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Abstract—Estimators and analysts are increasingly being 
tasked to develop better models and reliable cost estimates in 
support of program planning and execution. While there has 
been extensive work on improving parametric methods for cost 
estimation, there is very little focus on the use of cost models 
based on analogy and clustering algorithms. In this paper we 
summarize the results of our research in developing an analogy 
method for estimating NASA spacecraft flight software using 
spectral clustering on system characteristics (symbolic non- 
numerical data) and evaluate its performance by comparing it to 
a number of the most commonly used estimation methods. The 
strengths and weaknesses of each method based on their 
performance are also discussed. The paper concludes with an 
overview of the analogy estimation tool (ASCoT) developed for 
use within NASA that implements the recommended analogy 
algorithm.  
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I. INTRODUCTION  
Accurately estimating software development effort is of 

vital importance as under-estimation can cause schedule and 
budget overruns as well as project cancellation [1], while over-
estimation delays funding to other promising ideas and reduces 
organizational competitiveness [2].   To address these issues 
there have been many refinements to our core methods over the 
last thirty years but few major changes. Industry “best 
practice” continues to rely upon a combination of bottom-up 
and parametric models, such as SEER and Price.  One of the 
more significant advances in cost estimation has been the 
development of the Joint Confidence Level (JCL) methods and 
models [3].  Detailed JCL analysis, which is used widely 
across NASA, works well at Preliminary Design Review 
(PDR) when sufficient detail is available, but there are issues 
with applying this method earlier in the Project lifecycle when 
detail data is not available. The JCL approach used by NASA 
at PDR is also based less on parametric models, and more 
closely related to network scheduling and Earned Value 
Management (EVM) methods making them even more difficult 
to use effectively early in the lifecycle.   One of the concerns 
overall with these methods is that these models necessarily take 
a one size fits all approach.  This results in models that need a 
large number of inputs and detailed data that are frequently not 
known in the early stages of the lifecycle (e.g. System 
Requirements Review and earlier).  This can also lead to 
potentially large estimation variance which seems to be under 
stated given the way the models are often calibrated or locally 
tuned.   

More importantly, none of the standard approaches and few 
of the academic methods really address a fundamental issue in 
the field of cost estimation, which is that the vast majority of 
our data sets are small,  noisy, and sparse.   Even after all the 
effort to build the NASA Cost Analysis Data Requirements 
documents (CADRe) and the large number of records that have 
been entered, it still has many empty cells and pieces of data 
that are questionable.   Fortunately, there are methods that are 
designed to help us address these issues and also show 
promise; Bayesian methods [4], k-nearest neighbor methods, 
and clustering methods. 

The NASA Analogy Software Cost Model (ASCoT) is 
designed to specifically address the problems associated with 



the issues of sparsely populated, small, and noisy data sets.  
The NASA Analogy Software Cost Model is built on research 
into the effectiveness of data mining algorithms over the past 
ten years by Menzies et al  [5,6,7,8].   The model uses a 
combination of spectral clustering and k-nearest neighbor on 
system characteristics (symbolic not numerical data).   This 
enables the ability to estimate software development effort 
early in the project lifecycle with simplistic inputs like the type 
of mission and the number of instruments.  ASCoT is  
developed as a compliment or extension to the existing widely 
used parametric methods.  

 The performance of ASCoT is evaluated by comparing it to 
the performance of COCOMO II (uncalibrated and calibrated), 
linear regression (linear and log linear), K-nearest neighbor,  
and rules of thumb derived from various Mission Type and 
categorical breakouts.  All models are compared based on their 
prediction performance on the same data set, which is 
primarily from the NASA CADRe.   The primary evaluation 
metric is the magnitude of relative error or MRE.  MRE is a 
non-parametric statistic that can be used to compare 
fundamentally different methods because it does not rely on 
any underlying distribution assumptions. 

II. DATA SUMMARY 

A. Sources 
• NASA CADRe CADRe repository Parts A, B and C   

o Data was updated last on March 4, 2015 
o Available missing data items were obtained 

from other sources including contacting 
project software managers 

o  Verifiable CADRe data was revised with 
information/data from other sources  

 
• System descriptor data was supplemented with data 

from NASA project websites, project reports, and 
Wikipedia articles. 

 
• Software metrics for older missions that predated the 

CADRe were supplemented with data records from a 
data collection conducted for the International Space 
Station that was completed in 1990.  A subset of 
these records can be found at the PROMISE 
(Predictor Models in Software Engineering) website  
under the COCOMO directory.   

 
• Contributed Center level data 

B. Data Description 
Table I contains a list of the data used in the study 

including the total number of records for each variable, all of 
which took on various values.  For a detailed description of 
the data collected see Appendices A (COCOMO Model 
Inputs) and B (System Parameters).  Tables II through XVI 
below summarize the data be median, average, and spread 
metrics as appropriate to the data. 

 
Tables II-VI shows the number of records found in each 

mission category, along with median and standard deviation 
values for Effort, Lines of Code, and Productivity. Lines of 
Code and Productivity information is shown both in 
Equivalent and Delivered form as Equivalent LOC values are 
influenced by software inheritance and Delivered LOC values 
are not. There are 5 or less data points for both Observatory 
and In Situ missions, and at least 11 for Earth/Lunar and Deep 
Space missions. There appears to be a threshold in which 
productivity numbers are no longer significantly affected by 
increases in effort. It is seen that Observatory missions show a 
median effort of 492 and a productivity value of 75, while all 
other mission categories have at least 579 work-months worth 
of effort and productivity values no less than 149. 

 

TABLE I.  DATA SUMMARY WITH NUMBER OF RECORDS 

Data Item Number of 
Projects 

Total development effort in work months 28 

       Logical Lines of code (LOC) 

Delivered LOC 36 

Equivalent LOC 36 

Inherited LOC (Reused plus Modified reused lines) 36 

Reused LOC (0-10% modified) 36 
COCOMO model inputs (See Appendix A for the 
parameter definitions) - Translated from CADRe which 
has SEER model inputs because the SEER data items are 
very sparse in CADRe 

19 

System parameters (See Appendix B parameter definitions) 
Mission Type (deep-space, earth-moon, rover-lander, 
observatory) 39 

Multiple element (probe, etc.) 39 

Number of instruments 39 

Number of deployables 39 
Flight Computer Redundancy (Dual Warm, Dual Cold, 
Single String) 39 

Software Reuse (Low, Medium, High) 36 

Software Size (Small, Medium, Large, Very Large) 36 

 

TABLE II.  EFFORT BY MISSION TYPE 

Mission Type 
EFFORT (months) 

# Records Median S.D. 
Earth/Lunar 
Orbiter 

19 579 418 

Observatory 5 492 1,054 

Deep Space 11 670 866 

In Situ 4 1,408 551 

 

1 http://openscience.us/repo/ 



 

TABLE III.  LOGICAL DELIVERED BY MISSION TYPE 

Mission Type 
Logical Delivered LOC 

# Records Median S.D. 
Earth/Lunar 
Orbiter 

19 92,050 40,104 

Observatory 5 107,100 59,143 

Deep Space 11 121,000 54,191 

In Situ 4 246,700 164,844 

TABLE IV.  LOGICAL EQUIVALENT BY MISSION TYPE 

Mission Type 
Logical Equivalent LOC 

# Records Median S.D. 
Earth/Lunar 
Orbiter 

19 56,940 41,010 

Observatory 5 76,800 61,411 

Deep Space 11 122,000 47,034 

In Situ 4 199,500 220,139 

TABLE V.  PRODUCTIVITY (DELIVERED LOC) BY MISSION TYPE 

Mission Type 
Productivity (Logical Del/month) 

# Records Median S.D. 
Earth/Lunar 
Orbiter 

19 265 1,366 

Observatory 5 74 977 

Deep Space 11 179 114 

In Situ 4 215 80 

TABLE VI.  PRODUCTIVITY (EQUIVALENT LOC) BY MISSION TYPE  

Mission Type 
Productivity (Logical Equiv./month) 

# Records Median S.D. 
Earth/Lunar 
Orbiter 

19 150 711 

Observatory 5 5 698 

Deep Space 11 149 96 

In Situ 4 178 93 

 
Tables VII - IX shows productivity derived from 

equivalent LOC by mission type and inheritance level; low 
(<20%), medium (<80%), and high (>=80%).  Inherited code 
includes code reuse with minor to no modifications and code 
that is inherited with <= 50% modifications.  All mission 
categories clearly show that increases in inheritance result in 
improved productivity, with observations of at least 150% 
increases in productivity rates across all mission categories.  
Because Equivalent LOC has been adjusted for inheritance the 
increase in productivity most likely indicates that for high 
levels of inheritance the start-up costs are greatly reduced due 
to the architecture and development environments also being 
reused2.  

TABLE VII.  LOW INHERITANCE EQUIVALENT PRODUCTIVITY 

Mission Type 
Low Inheritance (<20%) Equivalent Productivity 
Avg. Prod Median Prod. RANGE 

Earth/Lunar 
Orbiter 

65 65 65-65 

Observatory 58 58 42-75 

Deep Space 66 37 37-125 

In Situ 187 141 105-316 

TABLE VIII.  MEDIUM INHERITANCE EQUIVALENT PRODUCTIVITY 

Mission Type 
Medium Inheritance (<80%) Equivalent 

Productivity 
Avg. Prod Median Prod. RANGE 

Earth/Lunar 
Orbiter 

136 120 60-245 

Observatory 95 95 46-144 

Deep Space 208 169 103-321 

In Situ 215 215 215-215 

TABLE IX.  HIGH INHERITANCE EQUIVALENT PRODUCTIVITY 

Mission Type 
High Inheritance (>=80%) Equivalent 

Productivity 
Avg. Prod Median Prod. RANGE 

Earth/Lunar 
Orbiter 

150 150 138-161 

Observatory - - - 

Deep Space 183 183 144-221 

In Situ - - - 

 
Tables X-XII shows productivity derived from delivered 

LOC by mission type and inheritance level; low (<20%), 
medium (<80%), and high (>=80%).  As before, inherited 
code includes code reuse with minor to no modifications and 
code that is inherited with <= 50% modifications.  As 
expected, all mission categories clearly show that increases in 
inheritance result in improved productivity.  Note that the 
projects included in the mission types are different between 
Tables 3 and 4 because in some cases not all LOC metrics 
were available.  

TABLE X.  LOW INHERITANCE DELIVERED PRODUCTIVITY 

Mission Type 
Low Inheritance (<20%) Delivered Productivity 
Avg. Prod Median Prod. RANGE 

Earth/Lunar 
Orbiter 

65 65 65-65 

Observatory 60 60 46-74 

Deep Space 74 37 37-147 

In Situ 172 178 87-252 

 

2http://openscience.us/repo/ 



TABLE XI.  MEDIUM INHERITANCE DELIVERED PRODUCTIVITY 

Mission Type 
Medium Inheritance (<80%) Delivered 

Productivity 
Avg. Prod Median Prod. RANGE 

Earth/Lunar 
Orbiter 

177 160 76-313 

Observatory 145 145 46-244 

Deep Space 240 183 157-360 

In Situ 258 258 258-258 

TABLE XII.  HIGH INHERITANCE DELIVERED PRODUCTIVITY 

Mission Type 
High Inheritance (>=80%) Delivered 

Productivity 
Avg. Prod Median Prod. RANGE 

Earth/Lunar 
Orbiter 

542 542 439-644 

Observatory - - - 

Deep Space 285 285 245-324 

In Situ - -  

 
Tables XIII-XVI provide a data summary for other key 

parameters used in the study.  While actual code counts or 
estimated percent existed for software size and inheritance, 
these values were converted to categories for two reasons. 
Most notably, the model under development is designed to be 
used in pre-Phase A and estimators would only have very 
approximate idea as to the number of delivered and inherited 
LOC.   

TABLE XIII.  DEPLOYABLES AND INSTRUMENTS BY MISSION TYPE 

Mission Type 
Deployables Instruments 

Median RANGE Median RANGE 
Earth/Lunar 
Orbiter 

2 0-7 3 1-10 

Observatory 2 0-4 4 1-6 

Deep Space 2 1-8 3 2-12 

In Situ 7 3-10 5 3-10 

TABLE XIV.  FLIGHT COMPUTER REDUNDANCY BY MISSION TYPE 

Mission Type 

Flight Computer Redundancy 

Single 
String 

Dual 
String-
Cold 

Dual 
String-
Warm 

Median 

Earth/Lunar 
Orbiter 

12 7 0 String 

Observatory 1 4 0 Cold 

Deep Space 1 8 2 Cold 

In Situ 1 0 3 Warm 

 

TABLE XV.  INHERITANCE CATEGORY BY MISSION TYPE 

Mission 
Type 

Inheritance 
Very 
Low 

to 
None 

Low Med 

High Very 
High Median 

Earth/Lunar 
Orbiter 

2  2 5 5 High 

Observatory 1 1 2   Low 

Deep Space 2 1 2 3 3 High 

In Situ 2 
1  

1  
Very 

Low/No
ne 

TABLE XVI.  SOFTWARE SIZE CATEGORY BY MISSION TYPE 

Mission 
Type 

 Size (Delivered LOC) 

Very 
Small 

Small Med Lg. Very 
Lg. 

Extra 
Lg. Median 

Earth/L
unar 
Orbiter 

1 
6 4 4 

  Med 

Observa
tory 1 1 2 1   Med 

Deep 
Space 2 1 3 3 2  Med 

In Situ   1  1 2 Very 
Large 

III. METHODOLOGY 
Two teams were formed in order to compare traditional 

cost model development approaches using regression analysis 
(JPL team) and with data mining or machine learning 
modeling methods (North Carolina State University team). All 
analysis was performed on the same data set constructed from 
the CADRe with supplemental sources summarized above. 

A. Method 1- Team JPL used standard statistical tests to 
evaluate the models, F-Test and t-Test results 
supplemented with R2 and Pred (30).   
• Manually Calibrated COCOMO II – Good old 

fashioned way 
• Linear and Ln-Linear regressions to evaluate linear 

and multiplicative models. 

B. Method 2- Team NC State: all methods were evaluated 
based on leave one out validation and performance was 
compared based on the Magnitude of Relative Error 
(MRE) median and distribution.  The only formal test 
available is a non-parametric test. The methods evaluated 
are: 
• COCOMO II -  a parametric model used with the 

provided parameter settings (Out of the box) 
• COCONUT  -  a calibration or tuning rig for 

COCOMO II  
• Knn_1  -  a K-nearest neighbor model 
• delLOC – a regression of total development effort on 

LOC 
• MED_MISSION - a simple summary by mission 

types using the median as the predicted effort. 



• PEEKING2  -  constructs clusters of projects using 
spectral clustering algorithms and estimates by 
finding the nearest cluster and computing the median 
between the two nearest neighbors within that cluster 
using high level system data 
 

Each of the data mining learners is constructed to meet 
the requirements of the model being evaluated.  For a detailed 
discussion of the various learners see [9, 10, 11, 12, 13].  The 
method that is new in this study is called PEEKING2 and is a 
combination of spectral clustering, Principle Components 
Analysis (PCA), and nearest neighbor, see Figure 1. 
 
 

Fig. 1. Data Mining Learners 

	
 

IV. RESULTS 

A. Method 1 Results 
Method 1 consisted of deriving a local calibration of the 

COCOMO II model and evaluating all various combinations of 
the COCOMO model inputs and the system descriptors.   

It was not possible to derive a basic general purpose effort 
= f(LOC) model even though we had 26 records with both 
LOC and effort.  We have been able to do this for  many years 
on center specific data (e.g. JPL only) but when combining the 
data from other centers and from contractors together, as 
reported in the CADRe, the integrated dataset appears to have 
potentially more noise than useful information.  The models we 
were able to derive either violated software engineering 
principles or were so specialized that they had limited value.  
For example, one acceptable model from a statistical basis was 
effort as a function of LOCnew and LOCinherited, but only for 
software that had >10% reuse and excluded rovers and landers.  
Adding system descriptors did not improve the explanatory 

power of the model.  Thus, we were not able to derive a model 
for software systems that was reliant on the LOCnew 
parameter with an R2 above 0.2 or made logical sense.  
Regressions on LOCdelivered were also failures no matter how 
many other variables we introduced. 

Local calibration of the original COCOMO II model was 
possible.  Data use spanned all relevant spacecraft software 
data, except for Rovers and NUSTAR.  Rovers are 
fundamentally different from orbiters and the NUSTAR data 
always appeared as an outlier in all analysis and we suspect the 
data was too flawed to be usable. 

The effort multipliers, pvol and acap, were excluded in 
order to maximize the sample size at 19 records.  In order to 
calibrate A and B0, the original effort value, PM, was divided 
by the product of the 15 remaining effort multipliers and 
Size0.01x∑SF.   These variables were treated as known values and 
not observations from a distribution.  This simplified the 
original COCOMO II model to the following equation:   

 PM_adjusted = A x SizeB (1) 

Once the above equation was converted into log space, 
regression analysis was used to test if Size(Equivalent Lines of 
Code), significantly predicted PM_adjusted(adjusted software 
effort values). The results of the regression indicated Size 
explained 62.3% of the variance and significantly predicted 
Effort (R² = .63, F(1,14)=25.88, p<0.001). A was estimated as 
1.6873, with a standard error of 0.7981, t-value = 2.114, and 
Pr(>|t|) = 0.052917. B was estimated to have a value of 0.8933 
with a standard error of 0.1756, t-value = 5.087, and Pr(>|t|) = 
0.000166. 

Fig. 2. Regression Results: Predict LN(Effort) by LN(Equiv. LOC)  

 
 
However, the calibrated parameters while significantly 

different form zero, are within two standard deviations of the 
standard values of the out-of-the-box COCOMO equation.  
This result was confirmed in previous studies [14] and in the 
data mining analysis reported here as well.  Hence, we can 



safely conclude that for estimating NASA spacecraft flight 
software, the standard model as calibrated by the USC team is 
the best tuning for the COCOMO model.  Based on team 
member experience with both COCOMO and SEER-SEM at 
JPL, this also implies that the out of box settings for SEER-
SEM are also suitable for estimating NASA flight software 
costs.  However, this should be verified with further studies for 
confirmation. 

B. Method 2 Results 
The first experiment compared the performance of 

COCOMO to non-parametric estimation methods.  It only used 
the 19 records that had data for COCOMO effort multipliers 
coupled with the systems parameters for those same records.  
This is the smallest version of the data set we evaluated.  The 
nearest neighbor and clustering methods used the system 
parameters:  Mission Type, Secondary Element, Number of 
Instruments, Flight Computer Redundancy, Number of 
Deployables, Inheritance Category, Reuse Category, and Size 
categories.  Other combinations and forms of the system 
parameters were evaluated in earlier runs but this set performed 
either the best or required a much simpler set of inputs.  For 
example, models using the actual delivered lines of code were 
evaluated and performed better but using delivered lines in a 
categorical form (small, medium, etc.) only reduce Median 
MRE by 2%.  It was concluded from this finding that the 
increased simplicity in user input greatly offset the small gain 
in accuracy. 

TABLE XVII.  DATA SUMMARY WITH NUMBER OF RECORDS 

Estimation Model Median 
MRE 

(MMRE) 

25th 
Percentile 75th 

Percentile 

Knn1  
(Nearest Neighbor) 

32% 14% 80% 

PEEKING2  
(Spectral Clustering) 

32% 16% 97% 

COCOMO2 36% 22% 55% 
Mission Type Summary 
Table 

38% 14% 106% 

COCONUT 44% 32% 62% 

 

The Experiment 1 results are summarized in Table XVII 
and Figures 3 and 4.  Based on MMRE, Experiment 1 
confirmed the results that “out-of-the-box” COCOMO out 
performed a local calibration (COCONUT).   The basic 
summary table even out performed local calibration in the 
small data set.  The non-parametric models performed as well 
if not slightly better than COCOMO.     

 In Figures 3 and 4 the results appear slightly different.  
Here it can be seen that the COCOMO models handle outliers 
much better than nearest neighbor and spectral clustering.   So, 
while the non-parametric models do better overall, when they 
are inaccurate they tend to be extremely inaccurate, which is a 
concern.   

The second experiment compared the performance of 
simple regression models to the non-parametric estimation 
methods.  It used the 26 records that had data for LOC of effort 

along with the systems parameters for those same records.  As 
before, the nearest neighbor and clustering methods used the 
system parameters:  Mission Type, Secondary Element, 
Number of Instruments, Flight Computer Redundancy, 
Number of Deployables, Inheritance Category, Reuse 
Category, Size Categories.   

The Experiment 2 results are summarized in Table XVIII and 
Figure 5.  Based on MMRE Experiment 2 again indicates that 
the non-parametric models performed as well as traditional 
methods and in some cases better. The LSR results 
reconfirmed the Method 1 results by performing comparably 
but producing similar illogical results that violate common 
sense.  The LSR results either indicate all we need to know is 
the new LOC even if there is large percentage of reused code 
or, that we can actually make money by reusing code and not 
just reduce costs.  Thus, the LSR models are rejected on first 
principles.   Based on MMRE Nearest Neighbor does appear to 
outperform Spectral Clustering.  However, Figure 13 and the 
percent error at the 75th percentile (shown in Table 9) shows 
that Nearest Neighbor has much more significant outliers than 
Spectral Clustering.  Another advantage of Spectral Clustering 
is that by deriving clusters of similar projects it provides 
structure that can be documented, analyzed, and evolved as 
more and better data becomes available. 

Fig. 3. Experiment 1 MRE Results 

 
Fig. 4. Experiment 1 MRE Results in Log Scale 

	



TABLE XVIII.  LSR VS. NON-PARAMTRIC MODELS 

Estimation Model Median 
MRE 

(MMRE) 

25th 
Percentile 75th 

Percentile 

knn_1 (Nearest Neighbor) 33% 12% 112% 
LSR on LOC new 37% 28% 66% 

PEEKING2 (Spectral 
Clustering) 

38% 16% 76% 

Mission Type Summary 
Table 

46% 25% 116% 

LSR on LOC new and 
reused 

48% 23% 72% 

 
Fig. 5. Experiment 2 MRE Results  

	

V. LESSONS LEARNED 
A major lesson learned was that the data mining method was 
very advantageous in adding the ability to evaluate a large 
number of methods simultaneously.  The disadvantage is that 
it is easy to lose sight of the logic of the models and what is 
being estimated. 
 
The primary conclusions are: 
• There are a variety of models whose performance are 

hard to distinguish (given currently available data) 
but some models are clearly better than others. 

• If one has sufficient detailed data to run COCOMO 
or a comparable parametric model then the best 
model is the parametric model.  

• When insufficient information exists then a model 
using system parameters only can be used to estimate 
software costs with only a small reduction in 
accuracy.  The main weakness is the possibility of 
occasional large estimation errors which the 
parametric model does not exhibit. 

• While a nearest neighbor model performs as well as 
spectral clustering based on MMRE, spectral 
clustering handles outliers better and provides a 
structured model with more capability.  

• A major strength of the nearest neighbor and spectral 
clustering methods is the ability to work with a 
combination of symbolic and numerical data. 
 

VI. OVERVIEW OF ASCOT: ANALOGY SOFTWARE COST TOOL 
The ASCoT architectural design is displayed in Figure 6.  The 
parts that are implemented in the first release are shown in 
blue with a dark red border.  The algorithms are implemented 
in Python. A graphical user interface was created in a 
Microsoft Excel workbook to make it easy for users to input 
values for estimation and to provide supplemental output 
summaries and visualizations (See Figure 7). Users choose 
values for as many of the following input categories as are 
known: software size, inheritance levels, mission type, 
secondary element type, number of instruments, flight 
computer redundancy type, and total number of deployables. 
The inputs are defined in detail in Appendix A. Using these 
inputs, the spectral clustering model finds the cluster in which 
these inputs best fit and calculates an associated effort 
estimate. Along with the effort estimate, the interface 
populates a table showing values for all members of the 
estimate cluster, a data summary table of key metrics for the 
estimate cluster, and a graph showing the effort estimate in 
relation to cluster member effort values.  ASCoT is available 
via download through the NASA ONCE Model Portal. 

 
Fig. 6. Fig. 6. NASA Analogy Software Cost Model Architecture 

 
Fig. 7. NASA Analogy Software Cost Model Input-Output Interface 

	
 
The final version of the clusters  identifed and encoded into the 
model are listed below.  The clusters were derived from NASA 



missions that had complete data records.  A total of 38 NASA 
missions were identifed but complete records could only be 
obtained for 28. Primarily because either software size or effort 
data could not be obtained.  

1- Mars Odyssey, New Horizons, Timed 

2- DS1, OCO, WISE 

3-, MRO, Maven, JUNO,  Dawn 

4- Stardust, Deep Impact, Stereo 

5- MPF, Phoenix, Grail, SMAP 

6- LRO, ,SDO, GPM Core 

7-,Kepler, Messenger, Near, Contour 

8- Genesis. MER, MSL 

An overview of the cluster results is displayed in Figure 7.   
The cluster number which matches the clusters listed above is 
on the horizontal axis.  The vertical axis is the software 
development effort.  The size of the bubble/circle corresponds 
to the total mission cost.  Here it can be seen that the software 
effort range overlaps between clusters as what makes them 
similar is driven by more than development effort.  Clusters 7 
and 8 show increasing spread. Cluster 8 is the potentially most 
confusing as Geneis is most like Stardust but is grouped with 
MER and MSL which are rovers.  This is partly caused by the 
requirement we imposed that no cluster can have fewer then 
three missions.  The main drivers in the cluster formation are 
Flight Computer Redundency (Single String vs Dual String 
(Cold,Warm)), and software size.   

Fig. 8. NASA Analogy Software Cost Model Input-Output Interface 

VIII NEXT STEPS 
 ASCoT has been posted on NASA ONCE and is 
undergoing a period of review.   The next release will be 
updated based on the comments.  Other activities being 
explored for improving ASCoT are (1) Add other software 
domains such as Instrument software and ground software, (2) 
create a web based version so runs on both Macintosh and 
Windows,  (3) improve the data visualization displays (along 
the lines of Fig 8), (4) improve and expand the data set used to 
derive the clusters, (5) add a k-nearest neighbor option, (6) 
Complete all elements of the design so that ASCoT provides a 
front end for COCOMO II by providing  analogous lines of 
code as well as categorical input values (low, most likely, 
high) for the COCOMO effort multipliers (cost drivers).  
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