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ABSTRACT 

 
The Mission Analysis, Operations and Navigation Toolkit 
Environment (MONTE)[1] is an astrodynamic toolkit 
produced by the Mission Design and Navigation Software 
Group at the Jet Propulsion Laboratory. It provides a single 
integrated environment for all phases of deep space and 
Earth orbiting missions. Capabilities include: trajectory 
optimization and analysis, operational orbit determination, 
flight path control, and 2D/3D visualization. MONTE is 
presented to the user as an importable Python language 
module. This allows a simple but powerful user interface via 
CLUI or script. In addition, the Python interface allows 
MONTE to be used seamlessly with other canonical 
scientific programming tools such as SciPy, NumPy, and 
Matplotlib. MONTE is the prime operational orbit 
determination software for all JPL navigated missions. 
 

Index Terms— Navigation, Optimization, Orbit 
Determination, Trajectory, Software 
 

1. INTRODUCTION 
 
Prior to the creation of MONTE, navigation at JPL was 
performed using the software suite known as 
DPTRAJ/ODP[2][3]. DPTRAJ/ODP is a FORTRAN-based 
software set that originated in the late 1960s and expanded 
over the next 3 decades.  During this same period, mission 
analysis and design tools were developed independently 
from DPTRAJ/ODP in a suite of tools known as the Mission 
analysis Software Library.  Moreover, the JPL mission 
design analysts who used these design tools were an entirely 
distinct group of individuals from JPL navigation analysts. 
Transporting mission design models into the navigation 
world became a small cottage industry unto itself.   
Meanwhile, computing technology and software 
development practices in the outside world evolved rapidly. 
New technology such as the rise of object-oriented (OO) 
programming rendered many of the computing constraints 
imposed by early 1970s technology irrelevant.  New 
development practices exposed weaknesses in the 
established ways of development.  Finally, in 1998 the 
strategic decision was made to begin again and develop a 
new set of software tools that would exploit the gains in 
computing and understanding of how to implement code. 

The new system would start from a blank sheet of paper but 
rely relying upon the legacy tools to define correct behavior 
and define the mathematical specification of essential 
algorithms.  The result of this decision is MONTE.   
 
 
 

2. DEVELOPMENT CONSIDERATIONS 
 
The development of a replacement for DPTRAJ/ODP 
required consideration of a number of programmatic and 
infrastructure topics.   At the programmatic level these 
included implementation process, stakeholder concerns, 
efficiency of implementation, the inevitable growth in 
requirements, and the long term sustainability and 
correctness of the new software. 
 
2.1. Development Infrastructure 
 
When DPTRAJ/ODP was developed, the open source 
movement was in its infancy.  However, by the late 1990s 
open-source software had become the foundation of almost 
all computing.  Open source would provide the computing 
infrastructure for MONTE and would be a major design 
consideration during development. All third-party 
dependencies would include source code. The open-source 
Linux operating system was chosen as the development and 
operational environment for MONTE.    

From the outset it was determined that MONTE would 
be developed in an object-oriented language.  While there 
was consideration of JAVA, C++ was adopted as the 
backbone of the implementation.  Moreover, it was 
determined that the new system would allow users access to 
all levels of the implementation and that the system should 
be presented as a “software toolbox” similar to the 
successful SPICE system[2] that had already achieved wide 
adoption in the planetary science community.  It was also 
recognized that compiled languages do not present users 
with a flexible, rapid-analysis system.  For rapid analysis a 
scripting language is ideal.  A number of options were 
considered, but the Python language with its OO interface, 
wide cross-platform support, extensive suite of built in and 
third-party languages, and ability to “bind” to compiled 
libraries made it a natural choice.  Indeed, Python turned out 
to be far better choice than initial expectations.  



 
 
 
 

2.2 Development Practices 
 
The implementation of MONTE was coincident with JPL’s 
commitment to software process improvement. The 
development team adopted a number of new practices.   
Senior management recognized the importance of sound 
software development processes.  The CMMI process model 
for software engineering was selected as the standard 
against which JPL’s processes would be measured.  The 
goal of achieving a CMMI maturity level 3 certification was 
established and the MONTE development team was selected 
as the pathfinder in achieving this goal.  This selection was 
partly due to the strong process focus already adopted by the 
development team and partly as a forcing function to shore 
up those areas where weaknesses would be identified.  The 
MONTE development project was the first to be appraised 
at JPL in 2004 and achieved a CMMI maturity level 2 
rating.  In 2007 MONTE was among those projects in JPL’s 
first CMMI maturity level 3 rating. 

On the road to the maturity level 3 rating, the team 
adopted or developed a number practices:  

  
• All new code requires configuration-managed unit 

tests and must meet code coverage requirements. 
• Documentation for the online documentation is 

included in the internal comments of the source 
code.  The reference documentation is built from 
these comments. 

• Source code is required to pass a style checker. 
• A “clean” build of the entire system is performed 

nightly in which style rules are checked, all unit 
and system level tests are run, the documentation is 
built, code examples are executed and checked for 
correctness, and a static memory check is 
performed.    

• Defects are reported and managed via the open-
source bug tracker bugzilla. 

• The scope of each delivery is determined through a 
collaboration with the users.  The cost of new 
features is estimated and the entire list of 
“desirements” presented to the users.  Through this 
process the varied desires of the user community 
are balanced against the resources available for 
their development.  As a result, the development 
team routinely delivers features on schedule and on 
budget. 

• Stakeholder communications are managed through 
a number of regular status meetings as well as an 

online forum where users and developers can post 
questions, problems, and solutions. 

 
3. ARCHITECTCURE AND DESIGN PATTERS 

 
At the highest level view, MONTE is a large, importable 
Python module.  Importing MONTE into Python expands 
the Python ecosystem adding the unique astrodynamic 
features of MONTE.  As such it can be combined with the 
vast set of built-in Python capabilities as well as the rich set 
of third-party tools such as Numpy, Scipy, Matplotlib, etc.  
 

 
   

Figure 1. MONTE Architecture 
 

The MONTE module is a modification of a layered 
architecture as shown in Figure 1. The layers in this 
architecture are:  
 

• The File System Layer 
• The Data Store Layer 
• The Physics Layer 
• The Measurement Layer 
• The Mathematical Processing Layer 
• The Application Layer 
• The Parameters Layer 

 
The layers of the MONTE architecture are not arranged 

like the layers of a cake from top to bottom.  Instead, as the 
figure illustrates, some layers cross other layers.  For 
example, the User Interface layer has access to all layers of 
the architecture as well as the surrounding Python 
environment.   
 
3.1 The Data Service Layer 
 
At the base level is the Data Service Layer.  It is at this level 
that externally-produced data products (radiometric 



observations, planetary ephemerides, earth orientation 
parameters, etc.) come into the MONTE environment.  
Although these data products are typically files, this layer 
also includes telemetry streams and connections to other 
data providers. Each data product has its own unique format 
custom software to read the data and form the objects that 
MONTE uses to carry out its computations. 
 
 
3.2 The Data Store Layer 
 
MONTE is an object-oriented system.  Each object requires 
a construction step.  Once constructed, the methods of that 
object can be employed to carry out the various 
computations required of MONTE.  Storage and retrieval of 
these objects is necessary for many large scale 
computations.  Rather than reconstructing these objects from 
the original unstructured data, MONTE provides an object 
storage layer called the binary object archive (BOA). Built 
upon XDR, BOA provides a machine-independent 
mechanism for instantiating, storing, and transporting the 
objects that provide the MONTE computational capabilities. 
 
3.2 The Physics Layer 
 
The layer above the data storage layer is the Physics Layer 
of MONTE.  This layer contains the models for the 
astrodynamics of the solar system.   The Physics Layer 
provides:  

• coordinate systems for specifying the position and 
velocity of objects,  

• the time system used to specify the moments of 
events, the span of time between events, time 
systems and the transformations between them (e.g. 
UTC, TT, TAI, and the detection of events 
determined by dynamics, 

• the trajectory system giving time dependent 
position, velocity and acceleration of spacecraft 
and natural bodies the coordinate frame system that 
specifies the time dependent orientation and of 
bodies, celestial frames, 

• the force system for modeling the physical forces 
acting upon objects, 

• spacecraft modeling of shape, reflectance, drag, 
propulsion, etc., 

• solar flux, 
• planetary atmospheres, albedos. 

 
3.2 The Measurement Layer 
 
Our instruments (deep space antennae, cameras, etc.) do not 
observe the parameters that define our models in the real 
world.  Rather, they sample some function that is dependent 

upon those parameters.  The Measurement Layer 
implements the models for those observations as a function 
of physical parameters as well as their sensitivity to those 
parameters.  In addition it performs residual calculations 
associated with actual measurements. Measurement models 
are supplied for: 

• 1-way, 2-way, and 3-way radio Doppler 
measurements, 

• 1-way, 2-way, and 3-way radio range 
measurements, 

• Very Long Baseline Interferometry (VLBI), 
• DSN Station Angles, 
• optical (line/pixel), 
• GPS Phase and Pseudo Range, 
• accelerometer, 
• spacecraft torque. 
 

Users may construct their own measurement models via 
Python. In addition, a number of mathematical measurement 
types are provided such as instantaneous range, rate, and 
acceleration. 
 
3.3 The Mathematical Processing Layer 
 
The Mathematical Processing Layer includes propagators 
that perform the numerical integration of the differential 
equations that describe various astrodynamic models, filters 
for performing orbit determination, optimizers, Monte Carlo 
tools, etc.  These mathematical tools interact with the 
measurement and physics layers.  It manipulates those 
layers through the parameters layer. 
 
3.4 The Parameters Layer 
 
The models implemented in the Physics and Measurement 
layers of MONTE are functions of a large set of parameters.  
Depending upon user needs, some parameters are treated as 
variables with associated sensitivities and uncertainty. The 
Parameters Layer provides the naming, grouping and 
selection of sets of parameters used in higher-level 
computations. The Mathematics, Physics and Measurement 
layers interact through the use of the Parameters layer. 
 
3.5 The Application Layer 
 
While access to the various layers of the MONTE 
architecture through the Python language provides 
maximum flexibility for users, it is not practical to require 
users to build their operational environment from these 
lower-level objects.  Instead, the development team has 
worked with the user community to identify common 
workflow patterns. These patterns have been encapsulated 



as Python callable applications that harness the capabilities 
in the lower layers of the architecture.   
 
3.5.1 UI system 
MONTE's UI System provides a set of data setup and run 
commands that support the "lockfile-update-run" style of 
navigation operations. This interface is used extensively by 
flight projects for operational orbit determination and flight 
path control. 
 
3.5.2 COSMIC Multi-Leg Trajectory Optimization 
The MONTE application COSMIC supports trajectory 
optimization via a control-point / break-point problem 
structure.  Through COSMIC, users specify a cost function 
to minimize (usually total delta-V for a mission) over a 
series of independently propagated trajectory segments. 
 
3.5.3 Trajectory Differential Corrector 
MONTE provides a differential corrector[5] for optimizing 
trajectories using a patch-point framework. The differential 
corrector has two main use cases. 

The first is for connecting together and optimizing a 
series of analytically derived states defining a trajectory. For 
instance, MONTE's HaloRich and LissajousRichCary 
classes can be used to produce a set of states analytically 
approximating Halo and Lissajous orbits, respectively. 
These states can then be processed by the differential 
corrector to produce a smooth, fully-integrated trajectory. 

The second main use case is to alter a pre-existing 
trajectory so that it conforms to a different set of constraints. 
For instance, one may want to alter a particular leg of a 
reference trajectory to target a new flyby aimpoint. 
 
3.5.4 Horizons Small Body Ephemeris Interface 
The JPL Horizons system[6] is an online ephemeris system 
for natural bodies in the solar system. MONTE's Horizons 
interface is designed for fast access to the small bodies 
(comets and asteroids) in the Horizons system. 
 
3.5.5 Mean Element Integration with Morbiter 
Morbitor is a utility that allows the integration of the 
equations of motion for the elements of one or more 
spacecraft in closed orbits around a central body. In addition 
to the standard point mass gravity from the central body 
perturbations by non-spherical gravity, non-central point 
mass bodies, drag, and solar radiation pressure are 
supported. Finally, conversions between osculating and 
mean elements[7] are provided. 
 
3.5.6 Residual viewing and editing 
MONTE's residual viewer application supports both the 
real-time visualization of streaming tracking data (the Real-
Time Residual Viewer, or RTRV) and the batch-mode 

visualization and editing of accumulated tracking data 
(Residual Viewing and Editing Tool, or RVET). 

 

 
 

Figure 2. Residual Viewing and Editing 
 

 
 
3.5.7 Landing Sites Analysis Tool 
The Landing Sites Analysis Tool is a Python GUI 
application used to display a region on a planetary body that 
may contain one or more potential landing sites. From an 
initial, probabilistic landing dispersion, the application 
identifies landing targets that afford a minimum expectation 
of landing on a hazard. The tool is designed to display the 
location of various hazards, probabilities of landing on a 
hazard, and other types of information. 

 

 
 

Figure 3. Landing Sites Analysis 
 
3.5.8 Timeline and Scheduling Tool 



The Timeline and Scheduling Tool is a multi-purpose utility 
for visualizing meetings, events, tracking passes, personnel, 
etc. on a Gantt-like chart form.  Using the Python interface, 
operations teams can link up-to-date mission dynamics 
together with mission schedules in an on-demand basis 
greatly simplifying operations scheduling. 
 

 
 

Figure 4. Timeline and Scheduling Tools 
 
 
3.5.9 Launch Contour Analysis Tool 
MONTE's Launch Contour Analysis Tool (MContour) is 
used for generating launch contour plots (”porkchop” plots) 
corresponding to various launch/arrival date parameters. 
 

 
 

Figure 5. Launch Contour Plotting 
 
 
3.5.10 Measurement Simulation Toolbox 
The Measurement Simulation Toolbox provides utilities for 
creating simulated tracking data for Orbit Determination 
covariance analysis. 
 
3.5.11 3D Trajectory Viewer 
MONTE's 3D Trajectory Viewer is a lightweight trajectory 
visualization application that renders MONTE trajectories in 
a three-dimensional astrometric environment. 

 

 
 

Figure 6. 3-D rendering and exploration of trajectories 
 
3.6 Additions to the Python environment 
 
The MONTE system lives within a larger Python 
environment.  This environment has been extended to 
include unit safety when specifying physical constants, a 
plotting style system that interacts with the third-party 
plotting library matplotlib,  a framework for performing 
parallel processing across a cluster of computers, modules 
that allow users to define their own measurements and 
forces, and a default set of data for generic studies. 
 
 

4.  The MONTE Ecosystem 
 
Beyond the Python environment there is a substantial 
infrastructure that supports MONTE development and the 
user community. 
 
4.1 Documentation 
 
MONTE comes with an extensive set of documentation 
presented as a cross-linked website comprising well over 
1000 pages.  The documentation provides: 

• an overview of the key concepts of the system, 
• tutorial examples to help users learn basics of the 

system, 
• detailed descriptions of algorithms implemented in 

MONTE, 
• low level class descriptions, relevant equations, and 

examples of usage, 
• links to release information, 
• links to training videos, 
• links for downloading PDF User Guides, 
• links to the NAIF and Horizons homepages, 
• links to third-party documentation. 

 
The documentation website is built from a 

configuration-managed collection of source pages.  



Crosslinks are automatically generated and equations are 
built from LaTex imbedded in the comments of source code 
as well as text-based source pages.  The MONTE software 
and its documentation are built at the same time within the 
MONTE build framework. This ensures consistency 
between the product and the documentation that describes it.  

 
4.2 Daily build and test 

 
MONTE has adopted a lifecycle that mixes the agile 
development model with a more traditional iterative 
development lifecycle.  Central to this is the daily “night 
build.”  Each night MONTE and its documentation are 
automatically built from source on a “clean” platform—an 
environment that has no predefined environment variables 
or custom libraries.  Source code and documentation source 
are checked for style violations. MONTE is compiled with 
all compiler warnings enabled.  All unit tests are executed 
and checked for failures.  Unit tests are checked to 
determine that they adequately cover all functions and 
execute all source lines.  Examples in documentation are 
executed and results checked for correctness.  All system 
level tests are performed and checked for correctness.   The 
results of the build are published to a webpage for 
examination the following morning.  Any problems 
identified are fixed by the development team before 
continuing with new development. 
 

5. Verification and Validation 
 
MONTE was designed to replace the legacy orbit 
determination software at JPL.  The legacy software had an 
established record of correct performance. The software had 
been used to navigate every JPL mission since 1971, more 
than 17 missions.  MONTE needed to be as reliable as the 
software it replaced.  This requirement influenced the 
development of MONTE from the beginning of its 
implementation.   
 
5.1 The MONTE test system 
The MONTE system has approximately 2.2 million logical 
lines of source code. The deliverable portion of the MONTE 
system (the portion the user sees) accounts for only about 
30% of this number. The other 70% is code used to test the 
functionality of the system.  A small portion of this is the 
code developed for the test harnesses that enable nightly 
automated testing.  The rest is the code for unit and system 
testing of MONTE. 
 
5.1.1. Unit testing 
The MONTE development process requires that every 
function in the underlying C++ and Python libraries have a 
test case that can be run and render a pass/fail determination 
on the function being tested.  In addition,  tests are required 

to exercise 90% of the source lines of any function or gain a 
waiver from the project architect (typically 100% code 
coverage is achieved).  The unit test system has over 3500 
such tests.  Tests of low level functions and classes can 
often be developed to confirm a computation “offline” by 
simple derivation.  However, more complicated tests such as 
the value of a computed measurement or numerical 
integration are developed by obtaining a “correct” result as 
determined by the legacy software.  This “correct” result is 
then compared to the result obtained by the MONTE 
implementation.  The comparisons are expected to agree to 
numerical round-off or be accompanied by an explanation 
for differences. 
 
5.1.2 System testing. 
While unit testing catches a large number of errors, they do 
not detect errors arising from the interaction of system 
components such as the quality of fit of a navigation 
solution or the trajectory determined by an optimization run.  
For these tests, the development team captures operational 
results generated by navigation and mission design users.  
These results are packaged to be compatible with the 
MONTE system test harness and placed under configuration 
management.  These end-to-end cases are then run as part of 
the nightly regression tests and as part of every delivery of 
the system to the user community. 
 
5.1.3 Defects 
In spite of the efforts to deliver an error-free product to 
users, bugs are present in the delivered product.  When users 
discover an apparent bug, the bug is reported using the 
open-source, web-based bug tracking tool bugzilla.  The 
next step in the life of a reported bug is the development of 
a test by the development team that would pass if the code 
functioned as intended, but fails due to the presence of the 
bug in the system.  This new test becomes part of the test 
system.  The development team then implements a repair to 
the software so that the system passes the bug test.   All 
other regression tests are also performed to ensure that the 
repair did not break some other aspect of the software.  The 
repaired software is made available to the user who first 
reported the problem. That user then confirms that the 
repaired software functions as expected.  As a result of this 
process, the software converges relatively quickly to a 
system that meets its intended capabilities. 
 
5.2 Delivery 
 
MONTE is under continual development.  New features are 
requested by the user community on a regular basis.  New 
development comes with a new set of tests that ensure that 
the software is largely correct once the new features are 
deemed ready for use by the user community. However, 
before the software is placed into operations, a testable 



version of the software is made available and a subset of the 
user community agrees to use the software in the planned 
operational sense.   This form of testing goes beyond the 
imagination of the development team in the use of the 
software.   Only after a period sufficient for the user 
representatives to exercise the software (and have any 
discovered bugs repaired) is the software delivered into 
operational service. 
 

6. Operations and Adoption 
 
MONTE was first used for operations in 2007, for the 
Phoenix Mars Lander.  Since that time it has gradually 
replaced the legacy orbit determination software.  The last 
project to transition from the legacy software to MONTE 
was the Cassini mission in 2012. 

The transition from legacy mission design tools to 
MONTE began informally around 2004 but many of the 
features needed by the mission design community were not 
implemented until the completion of the navigation 
transition.  Today the majority of the mission design 
community has moved away from the legacy design tools 
and have adopted MONTE as the tool of choice when 
designing mission trajectories. 
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