(t‖ · t) = cosα and (t‖ ·kI) = 0. It relates to the Frenet-Serret
frame F by means of a rotation of magnitude α about the
normal vector.

The velocity, v ∈ R3, can be decomposed in

v = v‖ + vz

where v‖ is the in-plane component of the velocity (v‖ · kI = 0) and the out-of-plane component is
vz = ż kI. From the geometry of the problem it follows

ż
v‖

= tanα =⇒
dz
dt

= v‖ tanα (2)

Taking the time derivative of the out-of-plane velocity defines the transversal acceleration

d2z
dt2 = tanα

dv‖
dt

+ v‖ sec2 α
dα
dt

(3)

The time evolution of α(t) and its derivative are supposed to be known and depend on the shape
assumed for the trajectory.

Under the hypothesis that r‖ defines a generalized logarithmic spiral, the equations of motion that
govern the in-plane dynamics are those found in Roa and Peláez.9 When combined with Eqs. (2–3)
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it follows the system

dv‖
dt

=
ξ − 1

r2 cosψ (4)

dr
dt

= +v‖ cosψ (5)

dθ
dt

= +
v‖
r

sinψ (6)

dψ
dt

=
sinψ
r2v‖

[2(1 − ξ) − rv2
‖
] (7)

dz
dt

= v‖ tanα (8)

d2z
dt2 =

ξ − 1
r2 cosψ tanα + v‖(1 + tan2 α)

dα
dt

(9)

which needs to be integrated from the initial conditions:

t = 0 : v‖(t0) = v‖,0, r(t0) = r0, θ(t0) = θ0, ψ(t0) = ψ0, z(t0) = z0, ż(t0) = ż0

The control parameter 0 < ξ < 1 adjusts the magnitude and orientation of the thrust vector. In these
equations ψ is the in-plane flight-direction angle, defined as the angle between the projections of the
position and velocity vectors onto the x − y plane, i.e.

cosψ =
(r‖ · v‖)

r v‖
(10)

This result refers to the in-plane flight-direction angle. We devote the following lines to finding a
similar expression for the absolute flight-direction angle, Ψ, between vectors r and v.

Let {P; i, j,k} denote the orbital frame L. The unit vectors defining this frame are

i =
r
R
, k =

r × v
||r × v||

, j = k × i

Similarly, consider the orbital frame attached to the subpoint P ′, defined in terms of

i‖ =
r‖
r
, k‖ =

r‖ × v‖
||r‖ × v‖||

, j‖ = k‖ × i‖

and denoted L′. The Frenet-Serret frame referred to the projected spiral relates to frame L′ by
means of

t‖ = cosψ i‖ + sinψ j‖, n‖ = − sinψ i‖ + cosψ j‖
The vectors defining the Frenet-Serret frame attached to the helix admit an equivalent projection
onto L:

t = cos Ψ i + sin Ψ j, n = − sin Ψ i + cos Ψ j

where Ψ is the flight-direction angle defined by vectors r and v,

cos Ψ =
(r · v)

Rv
(11)
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We emphasize the difference between this equation and Eq. (10). It then follows

t‖ = cos Ψ cosα i + sin Ψ cosα j − sinαk
n‖ = − sin Ψ i + cos Ψ j
b‖ = cos Ψ sinα i + sin Ψ sinα j + cosαk

The total velocity of the particle reads

v = v‖ cosψ i‖ + v‖ sinψ j‖ + ż k‖

Provided that r = r i‖ + z k‖ Eq. (11) provides

cos Ψ =
rv‖ cosψ + zż

Rv

The thrust acceleration

The equations of motion (4–9) show that the total acceleration governing the dynamics is

d2r
dt2 =

ξ − 1
r2 [cosψ (t‖ + tanαkI) − 2 sinψn] + v‖sec2 α

dα
dt

kI

The gravitational acceleration is known to be

ag = −
r

R3 = −
1

R3

[
r(cosψ t‖ − sinψn) + z kI

]
The acceleration due to the thrust decomposes in ap = ap,‖ + ap,z. The in-plane component takes the
form

ap,‖ =

(
ξ − 1

r3 +
1

R3

)
r cosψ t‖ +

[
2(1 − ξ)

r3 −
1

R3

]
r sinψn

whereas the out-of-plane component of the acceleration reduces to

ap,z =

[
ξ − 1

r2 cosψ tanα + v‖
d
dt

(tanα) +
z

R3

]
kI (12)

The climb-angle α and its rate of change are known, given the shape of the trajectory. The previous
expression is directly referred to tanα in order to simplify the introduction of a steering law.

When the motion is confined to the plane it is z = 0 and α = 0. This condition makes r ≡ R, and
the perturbing acceleration reduces to

ap =
1
r2 [ξ cosψ t + (1 − 2ξ) sinψn] (z = 0, α = 0)

Note that t ≡ t‖ in this case. The perturbation reduces to the acceleration that generates the family
of controlled generalized logarithmic spirals.

5



Integrals of motion

Combining Eqs. (4) and (5) yields an equation of separate variables

dv‖
dr

=
ξ − 1
r2v‖

=⇒ v‖ dv‖ = (ξ − 1)
dr
r2

that is integrated easily to define a first integral of the motion

v2
‖
−

2(1 − ξ)
r

= K1 (13)

Here K1 is the constant of the generalized energy for the planar motion, defined by the initial con-
ditions

K1 = v2
‖,0 −

2(1 − ξ)
r0

The value of the constant K1 defines the type of the base spiral. If K1 < 0 the base spiral is elliptic.
Since K1 is negative and v2

‖,0 is always positive there is a maximum radius that the base spiral
can reach. For K1 > 0 the base spiral is hyperbolic; the particle will escape to infinity along an
asymptotic branch, reaching r → ∞ with a finite, nonzero velocity. The limit case K1 = 0 yields
parabolic base spirals, that turn out to be logarithmic spirals. In this case the presence of the control
parameter affects the velocity in the logarithmic spiral.

Combining Eqs. (6) and (7) leads to

d
dt

(ψ + θ) =
2(1 − ξ)

r2v‖
sinψ

Dividing this expression by Eq. (4) yields the differential equation:

d(ψ + θ) = −
2
v‖

tanψ dv‖

The expression for the radial velocity can then be introduced in Eq. (6) and defines the differential
dθ in terms of dr. With this, the previous equation transforms into

cotψ dψ +
dr
r

+
2
v‖

dv‖ = 0

Integrating this equation of separate variables renders an integral of motion

ln(sinψ) + ln r + ln v2
‖

= C

where C is a constant of integration. This equation reduces to

rv2
‖

sinψ = K2 (14)

The constant of motion K2 is a generalization of the angular momentum of the planar motion. It is
solved from

K2 = r0v2
‖,0 sinψ0

It is worth noticing that it does not depend on the value of the control parameter ξ.
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The first integrals (13) and (14) show that the flight-direction angle evolves according to

sinψ =
K2

2(1 − ξ) + K1r
(15)

It is also

cosψ = ±

√
[2(1 − ξ) + K1r]2 − K2

2

2(1 − ξ) + K1r
(16)

The sign in this expression depends on the regime of the spiral: for spirals in raising regime (ṙ > 0)
it is ψ < π/2 and therefore cosψ > 0; on the contrary, for spirals in lowering regime (ṙ < 0) it is
ψ > π/2 and cosψ < 0

We emphasize that the integrals of motion found in this section are preserved no matter how
α(t) is defined. This phenomenon effectively decouples the in-plane motion from the transversal
dynamics.

One of the main advantages of having decoupled the in-plane dynamics is that the expressions for
the time of flight (see the following section) still hold. Clearly the time of flight to P in the absolute
motion is the same as the time to P ′ in the in-plane case. The time of flight is then given by the
expressions defining the time of flight in the base spiral. The only precaution is that the variables
that appear in the definition of the time should be referred to the in-plane motion.

GENERALIZED LOGARITHMIC SPIRALS

Before solving the three-dimensional motion we summarize the key concepts of the family of
(controlled) generalized logarithmic spirals. We present the equations of the trajectory and time of
flight so the reader will find the paper to be self-contained. A more detailed analysis of the solution
can be found in the work by Roa and Peláez.7, 8, 9 In these papers it is shown that the transition
between the different families is continuous. In this section we omit the subscript ‖ for clarity, but
all variables refer to the in-plane motion.

Symmetries

Two types of symmetries can be found in the family of generalized logarithmic spirals. They help
to understand the dynamics and simplify the derivation of the solution.

The T -symmetry is a intrinsic property of the trajectory. A curve r(θ) is said to be T -symmetric
if r(θm + δ) = r(θm − δ) for any δ > 0. We anticipate that only elliptic spirals and one subfamily of
hyperbolic spirals are T -symmetric. The axis of T -symmetry is the spiral equivalent to the line of
apses and its orientation is given by θm.

The C -symmetry is a property of dynamical nature. It appears when comparing two trajectories,
but it is not an intrinsic property of one trajectory. Two spirals are said to be C -symmetric if they
share the same values of K1 and K2. The fact that two different trajectories originate from the same
values of the constants of motion can be understood from the first integral (14). The constant K2 is
defined by means of sinψ0, which is symmetric with respect to ψ0 = π/2. The trajectories departing
with ψ0 = π/2 ± δ are C -symmetric.
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Elliptic spirals

Elliptic spirals never to escape the gravitational well of the attracting body. This yields the exis-
tence of a maximum radius

rmax =
2(1 − ξ) − K2

(−K1)
which is called the apoapsis of the spiral. The condition K2 < 2(1 − ξ) is satisfied naturally because
of how sinψ is defined in Eq. (15). The velocity at apoapsis is minimum,

vm =

√
K2

rmax
=

√
−K1K2

2(1 − ξ) − K2

In the limit K1 → 0 the maximum goes to infinity: this shows that logarithmic spirals can be seen
as a limit case of elliptic spirals, that approach infinity along a spiral branch.

The trajectory is given by
r(θ)
rmax

=
1 + K2

1 + K2 cosh β(θ)
having introduced the spiral anomaly:

β(θ) =
`

K2
(θ − θm), with ` =

√
4(1 − ξ)2 − K2

2

The angle θm is the orientation of the apoapsis and can be solved from the initial conditions

θm = θ0 ±
K2

`

∣∣∣∣∣ arccosh
{

rmax

r0
−

2(1 − ξ)
K2

(
1 −

rmax

r0

)} ∣∣∣∣∣
The first sign is chosen if the spiral is initially in raising regime, and the second if it is lowering
regime.

The time of flight is written as a function of the radial distance:

t(r) − tm = ±
rv
K1

√
1 − sinψ
1 + sinψ

±
2[2(1 − ξ)k′2∆Π − K2∆E]

√
1 − ξ

(−K1)3/2
√

K2

It is referred to the time of passage through the apoapsis rmax, denoted tm. The solution is given in
terms of the complete and the incomplete elliptic integrals of the second, E(φ, k), and third kinds,
Π(p; φ, k), namely:

∆E = E(φ, k) − E(k), ∆Π = Π(p; φ, k) − Π(p; k)

Their argument, modulus and parameter are, respectively:

sin φ =
vm

v

√
2

1 + sinψ
, k =

√
−K1rmax

4(1 − ξ)
, p =

K1rmax

2K2

The complementary modulus k′ is defined as k′ =
√

1 − k2.

The time of apoapsis passage tm is computed initially from the initial conditions:

tm = ∓
r0v0

K1

√
1 − sinψ0

1 + sinψ0
∓

2[2(1 − ξ)k′2∆Π0 − K2∆E0]
√

1 − ξ

(−K1)3/2
√

K2

The first sign corresponds to raising regime, and the second to lowering regime.
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Parabolic spirals

When K1 vanishes the velocity in the spiral reduces to

v =

√
2(1 − ξ)

r

It is straightforward to verify that the velocity when reaching infinity along the spiral branch goes
to zero.

The trajectory is simply
r(θ) = r0 e(θ−θ0) cotψ

Equation (15) shows that the flight-direction angle remains constant. Combining this equation with
Eq. (16) it follows

cotψ = ±
`

K2

The parameter ` =

√
4(1 − ξ)2 − K2

2 remains as defined for the elliptic case.

The time of flight reduces to

t(r) − t0 = ±
2
√

2(1 − ξ)
3`

(r3/2 − r3/2
0 )

It is referred directly to the initial conditions and requires no further computations.

Hyperbolic spirals

Hyperbolic spirals are defined by K1 > 0, which makes

v2
∞ = K1

The constant K1 is equivalent to the characteristic energy C3.

The are two types of hyperbolic spirals: Type I spirals, K2 < 2(1 − ξ), only have one asymptote,
which means that a spiral in raising regime escapes and a spiral in lowering regime falls to the
origin; Type II spirals, K2 > 2(1− ξ), have two asymptotes. The particle approaches the origin from
an asymptote, reaches a minimum radius rmin , 0, transitions to raising regime and then escapes
along a symmetric asymptote.

Hyperbolic spirals of Type I Since there are no axes of symmetry in this family of solutions the
spiral anomaly is redefined with respect to the orientation of the asymptote as

β(θ) = ±
`

K2
(θas − θ)

Here θas defines the asymptote. It is defined from the initial conditions

θas = θ0 ±
K2

`
ln

[
K2(ζ − ` − K2 sinψ0 + ` | cosψ0|)

r0K1ζ sinψ0

]
(17)

in terms of the parameter ζ = 2(1 − ξ) + `.
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The equation of the trajectory is

r(θ) =
ζ`2/K1

sinh β
2

[
4ζ(1 − ξ) sinh β

2 + (ζ2 − K2
2 ) cosh β

2

]
The trajectory depends on the regime of the spiral through β(θ). Note that the orientation of the
asymptote is also affected by the initial regime.

The time of flight for the case K1 > 0 and K2 < 2(1 − ξ) becomes

t(r) = K4 ±

{
rv
K1

√
1 + sinψ
1 − sinψ

−
2 {E − (1 − p)Π}

√
K2(1 − ξ)

K3/2
1

}
written in terms of a constant K4, which is easily solved by particularizing the previous equation
at t = 0. The solution is given in terms of the incomplete elliptic integrals of the second and third
kinds, E = E(φ, k) and Π = Π(p; φ, k), with:

sin φ =

√
K1r sinψ

pK2(1 − sinψ)
, k =

1
2

√
2(1 − ξ) + K2

1 − ξ
, p =

2(1 − ξ) + K2

2K2

Hyperbolic spirals of Type II The periapsis radius takes the form

rmin =
K2 − 2(1 − ξ)

K1

The velocity at periapsis is the maximum velocity in the spiral and reads

vm =

√
K2

rmin
=

√
K1K2

K2 − 2(1 − ξ)

The periapsis of the spiral defines an axis of T -symmetry, oriented as θm:

θm = θ0 ∓
K2

`

{
π

2
+ arctan

[
2(1 − ξ) − K2 sinψ0

` | cosψ0|

]}
As always, the first sign corresponds to raising regime and the second to lowering regime. With this
angle the spiral anomaly is defined as

β(θ) =
`

K2
(θ − θm)

The parameter ` is redefined as ` =

√
K2

2 − 4(1 − ξ)2 for the signs to be compatible.

The equation of the trajectory is

r(θ)
rmin

=
2(1 − ξ) + K2

2(1 − ξ) + K2 cos β(θ)

Due to the denominator in this expression two asymptotes appear naturally:

θas = θm ±
K2

`

{
π

2
+ arctan

[
2(1 − ξ)

`

]}
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The particle escapes to infinity along the asymptote defined by the (+) sign, and comes from infinity
along the asymptote defined by the (−) sign.

Finally, the time of flight reads

t(r) − tm = ∓

{
[K2 + 2(1 − ξ)]K2E − K1rmin[K2F + 2(1 − ξ)Π]

K1
√

K1K2[K2 + 2(1 − ξ)]

+
2(1 − ξ)

K3/2
1

arcsinh

 √
2K1r(rv2 − K2)

2
√

K2rv2 + (rv2 − K2)(1 − ξ)

 − v
K2

1

√
r2v4 − K2

2

}
(18)

It is given in terms of the incomplete elliptic integrals of the first, F ≡ F(φ, k), second, E ≡ E(φ, k),
and third kinds, Π ≡ Π(p; φ, k). The argument of the elliptic integrals in this case is

sin φ =

√
2(1 − ξ)(1 − sinψ)

k
√

K2 − 2(1 − ξ) sinψ
, k =

2
√

1 − ξ√
K2 + 2(1 − ξ)

, p =
2(1 − ξ)

K2

The time of periapsis passage tm can be easily solved from Eq. (18) particularized at t = 0.

Transition between Type I and Type II hyperbolic spirals Hyperbolic spirals of Type I have been
defined for K2 < 2(1 − ξ), whereas K2 > 2(1 − ξ) yields hyperbolic spirals of Type II. In the limit
case K2 = 2(1 − ξ) the equations of motion simplify noticeably; the resulting spiral is

r(θ) =
4(1 − ξ)

K1β(β ∓ 2)

In this case the angular variable β(θ) is defined with respect to the orientation of the asymptote. That
is

β = θ − θas

The asymptote is fixed by

θas = θ0 ∓

1 − √
1 +

4(1 − ξ)
K1r0


The time of flight is no longer given by elliptic integrals. It reduces to

t(r) − t0 = ±
1

K3/2
1

Ξ − Ξ0 + (1 − ξ) ln

r0v2
0 + 1 − ξ + Ξ0

rv2 + 1 − ξ + Ξ




The auxiliary parameter Ξ = Ξ(r) reads

Ξ(r) = v
√

r[rv2 + 2(1 − ξ)]

The equation for the time of flight has been referred directly to the initial conditions for convenience.

SOLUTION TO THE OUT-OF-PLANE MOTION

Helices

The simplest law for the evolution of the climb-angle α is

α = const.
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and of course its time derivative is nil. The radial velocity has been defined in Eq. (5) as the
projection of the velocity along the direction of r‖. Combining this expression with Eq. (2) yields

dz
dr

=
tanα
cosψ

(19)

The term cosψ has already been defined explicitly in Eq. (16). It is interesting to see that the sign
of this expression depends on the regime of the spiral through the sign of cosψ. It becomes

dz
dr

= ±
[2(1 − ξ) + K1r] tanα√
[2(1 − ξ) + K1r]2 − K2

2

(20)

This equation shows that the out-of-plane motion can be solved in closed-form when the angle α is
constant, being:

z(r) − z0 =
K2

K1
tanα(cotψ − cotψ0) (21)

(a) Elliptic (b) Parabolic

(c) Hyperbolic TI (d) Hyperbolic TII

Figure 3: Helicoidal trajectories depending
on the type of base spiral

Recall that

tanψ = ±
K2√

[2(1 − ξ) + K1r]2 − K2
2

The constant K1 appears in the denominator of the
solution in Eq. (21). In the limit case K1 → 0 this
expression will become singular. But the singularity
is avoidable as shown by the limit

lim
K1→0

z(r) = z0 + 2(r − r0)(1 − ξ) tanα secψ0

When K1 = 0 the spiral is parabolic (logarithmic)
and the flight-direction angle remains constant, ψ =

ψ0.

Figure 3 shows examples of different helicoidal
trajectories depending on the type of the correspond-
ing base spiral. By extension we call elliptic helices
those helices whose base spiral is elliptic. The same
applies to parabolic and hyperbolic helices. Ellip-
tic helices resemble spherical spirals, the poles cor-
responding to r → 0 in the base spiral. Parabolic
helices evolve on the surface of a cone.

The geometry of the problem is such that

(t · kI) = sinα

Taking the derivative with respect to the arclength, s,
provides (

dt
ds
· kI

)
= 0 (22)
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The derivative of t with respect to the arclength relates to n by means of the first of the Frenet-Serret
formulas,

dt
ds

= k n

Therefore, Eq. (22) translates into
k (n · kI) = 0

so vector n is confined to the plane defined by kI, provided that the helix has nonzero curvature.
This proves that the normal vector of a generalized logarithmic helix n is always parallel to the x−y
plane.

From a geometric perspective it is interesting to prove that the resulting curve satisfies the condi-
tion for a curve being a helix, given by Lancret’s theorem. It states that a curve is called a helix if
the ratio between the curvature, k , and the torsion, τ, is constant.∗ The axis of the helix is defined
by the unit vector kI, and can be referred to the Frenet-Serret frame by virtue of

kI = sinα t + cosαb

Differentiating with respect to the arclength s yields

0 = sinα
(

dt
ds

)
+ cosα

(
db
ds

)
The Frenet-Serret formulas transform this expression into

k (s) sinαn − τ(s) cosαn = 0 =⇒
k (s)
τ(s)

= cotα

so that the ratio k /τ is indeed constant when α = const.

The connection between Eq. (21) and the initial conditions (z0, ψ0) comes from solving for the
constant of integration given the departure point. Without losing generality the constant of integra-
tion can be obtained from the conditions at apoapsis or periapsis when the spiral is either elliptic or
hyperbolic of Type II. This provides a new form of the equation of the trajectory:

z(r) − zm =
K2 tanα
K1 tanψ

(23)

Here zm = z(rmax) or zm = z(rmin), depending on whether the helix is elliptic or hyperbolic of Type
II.

This suggests a new concept of symmetry: a generalized helix is said to be Z -symmetric if

z(θm + ∆) = −z(θm − ∆)

where ∆ ≥ 0 denotes an arbitrarily large angular displacement. The component z depends on the
polar angle through the relations r = r(θ) and ψ = ψ(θ). Z -symmetric trajectories are invariant

∗This theorem was first presented by the engineer Michel A. Lancret in Mémoire sur les courbes à double courbure,
on April 26, 1802. But the formal proof of the theorem is attributed to Saint Venant, published in his Mémoire sur les
lignes courbes non planes in 1845. He worked with the concept of the rectifying plane (spanned by vectors t and b): by
evaluating the relative inclination of the line of intersection between consecutive rectifying planes he proved that for a
helix such lines are parallel. Moreover, they describe a cylinder. He then reduced the condition for the rectifying lines to
be parallel to d(k /τ) = 0. We refer to Barros11 for a generalization of Lancret’s theorem.
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with respect to rotations of magnitude ϑ = nπ (with n = 1, 2, . . .) about the axis θ = θm located
in the z = zm plane. Clearly a Z -symmetric trajectory is T -symmetric, because a maximum or
minimum radius exists. Similarly, all T -symmetric trajectories are Z -symmetric because Eq. (23)
will always change its sign when ψ reaches π/2.

Elliptic spirals are known to be bounded, so that r → 0 when θ → ±∞. Similarly, Eq. (23) proves
that the out-of-plane motion is also bounded:

lim
r→0

z(r) = zm ±
`

K1
tanα

This result clearly shows the Z -symmetry of the helix.

On the contrary, for the case of parabolic and hyperbolic spirals the particle escapes to infinity.
This means limr→∞ z(r) = ±∞ depending on the type and regime of the helix. For hyperbolic helices
of Type II there are two asymptotes that provide z→ ±∞.

Polynomial shape

Following the shape-based approach the out-of-plane component of the motion can be modeled
as

z(θ) =

N∑
n=0

cnθ
n

The shape coefficients cn are stored in the vector cN ∈ R
N+1. The transversal velocity follows from

the relation
dz
dt

=
dz
dθ

dθ
dt

=
v‖
r

sinψ
N∑

n=1

ncnθ
n−1 (24)

having introduced Eq. (6).

The steering law α(θ) can be solved by equating Eqs. (24) and (2):

tanα =
sinψ

r

N∑
n=1

ncnθ
n−1

The transversal component of the thrust acceleration, given in Eq. (12), involves the time derivative
of tanα:

d
dt

(tanα) =
d
dt

(
sinψ

r

) N∑
n=1

ncnθ
n−1 +

v‖ sin2 ψ

r2

N∑
n=2

n(n − 1)cnθ
n−2

This solution requires an expression for d(sinψ/r)/dt, which takes the form

d
dt

(
sinψ

r

)
= −

sinψ cosψ
r2v‖

(K1 + v2
‖
) (25)

Fourier series

Consider the alternative shape of the transversal component of the motion, modeled by a Fourier
series:

z(θ) = a0 +

N∑
n=1

[an cos(nθ) + bn sin(nθ)]
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The out-of-plane velocity takes the form

dz
dt

= −
v‖
r

sinψ
N∑

n=1

{
n[an sin(nθ) − bn cos(nθ)]

}
Similarly, the steering law becomes

tanα = −
sinψ

r

N∑
n=1

{
n[an sin(nθ) − bn cos(nθ)]

}
Its time derivative, required for computing the out-of-plane acceleration, is

d
dt

(tanα) = −
d
dt

(
sinψ

r

) N∑
n=1

{
n[an sin(nθ) − bn cos(nθ)]

}
−

v‖ sin2 ψ

r2

N∑
n=1

{
n2[an cos(nθ) + bn sin(nθ)]

}
The derivative that appears in the first term is given in Eq. (25).

TRANSFERS BETWEEN ARBITRARY ORBITS

The method for designing transfers between arbitrary orbits consists in two steps:

1. The target orbit is projected on the orbital plane of the departure orbit. The transfer between
the departure orbit and the projection of the target orbit is solved using a generalized logarith-
mic spiral. This defines the in-plane components of the motion, the time of flight, the control
parameter ξ, and the constants of motion K1 and K2.

2. The out-of-plane motion is designed to satisfy the boundary conditions at departure and ar-
rival. If the polynomial law from the previous section is used, the problem reduces to adjust-
ing the values of the coefficients cn. A similar approach is followed when implementing the
Fourier shape, by solving for an and bn.

Given the initial conditions (z0, ż0) two of the shape coefficients need to be adjusted in order the
trajectory to satisfy z(r0) = z0 and ż(r0) = ż0. These equations are linear in the coefficients ci. Let
(zf , żf) be the arrival conditions for the out-of-plane motion. The boundary conditions provide the
relation zf = z(rf), where rf is the value of the cylindrical radius at the arrival point and z(r) is the
assumed law for the evolution of z. The conditions on the velocity render żf = ż(rf). The problem
imposes a total of four constraints to the system: the trajectory is forced to depart from (z0, ż0) and
to arrive to (zf , żf). At least four shape coefficients are required.

Polynomial shape

One simple approach is to solve for the first four coefficients n = 0, . . . , 3, stored in c3. But
different strategies can be adopted depending on the number of coefficients. The linear system of
equations can be written in matrix form as

Z = M c3 + N c4:N

The boundary conditions are stored in the vector Z = (z0, zf , ż0, żf)>. Vector c4:N refers to the
remaining coefficients not included in c3, and the matrices M ∈ R4×4 and N ∈ R4×(N−4) depend on
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the shape function. Denoting Mn the (n + 1)-th column of matrix M, and Nm the (m + 1)-th column
of matrix N, it follows:

Mn =



θ n
0

θ n
f

nθ n−1
0 C0

nθ n−1
f Cf


and Nm =



θm
0

θm
f

mθm−1
0 C0

mθm−1
f Cf


with n = 0, . . . , 3 and m = 4, . . . ,N. For simplicity the coefficient C = v‖ sinψ/r has been intro-
duced.

The matrix equation can be solved for c3 to provide

c3 = M−1(Z − N c4:N)

The determinant of matrix M is
∆ = −C0Cf(θf − θ0)4

It will only vanish if θ0 = θf or C j = 0. The former is not possible since θ always grows in time.
The latter only occurs when ψ→ 0 (degenerate rectilinear orbit) or r → ∞ (escape); both situations
are limit cases that are omitted for consistency. Under these hypotheses the matrix M is regular.

Fourier series

When considering the Fourier series representation the boundary conditions can be written

Z = M c + C

Vector c groups the coefficients (a0, a1, b1, a2) and matrix M reads

M =


1 cos θ0 sin θ0 cos 2θ0
1 cos θf sin θf cos 2θf
0 −C0 sin θ0 C0 cos θ0 −2C0 sin 2θ0
0 −Cf sin θf Cf cos θf −2Cf sin 2θf


The last term C refers to the remaining terms of the series and takes the form

C =



b2 sin 2θ0 +
∑N

n=3[an cos(nθ0) + bn sin(nθ0)]

b2 sin 2θf +
∑N

n=3[an cos(nθf) + bn sin(nθf)]

2C0b2 cos 2θ0 −C0
∑N

n=3 n[an sin(nθ0) − bn cos(nθ0)]

2Cfb2 cos 2θf −Cf
∑N

n=3 n[an sin(nθf) − bn cos(nθf)]


In this case the determinant of M is

∆ = −
C0Cf

2
[sin(3θ0 − θf) + 6 sin(θ0 + θf) − sin(θ0 − 3θf) − 4 sin(2θf) − 4 sin(2θ0)]

meaning that the matrix is regular for C0 , 0 and Cf , 0.
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INTERPLANETARY TRAJECTORY DESIGN

The method is tested by designing a fictitious science mission to Ceres, including a sample return
phase. The spacecraft departs from the Earth, performs a flyby about Mars and rendez-vous with
Ceres. Then, after 400 days of scientific activities it leaves Ceres and returns to the Earth. Figure 4
shows the non-planar trajectory in the ICRF/J2000 frame referred to the ecliptic plane at the refer-
ence epoch. The mission is launched on 06-May-2003 (MJD 52765) with a ∆v = 1.5 km/s along
the velocity vector of the Earth. After 271 days the spacecraft reaches Mars and benefits from a
gravity-assist maneuver with v∞ = 1.59 km/s. The time of flight to Ceres is 862 days, resulting in a
total duration of the transfer of 1133 days. The spacecraft reaches Ceres with zero relative velocity
(in every direction). Similarly, the CE leg departs and arrives with zero v∞’s.

Figure 4: Earth-Mars-Ceres-Earth non-planar transfer. E/M/C refers to Earth, Mars, Ceres, and A/D corre-
sponds to Arrival/Departure. MGA shows the Mars Gravity Assist. Coast arcs are plotted with dashed lines.
The out-of-plane component has been exagerated.

Table 1 summarizes the mission, including the times of flight for each leg and the science phase.
The total duration of the mission is 2373 days, including the time for operations at Ceres.

Table 1: Definition of the mission

Launch v∞ [km/s] hMGA [km] MGA v∞ [km/s] tEM [d] tMC [d] tScience [d] tCE [d]

1.50 905.58 1.59 271 862 400 840

The control laws presented in the previous sections provide a flexible method for designing the
out-of-plane dynamics. In particular, Fig. 5 displays the transversal component of the acceleration
in the EM, MC and CE legs. The trajectories in Fig. 4 have been designed with the polynomial
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Figure 5: Out-of-plane acceleration profiles with
different steering laws

shaping law, assuming that the first spiral arc and
the coast arc are co-planar. This figure also in-
cludes the acceleration profile corresponding to
the Fourier shaping for the same values of the ex-
tra coefficients. The number of coefficients and
their values shall be adjusted according to the mis-
sion requirements and the geometry of the trans-
fer.

CONCLUSIONS

The family of (planar) generalized logarithmic
spirals including a control parameter can be ex-
tended to account for the out-of-plane motion.
By decoupling the in-plane dynamics from the
transversal component of the motion the integrals
of motion are preserved. Moreover, the equations
providing the time of flight are still valid so the
dynamics are fully solved in closed-form. This decoupling allows designing different and flexible
shaping laws for the out-of-plane dynamics.

The acceleration due to the thrust is solved explicitly and depends on the shaping law. However,
the total ∆v required for the mission can no longer be integrated in closed-form because of the
additional complexity of the equation. The design process decomposes in two phases: first, the
planar transfer between the projected orbits is solved; second, the transversal dynamics are solved
based on the planar solution.
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APPENDIX: POLYNOMIAL STEERING LAW

The closed-form solution found for the case of a helix is the simplest that one can obtain. But
alternative solutions can be obtained by choosing different steering laws controlling the angle α.
Analytic solutions will be obtained as long as Eq. (19) remains integrable in closed-form.

In order to improve the flexibility of the trajectory we introduce the a polynomial approximation

tanα =

N∑
i=0

ci ri (26)

The coefficients ci can be chosen at convenience to match certain constraints. Increasing the number
of terms N extends the flexibility of the method, at the cost of complicating the form of the analytic
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solution. It is barely necessary to mention that N = 0 yields the family of helices described in the
previous section.

The out-of-plane motion is solved from the integral

z(r) =

∫
dz
dr

dr =

N∑
i=0

[
ci Ii(r) −Ci

]
(27)

Here Ci is a constant of integration and Ii(r) denotes the indefinite integral

Ii(r) =

∫
ri

cosψ(r)
dr

The constant of integration is computed in two different ways, depending on whether the base
spiral is C -symmetric or not. Recall that only the elliptic and hyperbolic spirals of Type II are
C -symmetric. If the base spiral is C -symmetric then Eq. (27) is replaced by

z(r) − z(rm) =

N∑
i=0

ci [Ii(r) − Ii(rm)] (28)

The radius rm denotes both the radius at apoapsis and periapsis, that share the form rm = [K2−2(1−
ξ)]/K1. The value of z(rm) is readily solved by particularizing the previous expression at t = 0. For
the case of a parabolic or Type I hyperbolic base spiral it is simply

z(r) − z(r0) =

N∑
i=0

ci [Ii(r) − Ii(r0)] (29)

The integral Ii(r) admits a general closed-form solution for an arbitrary index i, which is

Ii(r) = ±
r1+i

(1 + i)(2 + i)`
[(1 + i)K1rFa + 2(1 − ξ)(2 + i)Fb]

The first sign corresponds to raising regime, and the second to lowering regime. The solution is writ-
ten in terms of the coefficients Fa and Fb, which are defined in terms of the Appell hypergeometric
function∗ F1(α, β1, β2, γ; x, y) by

Fa = F1

(
2 + i,

1
2
,

1
2
, 3 + i,

kK1r
2(1 − ξ) − kK2

,
kK1r

2(1 − ξ) + kK2

)
Fb = F1

(
1 + i,

1
2
,

1
2
, 2 + i,

kK1r
2(1 − ξ) − kK2

,
kK1r

2(1 − ξ) + kK2

)
∗In 1882, Appell12 introduced a generalization of the hypergeometric function in terms of

F1(α, β1, β2, γ; x, y) =

∞∑
m=0

∞∑
n=0

(α)m+n(β1)m(β2)n

m! n! (γ)m+n
xmyn

The terms of the form (a)n are the Pochhammer symbols, i.e.

(a)n ≡
Γ(a + n)

Γ(a)
= a(a + 1) . . . (a + n − 1)
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The coefficient k takes the values k = +1 if the base spiral is elliptic (K1 < 0) and k = −1 if it is
hyperbolic.

In the limit K1 → 0 the solution Ii(r) reduces to:

lim
K1→0

Ii(r) =
2r1+i

(1 + i)`
(1 − ξ)

We emphasize that no approximations have been considered. The polynomial representation of tanα
in Eq. (26) is not an approximate representation, but the assumed shape of the trajectory. Similarly,
the solution in Eq. (27) is the exact solution to the motion.

Given this polynomial law for the evolution of tanα the out-of-plane component of the velocity
is simply

dz
dt

= v‖ tanα =

√
K1 +

2(1 − ξ)
r

( N∑
i=0

ci ri
)

This function is differentiated easily to provide the acceleration

d2z
dt2 = cosψ

N∑
i=0

ci ri−2[irv2
‖
− (1 − ξ)]

The transversal component of the thrust acceleration becomes

ap,z(r) =
z

R3 +

N∑
i=0

ci ri−2[irv2
‖
− (1 − ξ)] cosψ

Note that the expressions for the in-plane components of the motion remain unchanged.
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