
26th Annual INCOSE International Symposium (IS 2016) 
Edinburgh, Scotland, UK, July 18-21, 2016 

A Representative Application of a Layered 
Interface Modeling Pattern

Peter M. Shames 
Jet Propulsion Laboratory 

California Institute of Technology 
4800 Oak Grove Dr. 
Pasadena, CA 91009 

+1 818-354-5740 
Peter.M.Shames@jpl.nasa.gov 

 

Marc A. Sarrel 
Jet Propulsion Laboratory 

California Institute of Technology 
4800 Oak Grove Dr. 
Pasadena, CA 91009 

+1 818-393-7786 
Marc.A.Sarrel@jpl.nasa.gov

Sanford Friedenthal 
SAF Consulting 

Affiliate, Jet Propulsion Laboratory 
California Institute of Technology 

4800 Oak Grove Dr. 
Pasadena, CA 91009 

Sanford.Friedenthal@gmail.com 
Copyright © 2015 by Jet Propulsion Laboratory, California Institute of Technology. Published and used by INCOSE with permission. 

Abstract. Model-based systems engineering (MBSE) is intended to improve how systems 
engineering is performed compared with a more traditional document-based approach by 
effectively using models to analyze, specify, design, and verify systems. The OMG Systems 
Modeling Language (OMG SysML™) enables the practice of MBSE by providing a robust and 
expressive language for representing systems. 

Several MBSE methods are available [3], and have continued to mature over the last several 
years which include model-based practices for requirements flow-down, architecture-design, 
trade-off analysis, verification planning, and others. One of the critical systems engineering 
practices is interface modeling. This paper describes a layered interface pattern for modeling 
data and communications interfaces using SysML. The pattern spans logical to physical 
interface definition, and includes software and electrical interfaces. 

Each layer in a stack describes a portion of the interface functionality. The concept of a layered 
interface is borrowed from computer networking [8] [10]. The layered interface pattern 
described in this paper enables the specification and design of connections and behavior 
between interfacing systems at a given layer, and between the adjacent layers of a single 
system. This pattern may also be applied recursively. That is, communication within a single 
layer may itself be realized by a multi-layer stack. The level of detail of the model to describe a 
layered interface should be adapted to the need, and can vary from highly abstract logical flows 
across a system to highly detailed protocol specifications and message structures. 

This paper builds on work that was documented in a previous paper entitled "A modeling 
pattern for layered system interfaces" [5]. Aspects of this pattern have been demonstrated in 
various project applications including Exploration Flight Test 1 (EFT-1), Space 
Communication and Navigation (SCaN) Trade Studies, and the SCaN Network Integration 
Project (SNIP). 

mailto:Peter.M.Shames@jpl.nasa.gov
mailto:Marc.A.Sarrel@jpl.nasa.gov
mailto:Sanford.Friedenthal@gmail.com


 

1. Introduction 
This paper is organized into six sections. The Introduction, section 1, describes some of the 
challenges associated with interface specification and design. This section then introduces 
some basic definitions and concepts that the layered interface pattern uses and provides a 
simple example. It concludes with a brief overview of SysML. 

The System Example, section 2, uses a spacecraft example to describe a logical data flow 
through a system, and how data interface requirements can be specified and allocated to 
various parts of a system. 

The Interface Realization, section 3, describes how a particular interface from the spacecraft 
example can be realized by a layered protocol stack that converts the data contained in 
communication packets to electrical signals on a physical connector, which are exchanged 
through a physical medium. The modeling pattern defines each vertical layer of the stack, the 
data structure that is transformed from one vertical layer to the next, the behavior specification 
for an example layer, and the interaction between peer layers at each side of the interface. The 
sections ends with an example of how to show compliance with a standard that defines a 
protocol. 

Related Work, section 4, discusses some related work. Applications, section 5, then discusses 
how this pattern can be applied more generally to other types of interfaces, and finishes with 
the Summary, section 6. 

This pattern is capable of representing multi-layer interfaces at varying levels of detail. The 
level of detail should be adapted to the need. Sometimes, only abstract end to end flows may be 
appropriate to describe the interfaces. In other cases, the level of detail may include some 
combination of detailed message structure, pin to pin connection, and protocol behavior 
specification. This is often dependent on the phase of development, and whether the interface is 
using well understood interface standards or new or modified interfaces are being developed. 

1.1 The Interface Challenge 
Well-defined interfaces are essential to specify how a system can interact with the external 
world, and how the system elements can interact to achieve the objectives of the whole system. 
Specifying and designing interfaces is a critical and challenging aspect of systems engineering 
due to the number of interfaces, diversity of interfaces, and the inherent complexity of 
individual interfaces. For example, electrical harnesses can contain thousands of wires and 
connectors and perhaps millions of messages. Many system failures have been attributed to 
inadequate interface specification and design. [20] 

A typical system, subsystem, and component interface is often specified in an interface 
requirements document (IRD) or similar document. An example of a partial table of contents 
from a NASA interface control document for a C-9B aircraft in support of the Reduced Gravity 
Program [4] is included in Figure 1. 

This interface control document includes many different types of interfaces including electrical 
power, high-pressure gas, cabin environment, display interfaces, physical dimensions, and 
others. These interfaces are realized by many different engineering disciplines using many 
different technologies. A systems engineer must be able to specify, analyze, and verify 
interfaces that span the various engineering disciplines and technologies to ensure the elements 
of the system can work together to achieve the system requirements. 



 

Interface specification and design is not only 
complex because of the number of interfaces and 
the many different kinds of interfaces, but any 
given interface can be complex in its own right. 
For example, the interface for a “simple” USB 
device is defined by the Universal Serial Bus 
revision 2 (USB 2) specification [6] that is 650 
pages long, and includes specification of the data 
flow model, mechanical and electrical interface, 
and protocol layer. 

A model-based approach provides an opportunity 
to address the challenges of specifying, analyzing, 
designing, and verifying interfaces over a more 
traditional document based approach by enhancing 
consistency, precision, traceability, conformance 
to standards, reuse, and managing the inherent 
complexity of interfaces. 

1.2 Definitions and Concepts 
The following definition of interface is from the Glossary of Terms in the Guide to the Systems 
Engineering Body of Knowledge [7]. 

Interface: 

1. A shared boundary between two functional units, defined by various characteristics 
pertaining to the functions, physical signal exchanges, and other characteristics. 
(ISO/IEC 1993) 
2. A hardware or software component that connects two or more other components for the 
purpose of passing information from one to the other. (ISO/IEC 1993)  
3. To connect two or more components for the purpose of passing information from one to the 
other. (ISO/IEC/IEEE 2009) 

The first definition is the most general of the three definitions above because it does not limit 
interface to the exchange of information. An interface provides the means for systems and 
system elements to interact, which may include the exchange of information, material, forces, 
and energy. To specify an interface, one must specify the connection points on the components 
(i.e. ports) on either side of the interface, the items that are exchanged, the constraints and/or 
rules that govern the exchange, and the medium for the exchange (i.e., link). An interface 
definition sometimes refers to one side of an exchange, but more generally refers to both sides 
of the exchange and the exchange medium. The system, subsystem or other system element 
(e.g. component) behaviors realize the interface to achieve the exchange. These interface 
concepts are illustrated in Figure 2.  

This paper also uses the term protocol, where a protocol at layer (N) can be defined as a set of 
rules and formats (semantic and syntactic) which determines the communication behavior of 
(N)-entities in the performance of (N)-functions. [10] The protocol would be most strongly 
reflected in the Behavior and the Constraint. 

1.0 INTRODUCTION 
1.1 Purpose 
1.2 Scope 
2.0 FACILITIES PROVIDED 
2.1 Aircraft 
2.1.1 Cabin Environment 
2.1.2 Cabin Dimensions 
2.1.3 Cabin Provisions 
2.1.4 Electrical Power and Interface 
2.1.5 Aircraft Lighting 
2.1.6 High Pressure Gas System 
2.1.7 Overboard Vent System 
2.1.8 Aircraft G-Load Display 
2.1.9 Accelerometer Signal 
2.1.10 On-Board Tools 
2.1.11 On-Board Storage Containers 
 
Figure 1. Partial Table of Contents 
for a NASA Interface Control 
Document [4] 



 

1.3 Simple Example of a Layered Interface 
Figure 3, shows a set of components: a USB digital audio interface between an Audio Player 
component such as a CD player, an Amplifier component that amplifies the audio electrical 
signals and converts the digital signal to an analog signal, and a Speaker that converts the 
analog audio electrical signals to acoustic waves (sound). Each of these interfaces is shown 
with their protocol stack. 

The ability to describe interfaces at different levels of abstraction is essential to address 
interface complexity. An interface layer1 is an abstraction approach to help deal with this 
complexity where each interface layer provides specific functionality associated with the 
interface. A Protocol Stack is a set of layers that transforms items to enable their exchange, 
such as for purposes of communication.  

 

A fundamental principle of an interface layer is that the layer below is independent of the layer 
above. Consider the connection between the Audio Player and the Amplifier for the USB 
Digital Audio I/F layer. That layer encodes the digital audio with a certain number of bits per 
sample, samples per second, number of channels (mono or stereo), etc. The USB Protocol I/F 
layer below does not know or care about those details. The USB Digital Audio I/F layer will 
impose quality-of-service constraints on the USB Protocol I/F layer, in particular constraints 
related to isochrony, minimum throughput constraints, and other constraints. But, the content 
and format of the audio data is opaque to the USB Protocol I/F layer. 

                                                 
1NOTE: The terminology that is used for interface layer is adopted from the ISO/IEC Basic Reference Model (ISO BRM), reference [16] as 
included below: 
5.2.1.2 (N)-layer: A subdivision of the OSI architecture, constituted by subsystems of the same rank (N).  
5.2.1.9 (N)-protocol: A set of rules and formats (semantic and syntactic) which determines the communication behavior of (N)-entities in1 the 
performance of (N)-functions. 

 
Figure 2. Interface Concepts 

 
Figure 3: Example of Audio System interfaces 



 

Each of the four layers of the Audio Player and the Amplifier USB Audio Stack performs an 
orthogonal part of the functions needed to transfer the Digital Audio data. For example, the 
USB Digital Audio I/F layer is responsible for encoding the audio. The USB Protocol I/F layer 
is responsible for complete and isochronous delivery of the data. The USB Protocol I/F layer 
may simultaneously handle types of data other than Digital Audio from different higher level 
protocols. These top two layers do not allow the presence of intermediate systems between the 
Audio Player and the Amplifier. The lower two layers, however, would allow such systems. 
The USB Link I/F layer transmits data between one USB device and another, but with no 
regard for retransmission or completeness. It may allow intermediate devices like USB hubs. 
But, those hubs are transparent to the upper two layers. The USB Physical I/F layer is 
concerned simply with the cable. It may allow intermediate systems like USB extension cords 
that are not visible to the upper layers. 

In this example the Audio Player can handle stored audio data in several formats, for example 
audio CDs, .mp3 files and .wav files. The format in which the audio data is stored, however, is 
not relevant to the format in which it is transmitted. In each case, the Audio Player transforms 
the audio from the original storage format into the USB Digital Audio format for transmission. 

An interface view is another abstraction approach to deal with interface complexity. For 
example, in the digital audio interface above, noise immunity and component proximity may 
be important concerns for the design of this interface, which can drive specific design choices. 
The separation between the Audio Player and the Amplifier that is tens of meters instead of 1-2 
meters may require a different interface design using a digital audio TOS link fiber optic cable 
instead of USB. The design decisions must be considered from the perspective of different 
stakeholder viewpoints that may include different engineering disciplines such as electrical, 
mechanical, and software perspectives. An interface view presents the interface information 
that addresses a particular stakeholder viewpoint. 

In this paper, we present a modeling pattern that applies to data and communication interfaces 
that includes logical interfaces, software interfaces, signal interfaces, and physical connections. 
Although this is applied to communication interfaces in this paper, the pattern can be applied to 
other kinds of interfaces as well. 

Describing the layered interface modeling pattern using SysML is the subject of this paper. 
However, the pattern reflects layered interface concepts that are well established and have been 
applied many times to data and communications interfaces. These include the ISO Basic 
Reference Model [10] and the Reference Architecture for Space Data Systems (RASDS) [14], 
and the entire Internet protocol suite. RASDS is particularly relevant for the primary spacecraft 
example used in this paper. 

RASDS defines five architectural viewpoints. Three of the RASDS viewpoints are related to 
the layered interface concept. The Connectivity view shows the lowest physical layer physical 
view of the nodes and links in the system over which data is routed. The Communications view 
shows in detail the protocol stacks in detail that perform data communication over the physical 
medium. The Information view shows the details of how data is packaged. Multiple system 
views modeled from these viewpoints provide the overall description of the system 
components, their communications, and behaviors. 

1.4 SysML Overview 
SysML is a general purpose modeling language for modeling systems and their environment 
that may include hardware, software, data, people, facilities, and natural objects. The language 



 

is often characterized in terms of four pillars as indicated in Figure 4 that represent the system 
requirements, structure, behavior, and parametrics. 

The four pillars of the language include the capability to represent: 

• Structure: Structural composition, interconnection, and classification 
• Behavior: Function-based, message-based, and state-based behavior 
• Parametrics: Constraints on the physical and performance properties 
• Requirements: Requirements and relationship to other requirements, design, analysis, and 

test cases 

SysML includes the nine kinds of diagrams. The diagrams provide pre-defined ways to present 
the design of a system in terms of the four pillars and the associated capabilities described 
above. A major advantage of this modeling approach is that the model of a system contains 
model elements that are defined once in the model, but can appear on zero, one, or many 
diagrams. This provides a flexible means to present multiple views of the same system that are 
self consistent. 

Many of these diagram types are used to reflect specific requirements, design, and 
implementation views of the system in alignment with ISO 42010 [13] and RASDS [14]. 
Detailed information on SysML can be found in several books on this topic including 'A 
Practical Guide to SysML' [2]. 

2. System Example 
In this section, a simplified Spacecraft and Ground System end-to-end system design example 
is introduced to provide the context for the layered interface modeling pattern. A critical 
system interface requirement is specified, along with some of the considerations for allocating 
this requirement to other subsystem interfaces. In Section 3, the layered interface modeling 
pattern is applied to a particular subsystem interface from this example, and is described in 
more detail. Model elements that are referenced in the text are shown in italics. 

 
 

Figure 4. Four Pillars of SysML 
From 'A Practical Guide to SysML, 3rd Edition' (Figure 2.1) 

Copyright © 2015, 2012, 2009 Elsevier Inc. All rights reserved. 



 

2.1 End-to-End System Design 
An end-to-end view of the Spacecraft and Ground System example is shown in Figure 5. The 
overall system function is to provide the observed Temperature Data of the Thermal Sources to 
the User. The Spacecraft transforms Thermal Emissions from the Thermal Sources into RF 
Signals that are transmitted to the Ground System, and the Ground System transforms the RF 
Signals to Temperature Data which is provided to the User. 

Specifically, the observed Thermal Sources on the Earth’s surface emit Thermal Emissions, 
which propagate through the Earth's Atmosphere. The Spacecraft Payload includes a Sensor 
that senses the Thermal Emissions. The Sensor Signal is processed by an On-board Computer 
in the Avionics Subsystem and converted to Thermal Packets. The Telecom Subsystem 
transforms the incoming Thermal Packets into space data link units, modulates the data, and 
transmits RF Signals through the Earth's Atmosphere to the Ground System. The Ground 
System Receiver Subsystem receives and demodulates the RF Signal, processes the space data 
link units, and extracts the Thermal Packets. The Thermal Packets are processed by the 
Ground Computer to derive the Temperature Data that can be stored as text files, MPEG 
videos, or other file formats. This data is also transformed to Digital Video to send to the 
Display, which is presented to the User.  

2.2 System Data Interface Requirements and Allocation Approach 
The basic top-level requirement for the end-to-end system as noted in the previous section is to 
provide Temperature Data of the Thermal Sources to the User. The Temperature Data 
provided to the User should be specified as an interface requirement for the end-to-end system. 
The Temperature Data is a logical abstraction of the physical signals provided directly to the 
User, which in this example, are photons emitted from the Display. The interface requirement 
should specify the temperature of the Thermal Source in units, such as degrees Celsius, and 
include the estimated time when the temperature was measured. There are many derived 
requirements to achieve the desired measurement quality and satisfy the user need including 
requirements related to sample rate, latency, range, accuracy, precision, reliability, and security. 
The requirement for this example may be stated as: The end to end system shall provide 
estimated Temperature Data in degrees Celsius of the thermal sources located within the 

 
Figure 5: Example End-to-End View of Spacecraft and Ground System 



 

specified coverage area to the Users at the XYZ Facility every 4 hours with an accuracy of 1 °C 
over a temperature range from 0 °C to 300 °C. 

The data interface requirements must be satisfied by the end-to-end system. This in turn 
imposes requirements on all the system elements and associated interfaces that contribute to 
the end-to-end data flow. Latency is allocated to each system element in the data flow path. For 
example, accuracy may drive sensor resolution requirements. Precision and range 
requirements may drive the number of bits to be transmitted. The coverage area, accuracy, 
precision, and range requirement may drive the amount of data to be collected and transmitted, 
and the associated storage and downlink data rates. Reliability may drive selection of the 
communication protocols and the associated packet loss rate. Security confidentiality, integrity 
and availability may drive the need for encryption, access control, and firewalls. 

Requirements are allocated to the system elements and their interfaces as the design process 
progresses. This process includes several design and implementation choices such as whether 
hardware or firmware is required to meet the performance goals, or does software suffice; and 
whether coax cables are sufficiently noise free or must fiber optics be used. 

3. Interface Realization 
The previous section introduced the end-to-end spacecraft system that is used as an example to 
illustrate the application of the layered interface modeling pattern. This system includes 
several components, both in the Spacecraft and the Ground System as shown in Figure 5. The 
process for moving from requirements to realization at each level of design involves further 
decomposing the system and its elements, defining the interfaces between them, and allocating 
the requirements to the next lower level elements. In order to ensure the system satisfies its 
requirements, the characteristics of the elements and their interfaces must be specified, 
designed, and verified. 

In this section, the layered interface modeling pattern is applied to the On-board Avionics 
Subsystem and Telecom Subsystem interfaces shown in Figure 6. In this figure, the subsystem 
interfaces are shown as a single Packet Port that are connected by a connector that supports the 
exchange of Thermal Packets. The tilde symbol (~) on the Packet Port of the Telecom 

Subsystem indicates the port is conjugated to enable the flow direction to be reversed from out 
to in. Note that the subsystem ports are also connected to the ports on its internal components. 
This enables the subsystem interface to be specified as a black box that is realized by its 
internal components. As in the earlier example of the Audio Player to Amplifier interface in 
Figure 3, there may be several ways to realize this interface, which may have very different 

 
Figure 6: Overview of Component Interface (Black Box) 



 

performance and behavioral characteristics. Furthermore, system-wide design decisions may 
constrain these choices. 

3.1 Stack Definition 
To fully specify the interfaces on a component, the protocol elements that make up the “stack” 
must be defined. Figure 7 shows the Avionics and Communication components from Figure 6 
and defines the protocol stack for the Packet Ports on the two components. In more traditional 
spacecraft, this protocol stack might use MIL Std1553, LVDS, or even Spacewire. This 
example assumes the use of TCP/IP on-board to network together the sub-systems, and uses 1 
Gigabit Ethernet and RJ-45 plugs. Although this sort of physical layer is not a typical 
spacecraft deployment, it is used for illustration purposes because it may be more familiar to 
many readers. 

The top level flow is still shown as Thermal Packet, but now the layers of the protocol stack are 
defined, and each layer has the «Protocol Entity» stereotype applied. The stack consists of the 
following: 

1. Application protocol layer: packet transfer protocol, manages exchange of packet data 
between applications. 

2. Transport layer: Transmission Control Protocol (TCP), provides end-to-end, once only, 
in order, complete delivery of data. 

3. Network layer: Internet Protocol (IP), provides network layer routing over any number 
of intermediate network nodes. 

4. Data link layer: 1 Gb Ethernet, provides data link layer services that may involve a 
fabric of switches and hubs. 

5. Physical layer: twisted pair cable (Cat-5) and RJ-45 plug terminations. 

The application above the protocol stack is responsible for processing the contents of the 
packets, and the protocol stack is responsible for transferring the packets. The top three 

 
Figure 7. Protocol Stacks Inside Component Interface (White Box) 



 

protocol layers are responsible for the encoding and transfer of the data and are implemented in 
software. The bottom two layers are responsible for the physical and electrical connection, and 
are implemented in the computer. 

The type of data flowing between the On-board Computer and the Transceiver-S in Figure 7 is 
Thermal Packets. That is, packets that contain the thermal measurements of interest. Stack X 
however, can accommodate any kind of Space Packet, including Thermal Packets. Thermal 
packets are, in the model, a specialization of Space Packets, see Figure 10. It’s not shown in 
Figure 7 but many types of packets are routed through the same Stack X, not just Thermal 
Packets. This is an example of how the modeling can support re-use of the interface. 

The data flows down the stack on one side and up the stack on the other. A protocol entity 
performs the appropriate behavior to support the transformation and exchange of data at that 
layer. Each layer is typically described by a single protocol specification that defines the 
behavior for that layer. Service Units (SDU's) are input to each layer from the layer above or 
below. The protocol behavior for a particular layer transforms its input SDU to an output SDU. 

A protocol entity also interacts with its peer-level protocol entity at the same layer on the other 
side of the interface by exchanging Protocol Data Units (PDU's). The protocol behavior also 
specifies the transformation of the input SDU to an output PDU. The protocol entities are 
shown with dashed lines, which indicates that the protocol entities can be implemented 
elsewhere within the system. 

Figure 8 extends concepts from our previous paper [5]. The figure shows elements of the 
protocol stack defined with stereotypes in a SysML profile that are used in the examples in this 
paper. 

• A Component contains other Components, Protocol Entities and hosts Applications. 
• Components perform Behavior. 
• There are three types of Ports, Required I/F and Provided I/F (for SDU) and PDU I/F. 
• SDU Links connect Provided I/F and Required I/F. 
• PDU Links connect PDU I/Fs. Finally, PDU Data flows over PDU Links. 
• Constraints govern PDU Links and SDU Links. 

Each port on a system component has an interface binding signature that describes each layer 
of the protocol stack that interfaces with the peer interfacing component. Depending upon the 
nature of the component, the interface binding signature may have multiple layers, each with 
its own internal protocol stack, but there is always a physical layer and a link layer for 
communications. And, in some circumstances such as space communication, there may also be 
sub-layers. For example, in the Consultative Committee for Space Data Systems (CCSDS), the 
link layer is defined to include both data link and error encoding, and the physical layer is 
defined to include modulation and free space radiation. 

Specifying subsystem and component interfaces by their interface binding signatures allows 
the design more flexibility. As technology evolves, the component design may also evolve 
from a set of elements built from discrete components to elements based upon FPGA firmware, 
to a single integrated package of software running on a high performance COTS CPU. 



 

There are two related, but somewhat disjoint statements about how protocol stacks operate: 

1. The behavior of each protocol entity is carefully specified at each layer by describing 
how the two peer protocol entities in each interfacing component behave. This involves 
careful definition of the PDUs and behaviors within the layer. 

2. The data does not flow directly between peer entities; it actually flows down one stack, 
across the physical connection, and up the other stack. The SDU interfaces between 
layered protocol entities are only abstractly defined. 

One consequence of this approach is that the implementation details in two connected, but 
interoperable, components that share an interface may be entirely different. They may use 
different languages, run on different operating systems, and even allocate functionality very 
differently. However, they will interoperate as long as the protocol specifications are 
implemented faithfully. 

The functions at each layer may be implemented in one component or they may be allocated to 
different components, depending on design choices. For example, in many space systems, the 
RF, modulation, encoding, and data link functions may be allocated to separate components. 

The Transceiver shown in Figure 7 includes link layer, 
encoding and modulation functions. However, the 
Transceiver can be implemented as three separate 
components, a link layer processor, an encoder, and a 
modulator. In this case, each of these sub-components also 
have their own top level interfaces, passing application data, 
data link frames, and encoded data blocks. In a recursive 
fashion, the interfaces themselves each have an interface 
binding signature that typically include one or more layers. 

Each of the protocol entities in the stack may be left as 
abstract or further elaborated, as needed. The interface 
between IP and the 1 gigabit Ethernet data link may be 
important to define, along with the CSMA/CD behavior. 
The RJ45 plug and Cat5e Ethernet cable may be elaborated 
to show its electrical pin out as shown in Figure 9. The plug 
specification may include electrical and mechanical 
properties, such as impedance. Each pin can be specified 
individually, with whatever additional information is 

needed. 

 
Figure 8. Concrete Protocol Stack Interface Concepts 

 
Figure 9. RJ45 Pinout 



 

3.2 Packet Data Structures 
The data objects that are exchanged (i.e. data flows) must have a well defined data structure 
down to the octet and bit level, and have well defined relationship with other data objects. The 
data structure definitions are constructed using defined building blocks. All data structures, 
including PDUs and SDUs at each layer, must be defined in unambiguous terms to ensure 
interoperable exchange of information between applications. Figure 10 shows the data 
structure definition for a CCSDS Space Packet [16], which is the highest-level data structure 
for Stack X shown in Figure 7. It also shows the Thermal Packet that flows on Figure 7. The 
Thermal Packet is contained in the CCSDS Space Packet. This Packet Data structure may be 
used to carry many different types of application data, and it may also carry application layer 
signal information as well as provide limited functions for data assembly and/or fragmentation. 

The application data at the packet transfer layer may have explicit structure known to the 
application, but that data is treated as bits that are only meaningful to the layer above. The data 
structure in this example is the Space Packet, which is defined as a data structure with two parts, 
the Packet Primary Header and the Packet Data Field. Both of these are defined in a way that 
promotes re-use. The example shows the specialization of Packet Data to carry typical thermal 
data in the Thermal Packet, redefining the generic Packet Data as Thermal Packet Data Field 
that specifies the structure of the specific application data. Other packet data types may be 
specified in a similar way. 

3.3 Protocol Entity Behavior 
Accurately characterizing the behavior and performance of each interface requires an 
understanding of the protocol stack, and understanding the stack requires an understanding of 
the behavior of the protocol entities at each layer. This section and the next provide a method 
for describing that behavior. 

Within the stack, the SDU at each layer (N) is a sequence of octets that is provided by the upper 
layer (N+1) transformed by the (N) layer protocol and then passed to the lower layer (N-1). It is 
a function of the upper layer to send the SDU in a form that is acceptable to the (N) layer 

 
Figure 10. Packet Data Structure definition 



 

service interface. The (N) layer may transform that SDU in a variety of ways, including cutting 
it into smaller pieces, aggregating it into larger units, or performing a transformation to encode 
or encrypt the SDU. It is a function of the (N) layer to send the (N) SDU it constructs to the 
(N-1) layer service interface in a form that is acceptable to that layer. 

Figure 11 shows one of the protocol entities, the Transmission Control Protocol (TCP), that is 
part of the stack in Figure 7. The TCP protocol entity has ports like the other protocol stack 
elements. Each protocol entity has three ports, the interface that provide services to the upper 
(N+1) layer, the interface that requires services of the lower (N-1) layer, and the interface with 
the peer protocol entity at the same layer:  

1. Provided service port: the services offered to any upper layer (N+1) protocol, defined 
as an abstract service and using a layer N Service Data Unit (SDU) 

2. Required service port: the services required from any lower layer (N-1) protocol, 
defined as an abstract service and using a layer N-1 Service Data Unit (SDU) 

3. Peer protocol port: the port that enables the protocol entity to interact with its peer 
entity at the same layer, defined by the protocol specification and using the layer N 
Protocol Data Units (PDU) 

There may also be a separate control or management 
interface within the protocol, or via a separate port on the 
component. 

The provided service interface accepts layer (N) Service 
Data Units (SDU) from the upper (N+1) layer, and it is 
the upper layer entity’s job to match the implementation 
characteristics of the layer (N) provided interface. 
Similarly, the interface to the lower layer (N-1) protocol 
entity must provide (N-1) SDUs in the form that entity 
expects. Within each protocol entity is a transformation 
engine that accepts (N) SDUs, creates (N) PDUs that 
contain all or part of each (N) SDU, and then forms (N-1) 
SDUs for the lower layer. This sending side process, of 
course, works in reverse in the peer protocol stack on the 
receiving end. 

One (or more) state machines and/or activity diagrams may be used within the protocol 
specification to define the protocol entity’s behavior. While some protocol specifications will 
contain carefully constructed state machines, or state tables, some of them use English prose to 
specify the behavior. The SysML modeling approach used here provides explicit state machine, 
sequence, and activity diagrams to describe the behavior. 

One or more state machines are needed to describe peer level protocol behavior; and how the 
protocol entity responds when PDUs arrive, and what PDUs are sent. This behavior may 
involve establishing a connection, authentication, performing mono- or bi- directional data 
exchanges, handling reliability & error conditions (re-transmission), sending and responding to 
quality of service (QoS) signals, and other behavior. There may also be data transformation 
behavior within the protocol entity that can be described using a separate state machine or 
functional model (activity diagram). This describes the transformation of (N) SDUs into (N-1) 
SDUs, which may require data fragmentation, re-assembly, caching, and even data 
transformation to encode or encrypt. 

 
Figure 11. Protocol Entity 

(Black Box) 



 

Figure 12 shows the canonical State Machine for TCP connection establishment and tear down. 
This diagram combines the state transitions for both the sender and the receiver. Either TCP 
entity may send and/or receive. In support of the sender / receiver roles, it is useful to think of 
one TCP entity as the server and the other as the client. From this point of view, the server 
leaves the Closed state using the blue path, performs a passive open, and enters the Listen state. 
When a client is ready to communicate, it exits the Closed state via the red path, performs an 
active open, and sends a SYN PDU. The PDU exchanges continue until the connection is 
Established, at which point the two peer entities may exchange data in either direction. The 
bottom part of Figure 12 describes the process for closing the connection and returning to the 
Closed state. A very similar diagram is included in RFC 793 [8] that defines the TCP protocol. 

Figure 13 is a sequence diagram that depicts a part of the PDU interchange between the client 
and the server, showing the PDUs sent by the client (TCP 2) in red, and PDUs sent by the 
server (TCP 1) in blue. As mentioned, the server does a passive open and the client does an 
active open. The top part of the diagram shows the exchanges to achieve the Established state. 
Those on the bottom are the exchanges to return to the Close state. 

 
Figure 12. TCP Protocol state machine – connection establishment 



 

Much of the behavior of a protocol entity behavior may be captured within the state machines, 
but the dynamics of the interactions between the two cooperating state machines can be further 
described using a sequence diagram. The sequence diagram can show both the interchanges of 
PDUs and also the timing relationships as the protocol entity interacts with its peer entity at the 
same level. Particularly for space data link protocols, where there may be long round trip light 
time delays (tens of minutes to tens of hours), understanding the timing dynamics of the 
protocol becomes very important. One approach to dealing with long delays is to use a 
networking approach like Delay/Disruption Tolerant Networking (DTN) that uses the delay 
tolerant Bundle Protocol [12] rather than TCP and IP. Understanding the dynamics of 
interactions is important when there is a high bandwidth / delay product (> 107 bits). Sequence 
diagrams that describe these interactions and timing considerations are useful in understanding 
protocol behavior in the face of data errors, data loss, weather based channel fades, and other 
conditions. 

Once the connection is established, the TCP operates to provide reliable end-to-end exchange 
of a stream of bytes, in order, once only, and without omission. That behavior takes place 
within the Established state in Figure 12. In RFC 793, this description is many pages of clear, 
but rather dense, prose. Specifying this behavior as behavioral models facilitates understanding, 
and the translation of this behavior into code. It is even possible to automatically transform 
well specified state machines directly into executing code. [17] 

The behavior of TCP to accomplish these reliable exchanges is complex and it must handle 
start up, shut down, retransmission, and error cases. It is a testament to the quality of the 

 
Figure 13. TCP Protocol connection establishment sequence diagram 



 

original spec that it has persisted in essentially an unchanged form since 1981, leaving aside 
extensions like SACK and RENO. 

Figure 14 shows the sequence 
diagram from Figure 13 which 
constrains the interaction between 
the client and server, which are 
peer-level entities on each side of the 
connection. 

Figure 15 provides a structured 
description of a part of the TCP 
Established state behavior. This 
describes the behavior of the sending 
protocol entity when it receives 
SEND Call on its (N+1) service 
interface. The behavior is described 
using an activity diagram. The figure 
re-casts in SysML a figure from a 
paper modeling TCP and the RENO 
congestion control extensions using 
EFSM/SDL [9]. The diagram shows 
both the calculations done within the 
protocol entity to manage the sliding 
acknowledgement window (rounded 
ovals) and the protocol behavior to 
send a PDU with a segment of data 
and with the SND, ACK, and CTL 
signal field settings (right facing 
arrow). 

The defined behavior and PDU 
exchanges in each state are defined 
in Figure 12. In the cited paper the 
full description of the protocol 
behavior in EFSM is documented in 
many pages. 

3.4 Compliance with 
RFC 793 

Figure 16 gives an overview of all the elements in the model that must comply with RFC 793. 
The same pattern will be found for any other protocol as well. RFC 793 governs the PDU link 
at the TCP layer, the two TCP Protocol Entities, the two SDU Links above, and all six 
Interfaces to which those links connect. This compliance includes data, structure, connections 
and behavior, as illustrated by the state machine, activity and sequence diagrams. Compliance 
is shown by the Satisfies notation on the diagram both on the Components (white box) and the 
protocol entities (black box). 

 
Figure 14. Association block and Sequence diagram 

specifying relationship between port definitions 
(i.e., types) 

 
Figure 15. TCP Send Call activity diagram 



 

 

4. Related Work 
This pattern is the result of work performed on several previous tasks at the Jet Propulsion 
Laboratory. The pattern was first developed and applied as part of the Space Communication 
and Navigation (SCaN) Integrated Network Interface Definition Trade Study and the related 
SCaN Network Integration Project (SNIP). It was used to describe and document each of the 
standard interfaces to help unify the three separate Earth to Space communications networks 
run by NASA. These standard interfaces allowed encapsulation of different implementations, 
providing common external interfaces for end users, regardless of which communications 
network they chose, and common internal interfaces as integration points. The interface 
bindings were described from application layer down to network layer and tied to the 
individual protocol layer specifications. This approach provided accurate models of all of the 
major external and internal interfaces. 

The pattern was also applied to the Ground Data System of the Exploration Flight Test 1 
(EFT-1) project. The purpose here was to describe the flow of information across the ground 
network supporting the mission. Two levels of abstraction were used. The top layer described 
the flow from source to destination in a single step, and the second layer described the 
connections between the routers, switches, firewalls and servers. Constraints were added to 
describe the path of the first over the second. 

There has been other earlier work to model interfaces in SysML, some of which started to 
model similar layer interface concepts. Robert Karban developed and applied interface and 
protocol stack patterns to model software, electrical, optical, and mechanical interfaces while 
at the European Southern Observatory [19]. Mark McKelvin applied layered interface patterns 
to electrical interface design [21] [22]. Maddalena Jackson wrote about using a layered 
interface concept to describe data flows in support of human space flight. 

 
Figure 16. Compliance with RFC 793 



 

5. Applying the Pattern to Other Types of Interfaces  
This paper largely focuses on communications interfaces, since dealing with the complexities 
of a full specification of such interfaces was a driver for developing the layered interface 
pattern. However, as stated in The Interface Challenge section, systems interfaces can be very 
diverse and involve many different technical domains including electrical, mechanical, thermal, 
software, user, and others. A question to be explored here is whether this pattern can be 
leveraged to model other kinds of interfaces. 

One key observation is that many interfaces between elements exhibit a set of characteristics 
that may be modeled as a stack with defined functionality. An earlier paper [5] introduced the 
concept of four abstract layers: message, encoding, signal, physical. These examples that were 
used correspond to data exchanges using various protocols, to send signals across the interface 
media such as a cable or free space, and the physical connection to the interface media. This 
interface modeling pattern, however, may be generalized to model interface with distinctly 
different characteristics. 

5.1 Communication Interfaces 
Applying this layered pattern to specify communication interfaces has been presented above. 
The communication interfaces come in a wide variety of forms and may include only two 
protocol layers, or many of them (encoding). The sorts of signals used may also vary widely, 
depending upon the physical media being used in the communication path (free space RF or 
optical, fiber, copper wire, and maybe, in some future, quantum entanglement). 

Intermediate system components, such as routers or switches, may only include two or three 
layers (up to link or network layers), and other components, such as gateways, may include 
protocol transformation behavior as well. All of these may be modeled by applying this pattern. 
Furthermore, end-to-end-performance may be modeled by defining implementation specific 
performance characteristics for each of the physical interconnects and, if necessary, modeling 
the performance of SDU transformations within the stack to account for these time and 
resource consuming processes. 

5.2 Other Interfaces 
This modeling pattern may be extended to model interfaces that are constrained by physical 
laws, such as forces, torques, momentum, and energy. Modelica is a modeling language that 
simulates physical interactions, and expresses the constraints in terms of conservation laws. 
The model of the physical layers of the stack can be augmented to reflect these constraints.  

An example for RF antenna, gimbal and inertial effects is as follows. The RF antenna may be 
body mounted on a spacecraft, or it may be on a gimbal. If it is on a gimbal there will be control 
and power interfaces, as in the previous example, but there will also be inertial effects on the 
rest of the spacecraft. The system will have to react to this, using counteracting forces driven 
managed by control loops. These will have their own interfaces for control and power and their 
own sets of constraints. 

Application of the modeling pattern to user interfaces may be an interesting area for future 
exploration. Humans gather information using their five senses, and then decode the 
information using their nervous system and brain. When describing user interfaces, the human 
“stack” and related aspects of the end-to-end system flow are often abstracted away, there may 
be cases where elaborating this part of the model may provide useful insights. 



 

6. Summary 
The application of the pattern to communication interfaces has been described to help guide the 
consistent and clear specification and design of end-to-end system interfaces. It provides a 
framework for modeling system and component interfaces at successive levels of detail as the 
design progresses. It helps to address the complexity of each interface in terms of how data is 
encoded in messages and signals, the rules that govern their exchange, and how they are 
physically sent from sender to receiver. This pattern defines how to model these interfaces and 
to document conformance to standards. 

The pattern provides the modeler the ability to accurately describe complex interfaces at 
whatever level of detail is useful. Interfaces may be left abstract at the “communicated data” 
layer if documenting end-to-end connectivity is all that is required. The interfaces can also be 
documented down to the physical layer, including performance characteristics, such that 
throughput and latency may be characterized. External and internal interfaces may be given the 
same treatment using the same pattern. 

The effective specification and design of external and internal interfaces is a critical aspect of 
any system development process. The number, diversity and complexity of interfaces 
contributes to the interface specification and design challenge. A model-based approach can 
help address this challenge over more traditional document-based approaches by enhancing 
consistency, precision, traceability, conformance to standards, and reuse.  

This paper uses a representative Spacecraft and Ground System to illustrate how a critical 
end-to-end system interface is specified using a model-based approach with SysML. It then 
presents an application of a layered interface modeling pattern to realize a Spacecraft 
subsystem interface and help manage the inherent complexity. The pattern leverages layered 
interface concepts to model each side of an interface as a stack of protocol entities with distinct 
functionality. Inputs flow down the stack on one side of the interface, across a physical 
medium, and up the stack on the other side of the interface. 

The pattern specifies how to model a typical protocol entity, and its behavior to transform its 
inputs data to outputs at the next layer of the stack, and its interaction with a peer level protocol 
entity at each layer of the stack. It shows how to model data that flows through the stack as a 
logical abstraction, data encoded in bits and bytes, data encoded in signals such as electrical, 
RF, and optical signals. It also discusses how to model the physical connection to an interface 
medium such as a cable or free space. 

Like any effective modeling effort, it is essential to scope the model to address the modeling 
objectives. This will result in emphasizing particular aspects of the interface for a given project 
and lifecycle phase. This pattern is intended to support such adaptation, and can be selectively 
and incrementally applied to meet a project’s needs. Early in the development, the emphasis 
may be to create abstract models of the interface specification, and as the design progresses, the 
model may include additional design detail to address protocol, deployment, software, 
electrical, and mechanical design concerns. The details may be captured directly in the model, 
or refer to detailed interface information captured in other tools. Understanding the layered 
interface pattern can assist the team in determining an effective strategy for capturing this 
critical information to meet the needs of the project. 

Although the pattern is illustrated for a communications interface, the application spans system, 
software, electrical, and mechanical interfaces. Future work can explore how to leverage this 



 

pattern for other kinds of interfaces that involve many technology domains and different 
engineering disciplines. 

 

 

 

Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics and Space Administration. 



 

References 
[1] Object Management Group. OMG Systems Modeling Language (OMG SysML™). V1.4. 

Available at: http://www.omg.org/spec/SysML/. 

[2] A Practical Guide to SysML, The Systems Modeling Language, Third Edition by Sanford 
Friedenthal, Alan Moore, and Rick Steiner, Morgan Kaufmann, 2014 

[3] Estefan Jeff A., Survey of Model-Based Systems Engineering (MBSE) Methodologies, 
Rev B INCOSE Technical Publication, Document No. INCOSE-TD-2007-003-01. San 
Diego, CA: International Council on Systems Engineering; June 10, 2008. 

[4] Interface Control Document NASA 932 C-9BAircraft Operations Division February 2011. 
http://jsc-aircraft-ops.jsc.nasa.gov/Reduced_Gravity/docs/AOD_33912.pdf 

[5] Shames, Peter M, Sarrel, Marc A, A modeling pattern for layered system interfaces, 25th 
Annual INCOSE International Symposium (IS2015), Seattle, WA, July 13 – 16, 2015 

[6] Universal Serial Bus Specification (revision 2) 
http://sdphca.ucsd.edu/Lab_Equip_Manuals/usb_20.pdf 

[7] Guide to the Systems Engineering Body of Knowledge (SEBoK) 
http://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge
_(SEBoK) 

[8] Postel J., “Transmission Control Protocol,” RFC 793, September 1981.  

[9] Zaghal, R, Khan, J, EFSM/SDL modeling of the original TCP standard (RFC793) and the 
Congestion Control Mechanism of TCP Reno, Kent State University report, 
TR2005-07-22-tcp-EFSM.pdf, 2005 

[10] Information technology - Open Systems, Basic Reference Model, ISO/IEC 7498-1, 
revised June, 1996 

[11] OMG QUDV, Quantities, Units, Dimensions and Values, 
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-qudv:qudv_owl 

[12] Scott, K, Burleigh, S, “Bundle Protocol Specification”, RFC 5050, Nov 2007 

[13] Systems and software engineering — Recommended practice for architectural description 
of software-intensive systems, ISO/IEC 42010, July 2007, revised 2011 

[14] Reference Architecture for Space Data Systems (RASDS), CCSDS 311.0-M-1, Sept 2008 

[15] Rasmussen, R, et al, An Architectural Pattern for Goal-Based Control, IEEE Aerospace 
Conference. Big Sky, MT. March 2008 

[16] Consultative Committee for Space Data Systems, CCSDS Space Packet Protocol, CCSDS 
133.0-B-1c2, Sept 2010 

[17] Wagstaff, et al, Automatic Code Generation for Instrument Flight Software, 
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.126.548 



 

[18] Jackson, et al., “Architecting the Human Space Flight Program with Systems Modeling 
Language (SysML)”, Infotech 2012, AIAA 2012-2556. 

[19] Karban, et al., “MBSE Initiative – SE2 Challenge Team, Cookbook for MBSE with 
SysML, Issue 1, INCOSE, 2011. 

[20] Leveson, “The Role of Software in Spacecraft Accidents,” AIAA Journal of Spacecraft 
and Rockets, to be published. 

[21] Mark L. McKelvin, Jr.,Robert Castillo, Kevin Bonanne, Michael Bonnici, Brian Cox, 
Corrina Gibson, Juan P. Leon, Jose Gomez-Mustafa, Alejandro Jimenez, and Azad M. 
Madni. “A Principled Approach to the Specification of System Architectures for Space 
Missions”, In Procs. of the AIAA Space Conference, Anaheim, CA, 2015. 

 [22] Mark L. McKelvin, Jr. and Alejandro Jimenez. “Specification and Design of Electrical 
Flight System Architectures with SysML”, AIAA Infotech@Aerospace, Garden 
Grove, CA, June 2012. 

Biography 
Peter Shames has been engaged in the process of turning computers into useful tools for 
scientists for the bulk of his professional career. His specific expertise is architecting 
large-scale space data systems, including space communications protocols and standards. Peter 
manages JPL's Data Systems Standards Program in the Interplanetary Network Directorate 
(IND). He is Director of the System Engineering Area for Consultative Committee for Space 
Data System (CCSDS). For CCSDS he was lead editor of the CCSDS Reference Architecture 
for Space Data Systems (RASDS, CCSDS 311.0-M-1) and Space Communications Cross 
Support Architecture (SCCS-ADD, CCSDS 901.0-G-1). 

Marc Sarrel is a systems engineer in JPL's Mission Control Systems section. For the past five 
years, he has applied Model Based Systems Engineering to various system engineering tasks in 
the space-flight ground-systems domain. He has worked on the Spitzer and Cassini missions as 
a Mission Operations System Engineer and a Ground Data Systems Engineer, and has written 
ground processing software. He has a master’s degree in Computer and Information Science 
from The Ohio State University, a bachelor’s in Computer Science from Washington 
University in St. Louis, and has worked at JPL for twenty-five years. 

Sanford Friedenthal is an independent consultant and industry leader in model-based systems 
engineering. Previously, as a Lockheed Martin Fellow, he led the corporate engineering effort 
to enable Model-Based Systems Development across the company, where he was responsible 
for developing and implementing strategies to institutionalize the practice of MBSD across the 
company, and provide MBSE support to programs. He chairs the INCOSE MBSE 
Initiative and other industry modeling efforts, and is co-author of ‘A Practical Guide to 
SysML.’ 


	Peter.M.Shames@jpl.nasa.gov
	Marc.A.Sarrel@jpl.nasa.gov
	Sanford.Friedenthal@gmail.com
	1. Introduction
	1.1 The Interface Challenge
	1.2 Definitions and Concepts
	1.3 Simple Example of a Layered Interface
	1.4 SysML Overview

	2. System Example
	2.1 End-to-End System Design
	2.2 System Data Interface Requirements and Allocation Approach

	3. Interface Realization
	3.1 Stack Definition
	3.2 Packet Data Structures
	3.3 Protocol Entity Behavior
	3.4 Compliance with RFC 793

	4. Related Work
	5. Applying the Pattern to Other Types of Interfaces
	5.1 Communication Interfaces
	5.2 Other Interfaces

	6. Summary
	References
	Biography

