

American Institute of Aeronautics and Astronautics

1

Hidden Costs of Unsupported Software, Obsolescence and
Non-Standards; The Importance and Value of a Multi-

Mission Software Program

Brian J. Giovannoni1 and Carole Boyles.2
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

It is well understood that when building a mission system there is a cost for engineering,
software. Software reuse has long been a cornerstone of achieving cost savings. This paper
proposes careful consideration of three additional concepts that also provide cost reductions:
software maintenance, planning to accommodate software and hardware obsolescence, and
the use of industry standards.

Unsupported software, or lack of persistent maintenance for software, can be a
formidable cost driver for a mission system. For software to meet a mission’s needs it
requires regular updates, improvements, and repair. Without a steady funding stream
software stagnates due to the inability to implement enhancements identified once the
software is used in the field and to address anomalies that escaped the V&V phase, resulting
in degraded performance to the current operational mission and limiting the possibility of
reuse by future missions. Fixes, upgrades, and improvements maintain customer interest
and ensure better adoption and reuse by multiple mission but most importantly can reduce
cost for the agency as a whole.

Technical and functional obsolescence play a big role in unplanned cost. Functional
obsolescence can occur when required hardware can no longer be acquired to meet system
needs. Technical obsolescence often occurs as newer versions of software supersede the old
versions. Common strategies to combat these types of obsolescence include building a
surplus of backup hardware to address functional obsolescence and retaining older versions
of software are typical solutions for technical obsolescence. Mission systems cannot remain
stagnant with respect to software versions as it has proven to increase the likelihood of
succumbing to cyber threats which can be costly to recover from. In addition, mitigating
hardware failures with surplus is not a guaranteed solution. Hardware can simple expire on
the shelf and software environments need to be updated. When forming plans to develop and
operate mission system strategies for periodic upgrades must be considered in order to avoid
the costs associated with obsolescence.

Using industry standards, which often include common schemas, data formats and
interfaces can reduce time in development and improve interoperability. Which standards
need to be adopted and how they should be applied to core functionality takes planning and
need to be a part of the maintenance strategy. To achieve the full benefits of software reuse,
organizations must plan and fund the maintenance of software and adhere to standards that
yield long-term cost savings over multiple missions.

1 MGSS Chief Engineer, Mission Systems and Operations Division, M/S 264-247.
2 MGSS Deputy Program Manager, MGSS Program Interplanetary Network Directorate M/S 264-243.

American Institute of Aeronautics and Astronautics

2

In summary software maintenance must be planned to fully benefit from the already
accepted idea that software reuse lowers cost. Adhering to standards brings long term cost
savings, though those cost savings are usually realized by multiple missions and fall outside
of the lifecycle of any particular mission’s time.

This paper will discuss approaches to address the need for software maintenance,
avoiding the pitfalls of obsolescence, and the use of industry standards by applying
institutional maintenance to mission systems.

I. Introduction
HIS paper is intended to raise awareness of three concepts that when ignored result in increased costs for
building and maintaining a mission system: software maintenance, planning to accommodate software and

hardware obsolescence, and the use of industry standards.
 For the purposes of this paper we use the following definitions:

• Software Maintenance is the total set of modifications to a software product, performed after delivery, to
correct known and emergency problems, to keep the software useable in a changing environment and to
continually improve and make enhancements1.

• We will use a general definition for obsolescence “the loss, of the manufacturers or suppliers of items or
raw material.”2

This paper will primarily focus on the following categories of obsolescence3:
• Functional The product, software, hardware or subsystem still functions as delivered but requirements

(hardware or software related) change and are no longer supported.
• Technical The product, software, hardware or subsystem is no longer obtainable and/or has been

superseded by a replacement.
The term industry standards refer to standards that govern and/ or define interoperability. This paper also considers
popular industry trends and open source technologies that are often considered standards.

II. Software Maintenance - Better Have It!
In this Section, we raise awareness of common reasons we forget about software maintenance. In addition, we

describe the aggregate cost impact of developing software with the intent to reuse it without considering the
maintenance lifecycle.

A. Why Do We Forget About Software Maintenance - The Challenges?
Project lifecycles are tight and unforgiving. Experts working on projects traditionally bring tools / software with

them to perform their job functions. Our experiences show this reuse approach to be very successful. The owner of
the software maintains it as they move from project to project. If done well many of these tools / libraries can be
reused by others to build new capabilities. This notion of reuse is not new; it has been integral in the software
development process for some time4. For the sake of this paper we will call this reuse approach 1-Shared libraries
and small standalone tools.

In many cases, great ideas come with great salesmen. Developers and programming savvy operators are often
proud of the tools they build and want to promote their hard work- very similar to reuse case 1 but usually on a
larger level. These tools are built on modern programming frameworks using open source libraries and functionality
to implement a domain specific need. Much more complicated than reuse case 1, the ability to share, modify and
inherit has a steeper barrier to entry. We will call this reuse approach 2 - applications with dependencies on open
source frameworks and platforms.

The final example and the most difficult to deal with is the big project specific investment. These usually are
intended to solve an important operational concern. They are often seen as must haves for project success. When a
project takes on a large development endeavor success is important. Global optimization “designing for multi-
mission use” is seldom the focus. Local optimization is paramount as importance is placed on ensuring success of
the mission at hand. Adoption comfort comes in the form of prototyping. Prototypes turn into operations tools
without hardening or thought placed in trade regarding technology choices. Many times, if successful, this
application will be called into service again; after all, considerable monetary investment was used to develop. In

T

American Institute of Aeronautics and Astronautics

3

general, the theory is if it solved mission A’s problem with minor modifications it should also solve mission B’s
problem. We will call this reuse approach 3.

Table 1. Reuse approaches some of their pros and cons.
Approach Pros To Reuse Cons To Reuse

1. Shared libraries and small
standalone tools

• Simple to maintain
• Maintenance performed

best effort
• Small in scope easy to

use in composition

• Lacks extensibility, modifiability
• Lacks support

2. Applications with
dependencies on open source
frameworks and platforms

• Developed to solve an
important operational
need

• Difficult to modify without original author
• Requires knowledge of the open source
libraries and frameworks

3. Large project investments • Developed to solve an
important operational
need

• Likelihood developed with multimision in
mind is low; large modification is needed to
adapt for new use

• Upgrades to platform
• Potential technology no longer

supported
• Personnel no longer available

Reuse approach 2 seldom has any financial planning with respect to software maintenance. These applications

solve an operator's need and are rarely configuration managed like the rest of the ground software. In the case of
reuse use case 3 - the investment is large enough that some monies are set aside to maintain for some time after
launch and into prime operations. However, regular planned maintenance is often the first activity cut when cut
when operations costs need to scale to post prime mission activities. Remember the definition of maintenance this
paper uses: The total set of modifications to a software product, performed after delivery, to correct known and
emergency problems, keep the software useable in a changing environment and to continually improve and make
enhancements1. More attention should be placed on the last two points in this definition; “keep the software useable
in a changing environment and to continually improve and make enhancements”. Without these components of
maintenance software begin to become obsolete. Mission customers will lose the interest due to lack of
responsiveness to changing needs and software will not support updates in compute environments. The aerospace
industry understands fixing bugs but when mission dollars decrease in late mission phases the modus operandi is to
change nothing. This is primarily due to the cost of retesting and validating the system.

Table 2. Reuse approaches and the likelihood of planned maintenance

Approach Likelihood of Planned Maintenance

1. Owner shared code, libraries and small tools • Maintained by owner best effort basis
2. Owner shared application larger in nature built
with open source libraries and frameworks

• Could be maintained by owner for simple fixes and
enhancements if time allows best effort at best

• Little attention will be paid to updates due to changing
environments

• If originator moves on all support will be dropped
3. Large project investments • Likely only early phases operations

• Limited to bug fixes

B. Why Do We Need Software Maintenance?

American Institute of Aeronautics and Astronautics

4

We will start with a generic description of the software engineering process. For this let's use what Pressman5
defines as a software process framework that generically has a set of common activities: Communication, Planning,
Modeling, Construction and Deployment.

Table 3. Software process framework activities

Activity Description

Communication Communication with stakeholders to understand objectives, gather requirements and to define
features and functions.

Planning Defines the work to be performed, risks, resources, products and the schedule
Modeling The design of the software to include a better understanding of the requirements and how they are

achieved
Construction Development and test
Deployment Delivery of the tested software to the customer and the collection of feedback used to evaluate

satisfaction of the requirements

The activities generalized in Table 3 can be applied to any number of software process models whether iterative,

evolutionary or parallel in nature. Examples of well known process models are: Waterfall, Spiral, The Unified
Process and Scrum.

Looking at this list of activities at first glance delivers the impression that once deployment is complete the
software is complete. That is not the reality at all. In fact, these same set of activities should be used on existing
software tools, applications and systems already deployed and in operations. Our point here is that the predominant
misperception regarding software development is that once software is deployed, the software development is done.
Most reasonable people understand the need for corrective maintenance but we argue that is not enough. In order for
software to be reused these same process framework activities should be applied to address corrective, preventative,
adaptive and perfective maintenance.

IEEE Std 14764-20061 defines the following types of maintenance:

• Corrective maintenance encompasses the modification needed to repair errors in the software. Errors might
include the inability for the software to meet stakeholders intended requirements and the resolution of
unintended effect resulting in emergency maintenance.

• Preventative maintenance is defined as any modification to software after it has been delivered to repair defects

discovered before they have become operational problems.

• Adaptive maintenance are modifications that were not in the original design of the software when first released.

Modifications of this nature are usually needed to accommodate changes in the environment e.g. operating
system changes, new interfaces.

• Perfective maintenance are modifications to software that improve performance or maintainability. Included in

these types of modifications are those that add new and desired functionality, and improve user experience.

To reiterate the point made earlier, in order for software to be reused all types of maintenance described above must
be planned for and funded. What operator wants to have to work around a bug from a tool that has been in place for
years? How is it acceptable to continue on an operating system generations old because operations software will not
work on today's versions? How can users accept decade old technologies in their operations environment when they
are exposed to newer features on their phones? Investing in continual software maintenance ensures missions
customers likeness to reuse.

American Institute of Aeronautics and Astronautics

5

C. How Does Software Maintenance Save Money?
In this section we will build a story for cost savings, extrapolating ideas first discussed in a paper by Frankes

called Software Reuse: Metrics and Models6. The paper provides three important arguments. First, building reusable
components costs more. Second, investing in quality improves the reusability and overall return on investment.
Return on investment is achieved by increasing the use of a component. Third, extrapolating Frankes’ cost equations
into that of building a system composed of reusable software components defines system cost as:

System Cost = the cost of integrating the reusable software components + the cost to develop any new
components.

Given that the development of quality reusable software components is more expensive than not, the more reuse

the better one is able to aggregate the cost and get return on investment. For a system there is an obvious cost
savings as long as the cost to integrate the reusable components is less than the cost to develop a new component.
Incorporating the point made in the previous section, without investment in software maintenance one eventually
loses the ability to reuse software, provides the basis for this section’s point. Investment in software maintenance
reinvigorates, improves, and keeps reusable software components alive and reusable which ultimately saves money
when developing a system.

It is clear that the story of reuse is well accepted. The aerospace industry continually builds strength in proposals
by accepting the reuse of legacy software. The story is usually reduced to cost and risk. However, in order to
realize this cost savings, the investment in maintenance must also be present. To simply assume build to print
without consideration of corrective, adaptive and perfective maintenance will prevent cost savings. To illustrate this
point, we will consider a use case in which a project develops a software component that is in the critical path and
supportive of prime operations.

It is important to understand what industry best practice defines as acceptable investment in maintenance. Fact
41 from Glass’s Facts and Fallacies of Software Engineering states that maintenance consumes 40 to 80 percent of
software costs. The average is about 60 percent, but let's assume we can error on the 40 percent. Fact 42 points out
that enhancements are responsible for 60 percent of software maintenance and error correction about 17 percent. The
remainder of this maintenance, about 18 percent, goes to adaptive maintenance and another 5 percent usually goes to
making the software more maintainable.

Now let’s return to our use case and assume our software component costs 600K dollars to develop. If we hold to
our 40% rule we would require at least another 400K for maintenance. Of the 400K, 240K will go towards
additional enhancements, 68K for bug fixes and 72K for adaptive maintenance. If only bug fixes were planned, OS
version evolution, third party software dependency updates, security patches as well as forgoing on the addition of
new features would be sacrificed. If a mission lifecycle is about 10 years from development to operations before
our build to print mission begins development what is the likelihood our software will work in a new environment?
Will the technologies still be available? Are knowledgeable staff available to migrate the software for the new
mission? How hard will it be to add new features for a new mission after the fact? Therein lie our hidden costs for
lack of foresight and planning for software maintenance and reuse.

The problem here is that we continually fool ourselves into thinking this can be done. It is too easy to say we will
simply reuse what we have done before and claim we are saving money. In our use case above the likelihood our
software tool could be reused is very low. The decrease in maintenance or the obliteration of maintenance will most
likely lead to losing the key personnel required to modify the baseline. Our experience shows that handing a code
base to maintain or evolve to a new team will more than usually lead to reimplementation at a cost similar to or near
the original development cost.

Table 4. Reuse approaches and the likelihood of planned maintenance correlated to potential cost impacts
for not planning for software maintenance

Approach Likelihood of Planned
Maintenance

Potential Hidden Costs Per Reuse

1. Owner shared code,
libraries and small tools

• Maintained by owner best effort
basis

At best 40% cost to cover corrective,
adaptive, preventive and perfective
maintenance.

American Institute of Aeronautics and Astronautics

6

2. Owner shared application
larger in nature built with
open source libraries and
frameworks

• Could be maintained by owner
for simple fixes and
enhancements if time allows best
effort at best

• Little attention will be paid to
updates due to changing
environments

• If originator moves on all
support will be dropped

At best 40% cost to cover corrective,
adaptive, preventive and perfective
maintenance.

High probability branching will occur
which linearly increases this 40%. In other
words, 40% * the number of branches.

3. Large project investments • Likely only early phase D
• Limited to bug fixes

At best 40% cost to cover corrective,
adaptive, preventive and perfective
maintenance.

Due to limiting maintenance to bug fixes or
none at all there is a potential of 100%
reimplementation.

The salient point of Table 4 is that if a planned approach and investment for the maintenance of software is in

place increased cost can be avoided on a project by project basis due to branching and starting over.

III. Obsolescence – Adaptive Maintenance
In this Section, we discuss the effect of obsolescence particularly in the context of lack of maintenance. We

focus on Functional and Technical obsolescence. Planned obsolescence plays a much smaller role with regard to
mission operation system software due to the reliance on open source operating systems and third party software.
Open source software has a natural defense mechanism built in. Open source is maintained by the community and as
such not subject to planned obsolescence and is more impacted by forking. Forking is the open source defense
mechanism to planned obsolescence. The main concern with forking is that it can in the long term lead to technical
obsolescence on a fork.

• Functional The product, software, hardware or subsystem still functions as delivered but requirements
(hardware or software related) change and are no longer supported.

• Technical The product, software, hardware or subsystem is no longer obtainable and or has been
superseded by a replacement.

• Planned The product is deliberately deprecated by the vendor justified with a business decision of progress
to a new product line. Bill Gates once said “In three years every product my company makes will be
obsolete. The only question is whether we will make them obsolete or somebody else will.”

A. The Impact of Obsolescence
A good example of functional obsolescence is the migration of software developed on Solaris to Linux. For

many years NASA mission systems had a very strong dependence on the reliable platform that was once provided
by Sun Microsystems. In recent years the Intel platform has far surpassed performance per unit of price options of
the Sparc based platform and has been further amplified by the ever maturing Linux operating systems variants. In
this case the new requirement is low cost expandable platform solutions. The effect on software is the obvious need
to port from Solaris to Linux.

Related to the Solaris port described above is the use of Sun Rays. Sun Rays came about in the early 2000’s
offering an ideal thin client that allowed mission systems to consolidate servers and offer a lightweight footprint for
console operators. In 2017 Oracle is depreciating all support for this thin client infrastructure. This example
classifies as planned obsolescence. The impact is the same as above; Adaptive maintenance must support the
change.

Our favorite example of functional obsolescence is causing a larger impact than ever before and is expected to
intensify in the up and coming years; security. The rapid rate at which security vulnerabilities are discovered and
fixes being made available in third party software and in the operating system is staggering. NASA is slowly
introducing tighter security requirements that mandate patching systems more frequently be combined with stronger

American Institute of Aeronautics and Astronautics

7

requirements for the auditing of systems. It is likely that in the near future waiving updates to system will no longer
be as easy to justify.

This paper has made the case that to ensure reuse software maintenance must be present. It has also eluded to the
fact that if software is maintained appropriately the necessity for maintenance cost being aggregated to many
missions can be removed. Without sustaining efforts software will cease to remain viable, introduce security
vulnerabilities and potentially cost more than it should if cost were shared.

IV. Industry Standards & Best Practices - Perfective Maintenance
In this Section, we introduce the idea that evolving existing applications to conform to industry standards and

best practices can and should be an important aspect of the software maintenance plan.

A. The Benefits of Industry Standards
It has long been accepted by the international community that the development of international and industry

standards can enhance interoperability and cross-support, reduce risk, shorten development time and lower project
costs9. In the definition of the standards the need to support multiple interfaces or approaches can be eliminated and
the improved ability to interoperate opens new business opportunities.

Standards help ensure consistency thereby improving the ability to manage systems and improve user
satisfaction and protect existing system strategic investments. Standards help maximize return on investment and
reduce costs. Standards for interoperability additionally help ensure support from multiple vendors for their
products, and facilitate external partner integration. Industry practice has shown that greater the level of
interoperability, the lower the cost of integration as well as total cost of ownership of fielded systems.

The unfortunate aspect regarding standards is time to development. Design by committee has its process and a
timeline that does not always align with a mission timeline. When maintenance is in place along with a plan to adopt
emerging standards missions can capitalize on the evolution and may be able to exploit new opportunities in later
mission phases.

V. Conclusion
The idea of reuse in our industry is well accepted as a solution to cost savings. The importance of software

maintenance is critical if the intention is to gain cost saving through reuse. Software maintenance is comprised of
more than simple bug fixing. It requires corrective, adaptive and perfective maintenance. If enhancements are 60
percent of all software maintenance and are not planned, software will atrophy and risk obsolescence. At some point
obsolescence may be planned and replacements capabilities put in place to improve older systems. The ability to
support, react to change, and plan for improvements requires a concerted effort. Projects are the driving funding
source for software and innovations. Projects are finite and hence are unable to realistically support the
maintenance of any capability let alone software. Individuals can support small efforts with funding from projects as
they move from one mission to the next but the stability of this funding usually can only address simple change.
Individuals simply cannot scale support to allow for widespread reuse.

It is important that our institutions acknowledge the need for the appropriate level of maintenance in the software
lifecycle. The simple claim that we will reuse what has been done before will inevitably lead to unexpected costs.
Institutionalizing maintenance of mission system software is the best way realize cost savings from reuse. Standing
up an organization intended to maintain and mature mission system software is one approach. Projects committing
to a managed common core set of capabilities as well as contribute to its baseline is another. The idea that projects
can and should simply build what they need should to be governed and focused if we are to truly reduce the cost of
building mission systems. Ground systems software provides a perfect opportunity where common capabilities can
be reused if supported and managed appropriately.

Acronyms and Abbreviations

CCSDS The Consultative Committee for Space Data Systems
MGSS Multimission Ground System and Services

Acknowledgements
We would like to thank the following people who have contributed ideas as well as supported the proofing of

this document and abstract: Jeff Estefan, Kirk Kandt, Michele Vogt and Michelle Thompson MD.

American Institute of Aeronautics and Astronautics

8

This paper was developed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

References
1Committee ISO/IEC JTC 1/SC 7, “Software Engineering - Software Life Cycle Processes - Maintenance,”

ISO/IEC 14764:2006, Edition 2, Section 3 Definitions and terms, 2006-09-01.
2Bjoern Bartels, Ulrich Ermel, Peter Sandborn, Michael G. Pecht, “Strategies to the Prediction, Mitigation and

Management of Product Obsolescence,” John Wiley & Sons, May 29, 2012.
3Peter Sandborn, “Software Obsolescence – Complicating the Part and Technology Obsolescence Management

Problem,” IEEE Trans on Components and Packaging Technologies, Vol. 30, No. 4, pp. 886-888, December 2007.
4Glass, L. Robert “In the beginning: Personal Recollections of Software Pioneers,” Wiley-IEEE Computer

Society Press, Dec. 1997.
5Pressman, R., Software Engineering A Practitioner's Approach, 7th ed., McGraw-Hill, 2010, Chap. 1, Page 22-

16.
6Frankes, W., and Terry, C., “Software Reuse: Metrics and Models,” Virginia Tech, Computer Science

Department, ACM Computing Surveys, Vol. 28, No. 2, June 1996.
7Glass L. Robert, Facts and Fallacies of Software Engineering, 10th printing., Addison-Wesley Pearson

Education , Boston, MA, 2010, Chaps. 2.
8Oracle, “Sun Ray Hardware Last Order Dates & Extension of Premier Support for Desktop Virtualization

Software” I [online reference], URL:http://www.oracle.com/technetwork/server-
storage/sunrayproducts/overview/sun-ray-hw-lod-2028854.pdf [cited March 4 2014].

9ISO Central Secretariat, “Assessing Economic benefits of consensus-based standards - The ISO Methodology”
ISO Website [online reference], URL: http://www.iso.org/iso/home/standards/benefitsofstandards/benefits-
detail.htm?emid=6 [cited January 2010].

http://www.oracle.com/technetwork/server-storage/sunrayproducts/overview/sun-ray-hw-lod-2028854.pdf
http://www.oracle.com/technetwork/server-storage/sunrayproducts/overview/sun-ray-hw-lod-2028854.pdf
http://www.iso.org/iso/home/standards/benefitsofstandards/benefits-detail.htm?emid=6
http://www.iso.org/iso/home/standards/benefitsofstandards/benefits-detail.htm?emid=6

	Hidden Costs of Unsupported Software, Obsolescence and Non-Standards; The Importance and Value of a Multi-Mission Software Program
	I. Introduction
	II. Software Maintenance - Better Have It!
	A. Why Do We Forget About Software Maintenance - The Challenges?
	B. Why Do We Need Software Maintenance?
	C. How Does Software Maintenance Save Money?

	III. Obsolescence – Adaptive Maintenance
	A. The Impact of Obsolescence

	IV. Industry Standards & Best Practices - Perfective Maintenance
	A. The Benefits of Industry Standards

	V. Conclusion
	Acronyms and Abbreviations
	Acknowledgements
	References

