
MONTE: THE NEXT GENERATION OF MISSION DESIGN & NAVIGATION SOFTWARE

Scott Evans, William Taber, Theodore Drain, Jonathon Smith, Hsi-Cheng Wu,
Michelle Guevara, Richard Sunseri, James Evans

Jet Propulsion Laboratory—California Institute of Technology

ABSTRACT

The Mission Analysis, Operations and Navigation Toolkit
Environment (MONTE)[1] is an astrodynamic toolkit
produced by the Mission Design and Navigation Software
Group at the Jet Propulsion Laboratory. It provides a single
integrated environment for all phases of deep space and
Earth orbiting missions. Capabilities include: trajectory
optimization and analysis, operational orbit determination,
flight path control, and 2D/3D visualization. MONTE is
presented to the user as an importable Python language
module. This allows a simple but powerful user interface via
CLUI or script. In addition, the Python interface allows
MONTE to be used seamlessly with other canonical
scientific programming tools such as SciPy, NumPy, and
Matplotlib. MONTE is the prime operational orbit
determination software for all JPL navigated missions.

Index Terms— Navigation, Optimization, Orbit
Determination, Trajectory, Software

1. INTRODUCTION

Prior to the creation of MONTE, navigation at JPL was
performed using the software suite known as
DPTRAJ/ODP[2][3]. DPTRAJ/ODP is a FORTRAN-based
software set that originated in the late 1960s and expanded
over the next 3 decades. During this same period, mission
analysis and design tools were developed independently
from DPTRAJ/ODP in a suite of tools known as the Mission
analysis Software Library. Moreover, the JPL mission
design analysts who used these design tools were an entirely
distinct group of individuals from JPL navigation analysts.
Transporting mission design models into the navigation
world became a small cottage industry unto itself.
Meanwhile, computing technology and software
development practices in the outside world evolved rapidly.
New technology such as the rise of object-oriented (OO)
programming rendered many of the computing constraints
imposed by early 1970s technology irrelevant. New
development practices exposed weaknesses in the
established ways of development. Finally, in 1998 the
strategic decision was made to begin again and develop a
new set of software tools that would exploit the gains in
computing and understanding of how to implement code.

The new system would start from a blank sheet of paper but
rely relying upon the legacy tools to define correct behavior
and define the mathematical specification of essential
algorithms. The result of this decision is MONTE.

2. DEVELOPMENT CONSIDERATIONS

The development of a replacement for DPTRAJ/ODP
required consideration of a number of programmatic and
infrastructure topics. At the programmatic level these
included implementation process, stakeholder concerns,
efficiency of implementation, the inevitable growth in
requirements, and the long term sustainability and
correctness of the new software.

2.1. Development Infrastructure

When DPTRAJ/ODP was developed, the open source
movement was in its infancy. However, by the late 1990s
open-source software had become the foundation of almost
all computing. Open source would provide the computing
infrastructure for MONTE and would be a major design
consideration during development. All third-party
dependencies would include source code. The open-source
Linux operating system was chosen as the development and
operational environment for MONTE.

From the outset it was determined that MONTE would
be developed in an object-oriented language. While there
was consideration of JAVA, C++ was adopted as the
backbone of the implementation. Moreover, it was
determined that the new system would allow users access to
all levels of the implementation and that the system should
be presented as a “software toolbox” similar to the
successful SPICE system[2] that had already achieved wide
adoption in the planetary science community. It was also
recognized that compiled languages do not present users
with a flexible, rapid-analysis system. For rapid analysis a
scripting language is ideal. A number of options were
considered, but the Python language with its OO interface,
wide cross-platform support, extensive suite of built in and
third-party languages, and ability to “bind” to compiled
libraries made it a natural choice. Indeed, Python turned out
to be far better choice than initial expectations.

2.2 Development Practices

The implementation of MONTE was coincident with JPL’s
commitment to software process improvement. The
development team adopted a number of new practices.
Senior management recognized the importance of sound
software development processes. The CMMI process model
for software engineering was selected as the standard
against which JPL’s processes would be measured. The
goal of achieving a CMMI maturity level 3 certification was
established and the MONTE development team was selected
as the pathfinder in achieving this goal. This selection was
partly due to the strong process focus already adopted by the
development team and partly as a forcing function to shore
up those areas where weaknesses would be identified. The
MONTE development project was the first to be appraised
at JPL in 2004 and achieved a CMMI maturity level 2
rating. In 2007 MONTE was among those projects in JPL’s
first CMMI maturity level 3 rating.

On the road to the maturity level 3 rating, the team
adopted or developed a number practices:

• All new code requires configuration-managed unit

tests and must meet code coverage requirements.
• Documentation for the online documentation is

included in the internal comments of the source
code. The reference documentation is built from
these comments.

• Source code is required to pass a style checker.
• A “clean” build of the entire system is performed

nightly in which style rules are checked, all unit
and system level tests are run, the documentation is
built, code examples are executed and checked for
correctness, and a static memory check is
performed.

• Defects are reported and managed via the open-
source bug tracker bugzilla.

• The scope of each delivery is determined through a
collaboration with the users. The cost of new
features is estimated and the entire list of
“desirements” presented to the users. Through this
process the varied desires of the user community
are balanced against the resources available for
their development. As a result, the development
team routinely delivers features on schedule and on
budget.

• Stakeholder communications are managed through
a number of regular status meetings as well as an

online forum where users and developers can post
questions, problems, and solutions.

3. ARCHITECTCURE AND DESIGN PATTERS

At the highest level view, MONTE is a large, importable
Python module. Importing MONTE into Python expands
the Python ecosystem adding the unique astrodynamic
features of MONTE. As such it can be combined with the
vast set of built-in Python capabilities as well as the rich set
of third-party tools such as Numpy, Scipy, Matplotlib, etc.

Figure 1. MONTE Architecture

The MONTE module is a modification of a layered
architecture as shown in Figure 1. The layers in this
architecture are:

• The File System Layer
• The Data Store Layer
• The Physics Layer
• The Measurement Layer
• The Mathematical Processing Layer
• The Application Layer
• The Parameters Layer

The layers of the MONTE architecture are not arranged

like the layers of a cake from top to bottom. Instead, as the
figure illustrates, some layers cross other layers. For
example, the User Interface layer has access to all layers of
the architecture as well as the surrounding Python
environment.

3.1 The Data Service Layer

At the base level is the Data Service Layer. It is at this level
that externally-produced data products (radiometric

observations, planetary ephemerides, earth orientation
parameters, etc.) come into the MONTE environment.
Although these data products are typically files, this layer
also includes telemetry streams and connections to other
data providers. Each data product has its own unique format
custom software to read the data and form the objects that
MONTE uses to carry out its computations.

3.2 The Data Store Layer

MONTE is an object-oriented system. Each object requires
a construction step. Once constructed, the methods of that
object can be employed to carry out the various
computations required of MONTE. Storage and retrieval of
these objects is necessary for many large scale
computations. Rather than reconstructing these objects from
the original unstructured data, MONTE provides an object
storage layer called the binary object archive (BOA). Built
upon XDR, BOA provides a machine-independent
mechanism for instantiating, storing, and transporting the
objects that provide the MONTE computational capabilities.

3.2 The Physics Layer

The layer above the data storage layer is the Physics Layer
of MONTE. This layer contains the models for the
astrodynamics of the solar system. The Physics Layer
provides:

• coordinate systems for specifying the position and
velocity of objects,

• the time system used to specify the moments of
events, the span of time between events, time
systems and the transformations between them (e.g.
UTC, TT, TAI, and the detection of events
determined by dynamics,

• the trajectory system giving time dependent
position, velocity and acceleration of spacecraft
and natural bodies the coordinate frame system that
specifies the time dependent orientation and of
bodies, celestial frames,

• the force system for modeling the physical forces
acting upon objects,

• spacecraft modeling of shape, reflectance, drag,
propulsion, etc.,

• solar flux,
• planetary atmospheres, albedos.

3.2 The Measurement Layer

Our instruments (deep space antennae, cameras, etc.) do not
observe the parameters that define our models in the real
world. Rather, they sample some function that is dependent

upon those parameters. The Measurement Layer
implements the models for those observations as a function
of physical parameters as well as their sensitivity to those
parameters. In addition it performs residual calculations
associated with actual measurements. Measurement models
are supplied for:

• 1-way, 2-way, and 3-way radio Doppler
measurements,

• 1-way, 2-way, and 3-way radio range
measurements,

• Very Long Baseline Interferometry (VLBI),
• DSN Station Angles,
• optical (line/pixel),
• GPS Phase and Pseudo Range,
• accelerometer,
• spacecraft torque.

Users may construct their own measurement models via
Python. In addition, a number of mathematical measurement
types are provided such as instantaneous range, rate, and
acceleration.

3.3 The Mathematical Processing Layer

The Mathematical Processing Layer includes propagators
that perform the numerical integration of the differential
equations that describe various astrodynamic models, filters
for performing orbit determination, optimizers, Monte Carlo
tools, etc. These mathematical tools interact with the
measurement and physics layers. It manipulates those
layers through the parameters layer.

3.4 The Parameters Layer

The models implemented in the Physics and Measurement
layers of MONTE are functions of a large set of parameters.
Depending upon user needs, some parameters are treated as
variables with associated sensitivities and uncertainty. The
Parameters Layer provides the naming, grouping and
selection of sets of parameters used in higher-level
computations. The Mathematics, Physics and Measurement
layers interact through the use of the Parameters layer.

3.5 The Application Layer

While access to the various layers of the MONTE
architecture through the Python language provides
maximum flexibility for users, it is not practical to require
users to build their operational environment from these
lower-level objects. Instead, the development team has
worked with the user community to identify common
workflow patterns. These patterns have been encapsulated

as Python callable applications that harness the capabilities
in the lower layers of the architecture.

3.5.1 UI system
MONTE's UI System provides a set of data setup and run
commands that support the "lockfile-update-run" style of
navigation operations. This interface is used extensively by
flight projects for operational orbit determination and flight
path control.

3.5.2 COSMIC Multi-Leg Trajectory Optimization
The MONTE application COSMIC supports trajectory
optimization via a control-point / break-point problem
structure. Through COSMIC, users specify a cost function
to minimize (usually total delta-V for a mission) over a
series of independently propagated trajectory segments.

3.5.3 Trajectory Differential Corrector
MONTE provides a differential corrector[5] for optimizing
trajectories using a patch-point framework. The differential
corrector has two main use cases.

The first is for connecting together and optimizing a
series of analytically derived states defining a trajectory. For
instance, MONTE's HaloRich and LissajousRichCary
classes can be used to produce a set of states analytically
approximating Halo and Lissajous orbits, respectively.
These states can then be processed by the differential
corrector to produce a smooth, fully-integrated trajectory.

The second main use case is to alter a pre-existing
trajectory so that it conforms to a different set of constraints.
For instance, one may want to alter a particular leg of a
reference trajectory to target a new flyby aimpoint.

3.5.4 Horizons Small Body Ephemeris Interface
The JPL Horizons system[6] is an online ephemeris system
for natural bodies in the solar system. MONTE's Horizons
interface is designed for fast access to the small bodies
(comets and asteroids) in the Horizons system.

3.5.5 Mean Element Integration with Morbiter
Morbitor is a utility that allows the integration of the
equations of motion for the elements of one or more
spacecraft in closed orbits around a central body. In addition
to the standard point mass gravity from the central body
perturbations by non-spherical gravity, non-central point
mass bodies, drag, and solar radiation pressure are
supported. Finally, conversions between osculating and
mean elements[7] are provided.

3.5.6 Residual viewing and editing
MONTE's residual viewer application supports both the
real-time visualization of streaming tracking data (the Real-
Time Residual Viewer, or RTRV) and the batch-mode

visualization and editing of accumulated tracking data
(Residual Viewing and Editing Tool, or RVET).

Figure 2. Residual Viewing and Editing

3.5.7 Landing Sites Analysis Tool
The Landing Sites Analysis Tool is a Python GUI
application used to display a region on a planetary body that
may contain one or more potential landing sites. From an
initial, probabilistic landing dispersion, the application
identifies landing targets that afford a minimum expectation
of landing on a hazard. The tool is designed to display the
location of various hazards, probabilities of landing on a
hazard, and other types of information.

Figure 3. Landing Sites Analysis

3.5.8 Timeline and Scheduling Tool

The Timeline and Scheduling Tool is a multi-purpose utility
for visualizing meetings, events, tracking passes, personnel,
etc. on a Gantt-like chart form. Using the Python interface,
operations teams can link up-to-date mission dynamics
together with mission schedules in an on-demand basis
greatly simplifying operations scheduling.

Figure 4. Timeline and Scheduling Tools

3.5.9 Launch Contour Analysis Tool
MONTE's Launch Contour Analysis Tool (MContour) is
used for generating launch contour plots (”porkchop” plots)
corresponding to various launch/arrival date parameters.

Figure 5. Launch Contour Plotting

3.5.10 Measurement Simulation Toolbox
The Measurement Simulation Toolbox provides utilities for
creating simulated tracking data for Orbit Determination
covariance analysis.

3.5.11 3D Trajectory Viewer
MONTE's 3D Trajectory Viewer is a lightweight trajectory
visualization application that renders MONTE trajectories in
a three-dimensional astrometric environment.

Figure 6. 3-D rendering and exploration of trajectories

3.6 Additions to the Python environment

The MONTE system lives within a larger Python
environment. This environment has been extended to
include unit safety when specifying physical constants, a
plotting style system that interacts with the third-party
plotting library matplotlib, a framework for performing
parallel processing across a cluster of computers, modules
that allow users to define their own measurements and
forces, and a default set of data for generic studies.

4. The MONTE Ecosystem

Beyond the Python environment there is a substantial
infrastructure that supports MONTE development and the
user community.

4.1 Documentation

MONTE comes with an extensive set of documentation
presented as a cross-linked website comprising well over
1000 pages. The documentation provides:

• an overview of the key concepts of the system,
• tutorial examples to help users learn basics of the

system,
• detailed descriptions of algorithms implemented in

MONTE,
• low level class descriptions, relevant equations, and

examples of usage,
• links to release information,
• links to training videos,
• links for downloading PDF User Guides,
• links to the NAIF and Horizons homepages,
• links to third-party documentation.

The documentation website is built from a

configuration-managed collection of source pages.

Crosslinks are automatically generated and equations are
built from LaTex imbedded in the comments of source code
as well as text-based source pages. The MONTE software
and its documentation are built at the same time within the
MONTE build framework. This ensures consistency
between the product and the documentation that describes it.

4.2 Daily build and test

MONTE has adopted a lifecycle that mixes the agile
development model with a more traditional iterative
development lifecycle. Central to this is the daily “night
build.” Each night MONTE and its documentation are
automatically built from source on a “clean” platform—an
environment that has no predefined environment variables
or custom libraries. Source code and documentation source
are checked for style violations. MONTE is compiled with
all compiler warnings enabled. All unit tests are executed
and checked for failures. Unit tests are checked to
determine that they adequately cover all functions and
execute all source lines. Examples in documentation are
executed and results checked for correctness. All system
level tests are performed and checked for correctness. The
results of the build are published to a webpage for
examination the following morning. Any problems
identified are fixed by the development team before
continuing with new development.

5. Verification and Validation

MONTE was designed to replace the legacy orbit
determination software at JPL. The legacy software had an
established record of correct performance. The software had
been used to navigate every JPL mission since 1971, more
than 17 missions. MONTE needed to be as reliable as the
software it replaced. This requirement influenced the
development of MONTE from the beginning of its
implementation.

5.1 The MONTE test system
The MONTE system has approximately 2.2 million logical
lines of source code. The deliverable portion of the MONTE
system (the portion the user sees) accounts for only about
30% of this number. The other 70% is code used to test the
functionality of the system. A small portion of this is the
code developed for the test harnesses that enable nightly
automated testing. The rest is the code for unit and system
testing of MONTE.

5.1.1. Unit testing
The MONTE development process requires that every
function in the underlying C++ and Python libraries have a
test case that can be run and render a pass/fail determination
on the function being tested. In addition, tests are required

to exercise 90% of the source lines of any function or gain a
waiver from the project architect (typically 100% code
coverage is achieved). The unit test system has over 3500
such tests. Tests of low level functions and classes can
often be developed to confirm a computation “offline” by
simple derivation. However, more complicated tests such as
the value of a computed measurement or numerical
integration are developed by obtaining a “correct” result as
determined by the legacy software. This “correct” result is
then compared to the result obtained by the MONTE
implementation. The comparisons are expected to agree to
numerical round-off or be accompanied by an explanation
for differences.

5.1.2 System testing.
While unit testing catches a large number of errors, they do
not detect errors arising from the interaction of system
components such as the quality of fit of a navigation
solution or the trajectory determined by an optimization run.
For these tests, the development team captures operational
results generated by navigation and mission design users.
These results are packaged to be compatible with the
MONTE system test harness and placed under configuration
management. These end-to-end cases are then run as part of
the nightly regression tests and as part of every delivery of
the system to the user community.

5.1.3 Defects
In spite of the efforts to deliver an error-free product to
users, bugs are present in the delivered product. When users
discover an apparent bug, the bug is reported using the
open-source, web-based bug tracking tool bugzilla. The
next step in the life of a reported bug is the development of
a test by the development team that would pass if the code
functioned as intended, but fails due to the presence of the
bug in the system. This new test becomes part of the test
system. The development team then implements a repair to
the software so that the system passes the bug test. All
other regression tests are also performed to ensure that the
repair did not break some other aspect of the software. The
repaired software is made available to the user who first
reported the problem. That user then confirms that the
repaired software functions as expected. As a result of this
process, the software converges relatively quickly to a
system that meets its intended capabilities.

5.2 Delivery

MONTE is under continual development. New features are
requested by the user community on a regular basis. New
development comes with a new set of tests that ensure that
the software is largely correct once the new features are
deemed ready for use by the user community. However,
before the software is placed into operations, a testable

version of the software is made available and a subset of the
user community agrees to use the software in the planned
operational sense. This form of testing goes beyond the
imagination of the development team in the use of the
software. Only after a period sufficient for the user
representatives to exercise the software (and have any
discovered bugs repaired) is the software delivered into
operational service.

6. Operations and Adoption

MONTE was first used for operations in 2007, for the
Phoenix Mars Lander. Since that time it has gradually
replaced the legacy orbit determination software. The last
project to transition from the legacy software to MONTE
was the Cassini mission in 2012.

The transition from legacy mission design tools to
MONTE began informally around 2004 but many of the
features needed by the mission design community were not
implemented until the completion of the navigation
transition. Today the majority of the mission design
community has moved away from the legacy design tools
and have adopted MONTE as the tool of choice when
designing mission trajectories.

7. REFERENCES

[1] R. Sunseri, H.-C. Wu, S. Evans, J. Evans, T. Drain, and
M. Guevara, “Mission Analysis, Operations, and
Navigation Toolkit Environment (MONTE) Version 040,”
NASA Tech Briefs , Vol. 36, No. 9, 2012.

 [2] T. Moyer, Formulation for Observed and Computed
Values of Deep Space Network Data Types for Navigation,
John-Wiley & Sons, Inc. Hoboken, Jew Jersey, 2003.

[3] T. Moyer, Mathematical Formulation of the Double-
Precision Orbit Determination Program (DPODP), TR 32-
1527 Jet Propulsion Laboaratory, Pasadena 1971.

[4] Acton, C.H.; "Ancillary Data Services of NASA's
Navigation and Ancillary Information Facility;" Planetary
and Space Science, Vol. 44, No. 1, pp. 65-70, 1996.

[5] Marchand, B.G., Howell, K. C., and Wilson, R.S. , "An
Improved Corrections Process for Constrained Trajectory
Design in the n-body Problem" The Journal of Spacecraft
and Rockets, Vol. 44, No. 4, July-Aug. 2007

[6] J.D. Giorgini, P.W. Chodas, D.K. Yeomans; "Orbit
Uncertainty and Close-Approach Analysis Capabilities of
the Horizons On-Line Ephemeris System" The 33rd
Meeting of the AAS Division for Planetary Sciences,
Bulletin of the American Astronomical Society, Vol. 33,

p1562, New Orleans, LA, Nov 26-Dec 1, 2001.

[7] T.A. Ely, “Mean Element Propagations Using Numerical
Averaging”, The Journal of Astronautical Sciences,
Volume 61, Issue 3, pp 275-304, December 2014

The research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

© 2016 California Institute of Technology. Government
sponsorship acknowledged.

	MONTE: The NeXt Generation of Mission Design & Navigation Software
	Abstract

