Improving and Expanding NASA Software Cost
Estimation Methods

Jairus Hihn, Leora Juster

Jet Propulsion Laboratory/California
Institute of Technology
Pasadena, CA

Abstract—Estimators and analysts are increasingly being
tasked to develop better models and reliable cost estimates in
support of program planning and execution. While there has
been extensive work on improving parametric methods for cost
estimation, there is very little focus on the use of cost models
based on analogy and clustering algorithms. In this paper we
summarize the results of our research in developing an analogy
method for estimating NASA spacecraft flight software using
spectral clustering on system characteristics (symbolic non-
numerical data) and evaluate its performance by comparing it to
a number of the most commonly used estimation methods. The
strengths and weaknesses of each method based on their
performance are also discussed. The paper concludes with an
overview of the analogy estimation tool (ASCoT) developed for
use within NASA that implements the recommended analogy
algorithm.

Table of Contents

L INTRODUCTION 1
II. DATA SUMMARY 2
A. Sources 2
B. Data Description 2
II1. METHODOLOGY 4
A. Method 1- Team JPL 4
B. Method 2- Team NC State 4
IVv. RESULTS 5
A. Method 1 Results 5
B. Method 2 Results 5
V. LESSONS LEARNED 7
VI. OVERVIEW OF ASCoT -
Analogy Software Cost Tool 7
VIIL. NEXT STEPS 8

James Johnson
National Aeronautics and Space

Administration
Washington, DC

Tim Menzies, George Michael

North Carolina State University
Raleigh, NC

1. INTRODUCTION

Accurately estimating software development effort is of
vital importance as under-estimation can cause schedule and
budget overruns as well as project cancellation [1], while over-
estimation delays funding to other promising ideas and reduces
organizational competitiveness [2]. To address these issues
there have been many refinements to our core methods over the
last thirty years but few major changes. Industry “best
practice” continues to rely upon a combination of bottom-up
and parametric models, such as SEER and Price. One of the
more significant advances in cost estimation has been the
development of the Joint Confidence Level (JCL) methods and
models [3]. Detailed JCL analysis, which is used widely
across NASA, works well at Preliminary Design Review
(PDR) when sufficient detail is available, but there are issues
with applying this method earlier in the Project lifecycle when
detail data is not available. The JCL approach used by NASA
at PDR is also based less on parametric models, and more
closely related to network scheduling and Earned Value
Management (EVM) methods making them even more difficult
to use effectively early in the lifecycle. One of the concerns
overall with these methods is that these models necessarily take
a one size fits all approach. This results in models that need a
large number of inputs and detailed data that are frequently not
known in the early stages of the lifecycle (e.g. System
Requirements Review and earlier). This can also lead to
potentially large estimation variance which seems to be under
stated given the way the models are often calibrated or locally
tuned.

More importantly, none of the standard approaches and few
of the academic methods really address a fundamental issue in
the field of cost estimation, which is that the vast majority of
our data sets are small, noisy, and sparse. Even after all the
effort to build the NASA Cost Analysis Data Requirements
documents (CADRe) and the large number of records that have
been entered, it still has many empty cells and pieces of data
that are questionable. Fortunately, there are methods that are
designed to help us address these issues and also show
promise; Bayesian methods [4], k-nearest neighbor methods,
and clustering methods.

The NASA Analogy Software Cost Model (ASCoT) is
designed to specifically address the problems associated with

the issues of sparsely populated, small, and noisy data sets.
The NASA Analogy Software Cost Model is built on research
into the effectiveness of data mining algorithms over the past
ten years by Menzies et al [5,6,7,8]. The model uses a
combination of spectral clustering and k-nearest neighbor on
system characteristics (symbolic not numerical data). This
enables the ability to estimate software development effort
early in the project lifecycle with simplistic inputs like the type
of mission and the number of instruments. ASCoT is
developed as a compliment or extension to the existing widely
used parametric methods.

The performance of ASCoT is evaluated by comparing it to
the performance of COCOMO II (uncalibrated and calibrated),
linear regression (linear and log linear), K-nearest neighbor,
and rules of thumb derived from various Mission Type and
categorical breakouts. All models are compared based on their
prediction performance on the same data set, which is
primarily from the NASA CADRe. The primary evaluation
metric is the magnitude of relative error or MRE. MRE is a
non-parametric statistic that can be used to compare
fundamentally different methods because it does not rely on
any underlying distribution assumptions.

II. DATA SUMMARY

A. Sources

* NASA CADRe CADRe repository Parts A, B and C
o Data was updated last on March 4, 2015

o Available missing data items were obtained
from other sources including contacting
project software managers

o Verifiable CADRe data was revised with
information/data from other sources

* System descriptor data was supplemented with data
from NASA project websites, project reports, and
Wikipedia articles.

* Software metrics for older missions that predated the
CADRe were supplemented with data records from a
data collection conducted for the International Space
Station that was completed in 1990. A subset of
these records can be found at the PROMISE
(Predictor Models in Software Engineering) website
under the COCOMO directory.

e Contributed Center level data

B. Data Description

Table I contains a list of the data used in the study
including the total number of records for each variable, all of
which took on various values. For a detailed description of
the data collected see Appendices A (COCOMO Model
Inputs) and B (System Parameters). Tables II through XVI
below summarize the data be median, average, and spread
metrics as appropriate to the data.

! http://openscience.us/repo/

Tables 1I-VI shows the number of records found in each
mission category, along with median and standard deviation
values for Effort, Lines of Code, and Productivity. Lines of
Code and Productivity information is shown both in
Equivalent and Delivered form as Equivalent LOC values are
influenced by software inheritance and Delivered LOC values
are not. There are 5 or less data points for both Observatory
and In Situ missions, and at least 11 for Earth/Lunar and Deep
Space missions. There appears to be a threshold in which
productivity numbers are no longer significantly affected by
increases in effort. It is seen that Observatory missions show a
median effort of 492 and a productivity value of 75, while all
other mission categories have at least 579 work-months worth
of effort and productivity values no less than 149.

TABLE 1. DATA SUMMARY WITH NUMBER OF RECORDS
Data Item N;ml.mr of
rojects
Total development effort in work months 28
Logical Lines of code (LOC)

Delivered LOC 36
Equivalent LOC 36
Inherited LOC (Reused plus Modified reused lines) 36
Reused LOC (0-10% modified) 36
COCOMO model inputs (See Appendix A for the

parameter definitions) - Translated from CADRe which 19

has SEER model inputs because the SEER data items are
very sparse in CADRe

System parameters (See Appendix B parameter definitions)

Mission Type (deep-space, earth-moon, rover-lander,

observatory) 39
Multiple element (probe, etc.) 39
Number of instruments 39
Number of deployables 39
Flight Computer Redundancy (Dual Warm, Dual Cold, 39
Single String)
Software Reuse (Low, Medium, High) 36

Software Size (Small, Medium, Large, Very Large) 36

TABLE II. EFFORT BY MISSION TYPE
EFFORT (months)
Mission Type .
Records Median S.D.

Earth/Lunar
Orbiter 19 579 418
Observatory 5 492 1,054
Deep Space 11 670 866
In Situ 4 1,408 551

TABLE VIIL

LOW INHERITANCE EQUIVALENT PRODUCTIVITY

Low Inheritance (<20%) Equivalent Productivity

Mission Type
TABLE III. LOGICAL DELIVERED BY MISSION TYPE Yp Avg. Prod Median Prod. RANGE
Logical Delivered LOC Earth/Lunar
Mission Type g - Orbiter 65 65 65-65
Records Median S.D.
Observator 58 58 42-75
Earth/Lunar 19 92,050 40,104 Y
Orbiter
Deep Space 66 37 37-125
Observatory 5 107,100 59,143
In Situ 187 141 105-316
Deep Space 11 121,000 54,191
In Situ 4 246,700 164,844 TABLE VIII. MEDIUM INHERITANCE EQUIVALENT PRODUCTIVITY
Medium Inheritance (<80%) Equivalent
TABLE IV. LOGICAL EQUIVALENT BY MISSION TYPE Mission Type Productivity
Avg. Prod Median Prod. RANGE
Mission T Logical Equivalent LOC RS '8 7ro edan 7o ¢
1ss10n (3 ar unar
YP€ 14 Records Median S.D. Orbiter 136 120 60-245
Earth/Lunar 19 56,940 41,010 Observatory 95 95 46-144
Orbiter
Observatory 5 76,800 61,411 Deep Space 208 169 103-321
Deep Space 11 122,000 47,034 In Situ 215 215 215-215
In Situ 4 199,500 220,139
TABLE IX. HIGH INHERITANCE EQUIVALENT PRODUCTIVITY
TABLE V. PRODUCTIVITY (DELIVERED LOC) BY MISSION TYPE High Inheritance (>=80%) Equivalent
Mission Type Productivity
Productivity (Logical Del/month) Avg. Prod Median Prod. RANGE
Mission Type 4R d Medi s.D. Earth/L
- ecords edian 2 o 150 150 138-161
arth/Lunar 19 265 1,366
Orbiter Observatory - - -
Ob t 5 74 977
servatory Deep Space 183 183 144-221
D S 11 179 114
eep Space In Situ - - -
In Situ 4 215 80
Tables X-XII shows productivity derived from delivered
TABLE VI PRODUCTIVITY (EQUIVALENT LOC) BY MISSION TYPE LOC by mission type and inheritance level; low (<20%),

Productivity (Logical Equiv./month)

Mission Type
Records Median S.D.
Earth/Lunar
Orbiter 19 150 711
Observatory 5 5 698
Deep Space 11 149 96
In Situ 4 178 93

Tables VII - IX shows productivity derived from
equivalent LOC by mission type and inheritance level; low
(<20%), medium (<80%), and high (>=80%). Inherited code
includes code reuse with minor to no modifications and code
that is inherited with <= 50% modifications. All mission
categories clearly show that increases in inheritance result in
improved productivity, with observations of at least 150%
increases in productivity rates across all mission categories.
Because Equivalent LOC has been adjusted for inheritance the
increase in productivity most likely indicates that for high
levels of inheritance the start-up costs are greatly reduced due
to the 2architecture and development environments also being
reused”.

2h‘[tp://openscience.us/repo/

medium (<80%), and high (>=80%). As before, inherited
code includes code reuse with minor to no modifications and
code that is inherited with <= 50% modifications. As
expected, all mission categories clearly show that increases in
inheritance result in improved productivity. Note that the
projects included in the mission types are different between
Tables 3 and 4 because in some cases not all LOC metrics
were available.

TABLE X. LOW INHERITANCE DELIVERED PRODUCTIVITY
Low Inheritance (<20%) Delivered Productivity
Mission Type .
Avg. Prod Median Prod. RANGE
Earth/Lunar
Orbiter 65 65 65-65
Observatory 60 60 46-74
Deep Space 74 37 37-147
In Situ 172 178 87-252

TABLE XI. MEDIUM INHERITANCE DELIVERED PRODUCTIVITY TABLE XV. INHERITANCE CATEGORY BY MISSION TYPE
Medium Inheritance (<80%) Delivered Inheritance
Mission Type Productivity Mission Very | Low | Med
Avg. Prod Median Prod. RANGE Low . Very .
Type High . Median
Earth/Lunar 177 160 76-313 0 High
Orbiter None
Earth/L 2 .
Observatory 145 145 46-244 ombiter 2 5 5 High
Deep Space 240 183 157-360 Observatory 1 1 2 Low
In Situ 258 258 258-258 Deep Space 2 1 2 3 3 High
1 Very
TABLE XII. HIGH INHERITANCE DELIVERED PRODUCTIVITY In Situ 2 1 Low/No
ne
High Inheritance (>=80%) Delivered
Mission Type Productivity
tvg. Prod Modian Prod. RANGE TABLE XVI. SOFTWARE SIZE CATEGORY BY MISSION TYPE
Size (Delivered LOC
girbti% funar 542 542 439-644 Mission ()
Type SVer);l Small | Med Lg. lfiy Eivtra Median
Observatory - - - ma 8- 8-
Earth/L 6 4 4
Deep Space 285 285 245-324 unar 1 Med
In Sita Orbiter
noS1 - -
Observa 1 1 2 1 Med
tory
Tables XIII-XVI provide a data summary for other key]S)e:fe 2 ! 3 3 2 Med
parameters used in the study. While actual code counts or P _ 1 Very
estimated percent existed for software size and inheritance, In Situ ! 2 Large

these values were converted to categories for two reasons.
Most notably, the model under development is designed to be
used in pre-Phase A and estimators would only have very
approximate idea as to the number of delivered and inherited
LOC.

TABLE XIII. DEPLOYABLES AND INSTRUMENTS BY MISSION TYPE
Deployables Instruments
Mission Type
Median RANGE Median RANGE

Earth/Lunar
Orbiter 2 0-7 3 1-10
Observatory 2 0-4 4 1-6
Deep Space 2 1-8 3 2-12
In Situ 7 3-10 5 3-10

TABLE XIV. FLIGHT COMPUTER REDUNDANCY BY MISSION TYPE

Flight Computer Redundancy
Mission T . Dual Dual
ype Single ., ., ,
Strin String- String- Median
8 Cold Warm

Earth/Lunar .
Orbiter 12 7 0 String
Observatory 1 4 0 Cold
Deep Space 1 8 2 Cold
In Situ 1 0 3 Warm

[II. METHODOLOGY

Two teams were formed in order to compare traditional
cost model development approaches using regression analysis
(JPL team) and with data mining or machine learning
modeling methods (North Carolina State University team). All
analysis was performed on the same data set constructed from
the CADRe with supplemental sources summarized above.

A. Method 1- Team JPL used standard statistical tests to
evaluate the models, F-Test and t-Test results
supplemented with R2 and Pred (30).

* Manually Calibrated COCOMO II — Good old
fashioned way

* Linear and Ln-Linear regressions to evaluate linear
and multiplicative models.

B. Method 2- Team NC State: all methods were evaluated
based on leave one out validation and performance was
compared based on the Magnitude of Relative Error
(MRE) median and distribution. The only formal test
available is a non-parametric test. The methods evaluated
are:

* COCOMO 1II - a parametric model used with the
provided parameter settings (Out of the box)

¢ COCONUT - a calibration or tuning rig for
COCOMO 11

e Knn 1 - aK-nearest neighbor model

* delLOC — a regression of total development effort on
LOC

e MED MISSION - a simple summary by mission
types using the median as the predicted effort.

e PEEKING2 - constructs clusters of projects using
spectral clustering algorithms and estimates by
finding the nearest cluster and computing the median
between the two nearest neighbors within that cluster
using high level system data

Each of the data mining learners is constructed to meet
the requirements of the model being evaluated. For a detailed
discussion of the various learners see [9, 10, 11, 12, 13]. The
method that is new in this study is called PEEKING?2 and is a
combination of spectral clustering, Principle Components
Analysis (PCA), and nearest neighbor, see Figure 1.

Fig. 1. Data Mining Learners

e PEEKING2’s feature weighting scheme changes w; in Equation 3
according to how much an attribute can divide and reduce the vari-
ance of the effort data (the greater the reduction, the larger the w;
score).

e PEEKING2’s PCA tool used an accelerated principle component
analysis that synthesises new attributes e;, e2, ... that extends across
the dimension of greatest variance in the data with attributes d. PCA
combines redundant variables into a smaller set of variables (so
e & d) since those redundancies become (approximately) parallel
lines in e space. For all such redundancies 7, j € d, we can ignore j
since effects that change over j also change in the same way over i.
PCA is also useful for skipping over noisy variables from d- these
variables are effectively ignored since they do not contribute to the
variance in the data.

e PEEKING?2’s prototype generator clusters the data along the dimen-
sions found by accelerated PCA. Each cluster is then replaced with a
“prototype” generated from the median value of all attributes in that
cluster. Prototype generation is a useful tool for handling outliers:
large groups of outliers get their own cluster; small sets of outliers
get ignored via median prototype generation.

e PEEKING?2 generates estimates for a test case by finding its near-
est cluster, then the two nearest neighbors within that cluster (where
“near” is computed using Equation 3 plus feature weighting). If these
neighbors are found at distance n1,n2,n1 < n2 and have effort
values F'1, Eo then the final estimate is an extrapolation favoring the
closest one: no -

n = n; + ng; estimate = B1— + Ey—
n n

IV. RESULTS

A. Method 1 Results

Method 1 consisted of deriving a local calibration of the
COCOMO II model and evaluating all various combinations of
the COCOMO model inputs and the system descriptors.

It was not possible to derive a basic general purpose effort
= f(LOC) model even though we had 26 records with both
LOC and effort. We have been able to do this for many years
on center specific data (e.g. JPL only) but when combining the
data from other centers and from contractors together, as
reported in the CADRe, the integrated dataset appears to have
potentially more noise than useful information. The models we
were able to derive either violated software engineering
principles or were so specialized that they had limited value.
For example, one acceptable model from a statistical basis was
effort as a function of LOCnew and LOCinherited, but only for
software that had >10% reuse and excluded rovers and landers.
Adding system descriptors did not improve the explanatory

power of the model. Thus, we were not able to derive a model
for software systems that was reliant on the LOCnew
parameter with an R2 above 0.2 or made logical sense.
Regressions on LOCdelivered were also failures no matter how
many other variables we introduced.

Local calibration of the original COCOMO II model was
possible. Data use spanned all relevant spacecraft software
data, except for Rovers and NUSTAR. Rovers are
fundamentally different from orbiters and the NUSTAR data
always appeared as an outlier in all analysis and we suspect the
data was too flawed to be usable.

The effort multipliers, pvol and acap, were excluded in
order to maximize the sample size at 19 records. In order to
calibrate A and B0, the original effort value, PM, was divided
by the product of the 15 remaining effort multipliers and
Size"""**5F " These variables were treated as known values and
not observations from a distribution. This simplified the
original COCOMO II model to the following equation:

PM _adjusted = A x Size® (1)

Once the above equation was converted into log space,
regression analysis was used to test if Size(Equivalent Lines of
Code), significantly predicted PM_adjusted(adjusted software
effort values). The results of the regression indicated Size
explained 62.3% of the variance and significantly predicted
Effort (R? = .63, F(1,14)=25.88, p<0.001). A was estimated as
1.6873, with a standard error of 0.7981, t-value = 2.114, and
Pr(>|t}) = 0.052917. B was estimated to have a value of 0.8933
with a standard error of 0.1756, t-value = 5.087, and Pr(>|t|) =
0.000166.

Fig. 2. Regression Results: Predict LN(Effort) by LN(Equiv. LOC)

y =0.893295"x + 1.68732 >

6 p <0.0001 >

R*= 62

n=16 >

LN Adjusted Effort

0 1 2 3 4 5
LN Equivalent Lines of Code (KLOC)

However, the calibrated parameters while significantly
different form zero, are within two standard deviations of the
standard values of the out-of-the-box COCOMO equation.
This result was confirmed in previous studies [14] and in the
data mining analysis reported here as well. Hence, we can

safely conclude that for estimating NASA spacecraft flight
software, the standard model as calibrated by the USC team is
the best tuning for the COCOMO model. Based on team
member experience with both COCOMO and SEER-SEM at
JPL, this also implies that the out of box settings for SEER-
SEM are also suitable for estimating NASA flight software
costs. However, this should be verified with further studies for
confirmation.

B. Method 2 Results

The first experiment compared the performance of
COCOMO to non-parametric estimation methods. It only used
the 19 records that had data for COCOMO effort multipliers
coupled with the systems parameters for those same records.
This is the smallest version of the data set we evaluated. The
nearest neighbor and clustering methods used the system
parameters: Mission Type, Secondary Element, Number of
Instruments, Flight Computer Redundancy, Number of
Deployables, Inheritance Category, Reuse Category, and Size
categories. Other combinations and forms of the system
parameters were evaluated in earlier runs but this set performed
either the best or required a much simpler set of inputs. For
example, models using the actual delivered lines of code were
evaluated and performed better but using delivered lines in a
categorical form (small, medium, etc.) only reduce Median
MRE by 2%. It was concluded from this finding that the
increased simplicity in user input greatly offset the small gain
in accuracy.

TABLE XVII. DATA SUMMARY WITH NUMBER OF RECORDS
Estimation Model Median 25™ 5t
MRE Percentile P il
(MMRE) ercentile
Knnl 32% 14% 80%
(Nearest Neighbor)
PEEKING2 32% 16% 97%
(Spectral Clustering)
COCOMO2 36% 22% 55%
Mission Type Summary 38% 14% 106%
Table
COCONUT 44% 32% 62%

The Experiment 1 results are summarized in Table XVII
and Figures 3 and 4. Based on MMRE, Experiment 1
confirmed the results that “out-of-the-box” COCOMO out
performed a local calibration (COCONUT). The basic
summary table even out performed local calibration in the
small data set. The non-parametric models performed as well
if not slightly better than COCOMO.

In Figures 3 and 4 the results appear slightly different.
Here it can be seen that the COCOMO models handle outliers
much better than nearest neighbor and spectral clustering. So,
while the non-parametric models do better overall, when they
are inaccurate they tend to be extremely inaccurate, which is a
concern.

The second experiment compared the performance of
simple regression models to the non-parametric estimation
methods. It used the 26 records that had data for LOC of effort

along with the systems parameters for those same records. As
before, the nearest neighbor and clustering methods used the
system parameters: Mission Type, Secondary Element,
Number of Instruments, Flight Computer Redundancy,
Number of Deployables, Inheritance Category, Reuse
Category, Size Categories.

The Experiment 2 results are summarized in Table XVIII and
Figure 5. Based on MMRE Experiment 2 again indicates that
the non-parametric models performed as well as traditional
methods and in some cases better. The LSR results
reconfirmed the Method 1 results by performing comparably
but producing similar illogical results that violate common
sense. The LSR results either indicate all we need to know is
the new LOC even if there is large percentage of reused code
or, that we can actually make money by reusing code and not
just reduce costs. Thus, the LSR models are rejected on first
principles. Based on MMRE Nearest Neighbor does appear to
outperform Spectral Clustering. However, Figure 13 and the
percent error at the 75th percentile (shown in Table 9) shows
that Nearest Neighbor has much more significant outliers than
Spectral Clustering. Another advantage of Spectral Clustering
is that by deriving clusters of similar projects it provides
structure that can be documented, analyzed, and evolved as
more and better data becomes available.

Fig. 3. Experiment | MRE Results

COCOMO2
— COCONUT / /
PEEKER /

10 MED_MISSION N
knn_1

08

06

MdMRE

04

02

///,,,,

00

1 2 3 4 656 6 7 8 9 10 1 12 13 14 15 16 17 18 19

Records

Fig. 4. Experiment 1 MRE Results in Log Scale

COCOMO2
— COCONUT /
PEEKER /

10 MED_MISSION N
knn_1

MdMRE

04

02

oz
o

00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Records

TABLE XVIII. LSR vS. NON-PARAMTRIC MODELS

Estimation Model Median 25" 75t
MRE Percentile P il
(MMRE) ercentile
knn_1 (Nearest Neighbor) 33% 12% 112%
LSR on LOC new 37% 28% 66%
PEEKING2 (Spectral 38% 16% 76%
Clustering)
Mission Type Summary 46% 25% 116%
Table
LSR on LOC new and 48%, 23% 72%
reused
Fig. 5. Experiment 2 MRE Results
12l — MED_MISSION
— delLOC_2
— PEEKER
1.0 knn_1 /
— delLOC_1 K

08}

06

MdMRE

04}

02

0.0

1234567 8 91011121314151617181920212223242526
Records

V. LESSONS LEARNED

A major lesson learned was that the data mining method was
very advantageous in adding the ability to evaluate a large
number of methods simultaneously. The disadvantage is that
it is easy to lose sight of the logic of the models and what is
being estimated.

The primary conclusions are:

. There are a variety of models whose performance are
hard to distinguish (given currently available data)
but some models are clearly better than others.

. If one has sufficient detailed data to run COCOMO
or a comparable parametric model then the best
model is the parametric model.

. When insufficient information exists then a model
using system parameters only can be used to estimate
software costs with only a small reduction in
accuracy. The main weakness is the possibility of
occasional large estimation errors which the
parametric model does not exhibit.

. While a nearest neighbor model performs as well as
spectral clustering based on MMRE, spectral
clustering handles outliers better and provides a
structured model with more capability.

. A major strength of the nearest neighbor and spectral
clustering methods is the ability to work with a
combination of symbolic and numerical data.

VI. OVERVIEW OF ASCOT: ANALOGY SOFTWARE COST TOOL

The ASCoT architectural design is displayed in Figure 6. The
parts that are implemented in the first release are shown in
blue with a dark red border. The algorithms are implemented
in Python. A graphical user interface was created in a
Microsoft Excel workbook to make it easy for users to input
values for estimation and to provide supplemental output
summaries and visualizations (See Figure 7). Users choose
values for as many of the following input categories as are
known: software size, inheritance levels, mission type,
secondary element type, number of instruments, flight
computer redundancy type, and total number of deployables.
The inputs are defined in detail in Appendix A. Using these
inputs, the spectral clustering model finds the cluster in which
these inputs best fit and calculates an associated effort
estimate. Along with the effort estimate, the interface
populates a table showing values for all members of the
estimate cluster, a data summary table of key metrics for the
estimate cluster, and a graph showing the effort estimate in
relation to cluster member effort values. ASCoT is available
via download through the NASA ONCE Model Portal.

Fig. 6. Fig. 6. NASA Analogy Software Cost Model Architecture

Ty COCOMO
— SLOC Range | ., Mont.e Carlo
Mission 5= Estimate N Estimate
Descriptors < 2 5
© \ COComMo C
Multiplier =
Range d
Spectral E e
Clustering -
Cluster Effort
Tool - Estimate
Phase 1 Praa
Complete

Fig. 7. NASA Analogy Software Cost Model Input-Output Interface

The final version of the clusters identifed and encoded into the
model are listed below. The clusters were derived from NASA

missions that had complete data records. A total of 38 NASA
missions were identifed but complete records could only be
obtained for 28. Primarily because either software size or effort
data could not be obtained.

1- Mars Odyssey, New Horizons, Timed
2- DS1, OCO, WISE

3-, MRO, Maven, JUNO, Dawn

4- Stardust, Deep Impact, Stereo

5- MPF, Phoenix, Grail, SMAP

6- LRO, ,SDO, GPM Core

7-,Kepler, Messenger, Near, Contour

8- Genesis. MER, MSL

An overview of the cluster results is displayed in Figure 7.
The cluster number which matches the clusters listed above is
on the horizontal axis. The vertical axis is the software
development effort. The size of the bubble/circle corresponds
to the total mission cost. Here it can be seen that the software
effort range overlaps between clusters as what makes them
similar is driven by more than development effort. Clusters 7
and 8 show increasing spread. Cluster 8 is the potentially most
confusing as Geneis is most like Stardust but is grouped with
MER and MSL which are rovers. This is partly caused by the
requirement we imposed that no cluster can have fewer then
three missions. The main drivers in the cluster formation are
Flight Computer Redundency (Single String vs Dual String
(Cold,Warm)), and software size.

Fig. 8. NASA Analogy Software Cost Model Input-Output Interface

Effort
(

(C J
@

VII NEXT STEPS

ASCoT has been posted on NASA ONCE and is
undergoing a period of review. The next release will be
updated based on the comments. Other activities being
explored for improving ASCoT are (1) Add other software
domains such as Instrument software and ground software, (2)
create a web based version so runs on both Macintosh and
Windows, (3) improve the data visualization displays (along
the lines of Fig 8), (4) improve and expand the data set used to
derive the clusters, (5) add a k-nearest neighbor option, (6)
Complete all elements of the design so that ASCoT provides a
front end for COCOMO 1I by providing analogous lines of
code as well as categorical input values (low, most likely,
high) for the COCOMO effort multipliers (cost drivers).

Acknowledgement

The research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

REFERENCES

[1] Spareref.com. NASA to shut down checkout & launch control system,
August 26, 2002. http://www.spaceref.com/news/viewnews.html?id=475.

[2] E. Kocaguneli, T. Menzies, and J.W. Keung. On the value of ensemble
effort estimation. Software Engineering, IEEE Transactions on, 38(6):1403—
1416, Nov 2012.

[3] Elliott, D., & Hunt, C. (2014). Cost and Schedule Uncertainty: Analysis of
Growth in Support of JCL. NASA Cost Symposium.
http://www.nasa.gov/sites/default/files/files/10and11_NASA_Cost_Symposiu

m_2014_CostScheduleUncertainty Final TAGGED.pdf

[4] Christian Smart, Bayesian Parametrics Developing a CER with Limited
Data and Even Without Data, ICEAA 2015 Workshop, Denver, Co. June,
2015. (Best paper)

[5] Tim Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. Validation
methods for calibrating software effort models. In Proceedings, ICSE, 2005.
Available from

http://menzies.us/pdf/04coconut.pdf.

[6] Menzies, T. Chen Z, Port, D., Hihn, J., Simple Software Cost Analysis:
safe or Unsafe?, ACM SIGSOFT Software Engineering Notes (SIGSOFT)
30(4)1-6, s2005.

[7] Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best
practices for effort estimation. IEEE Transactions on Software Engineering,
November 2006. Available from

http://menzies.us/pdf/06coseekmo.pdf.

[8] "Stable Rankings for Different Effort Models" by Tim Menzies and Omid
Jalali and Jairus Hihn and Dan Baker and Karen Lum. Automated Software
Engineering December 2010 .

[9] E. Kocaguneli, T. Menzies, and J.W. Keung. On the value of ensemble
effort estimation. Software Engineering, IEEE Transactions on, 38(6):1403—
1416, Nov 2012.

[10] R. Jensen. An improved macrolevel software development resource
estimation model. In 5th ISPA Conference, pages 88-92, April 1983.

[11] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung. Exploiting the
essential assumptions of analogy-based effort estimation. IEEE Transactions
on Software Engineering, 28:425-438, 2012. Available

from http://menzies.us/pdf/11teak.pdf.

[12] Ekrem Kocaguneli, Tim Menzies, Jacky Keung, David Cok, and Ray
Madachy. Active learning and effort estimation: Finding the essential content
of software effort estimation data. IEEE Transactions on Software
Engineering, 39(8):1040-1053, 2013.

[13] Ekrem Kocaguneli, Tim Menzies, and Emilia Mendes. Transfer learning
in effort estimation. Empirical Software Engineering, pages 1-31, 2014.

[14] Karen Lum, John Powell, Jairus Hihn, Validation of Spacecraft Software
Cost Estimation Models for Flight and Ground Systems, Proceedings of the
24th Annual Conference of the International Society of Parametric Analysts
(ISPA), 21-24 May, 2002, San Diego, CA

Tim Menzies (Ph.D., UNSW,
1995) is a full Professor in CS
at North Carolina State
University where he teaches

software engineering and
automated software
engineering. His research
relates to synergies between
human and artificial
intelligence, with particular

application to data mining for
software engineering.

Jairus Hihn (PhD University
of Maryland, 1980) He is a
principal member of the
engineering staff at the Jet
Propulsion Laboratory, and is
currently the leading a
laboratory wide cost
improvement task. He has been
developing estimation models
and providing software and
mission level cost estimation support to JPL’s and NASA
since 1988.

James Johnson is responsible for
providing Cost Estimates and
Assessments, Schedule Estimates
and Assessments, Risk Analyses, and
Joint Cost Schedule Risk Analysis
for the Cost Analysis Division
(CAD) at NASA Headquarters. His
work for NASA HQ includes
supporting high level Agency
studies, providing support and
consultation to projects, and
developing policy and guidance for the Agency in the areas of
cost, schedule, and risk assessments.

Leora Juster (MS, CalState
LA) in Computer Science. She
is a member of the engineering
staff at the Jet Propulsion
Laboratory, California Institute
of Technology, and is currently
assisting in the development of
estimation models and
software systems testing. Her
research interests lie in
machine learning techniques
and data visualization.

George V Mathew is a
graduate student pursuing
MS in Computer Science
from North Carolina State
University. He received his
B.Tech degree in Electronics
and Instrumentation
Engineering from Amrita
University in India. His
research interests lies in
Effort Estimation, Optimizing Requirements
and Distributed Multi Objective

Software
Engineering Models
Optimization . He has also interned as a Software Engineer at
Facebook.

Appendix A: COCOMO Model Inputs

Q[0Ad AJI] YIim pIjeITAUL 3nqop*opodipa S[00} 21BM}JOS JO SN 100}
%S6 %08 VIN NdD 2Iqe[reAe Jo 9, parmnbar swn
%S6 %08 VIN VY dlqe[ieae jo 9 paimbai 1038
BIPAWI-I}[NW JAIJORIJUL [TBW WIS [rew ‘ouoyd :)ovIu0d WS yuowdo[aAap yIs-nnuw BIS
deWNS? [RUISLIO dewns? [eUISLIO Jnpayos
JO 991 03 YOBq PAAOW SAUI[PEap dSueyoou | oY) JOo 9,G/ O) PIAOW SIUI[PEIP yuawdofaAap pajeldIp paos
soutf jonpoid ardnnuw wessoxd opdpnu Juou asnar paimnbas asnI
QJI] UeWINY YSLI UBD SIOLID 9[qeI2A0021 A[ISED I SIOLID QOUQIUAAUODUI JYSI[S I8 SIOLID Anpiqerar pannbax JNEN
5obunyo uourwt Jo houanbau [
(obupyo wolpw fo Aouanbauaf)
Sfivpg_ SyaI9m g _Yjuowr T_ Armejoa wioperd [oad
EEEEILE4 SyFuouW 9 SYJUOWL g 1 L
sieak 9 ek | syjuow g douauadxe waoperd xord
(reak 1od 19A0U1IN))
%¢ %1 %8t Aymunuod jouuosiad uood
%01 15°q 9%GG 9G1 1sIom Apqedes sowwessord dead
s1eak 9 ek | syjuoui 7 2ouaLadxo)2s-[00) pue a3engue| Xo)[
aseyd o1o4d pajusw
-9J1] yoeo 1oy Juniodar dAISUI)XD -noop jou saseyd o[oLo-oj1] Auew UOIBJUWINIOP noop
0001 001 0l (QOTS/5A4q gQ) 27z1s aseqejep ejep
SWAISAS pap)98
-pequia [eonu-aouewiojad 3o | -pmm ooeproyur opduiis jo asn ‘39 syuawle)s Aum/pear ojdwis ‘59 Krxopdwos jonpoxd xido
sIeak 9 ek | syjuow g douanadxa suoneorjdde dxoe
%01 15°q %06 - %SE 95G¢ 1SI0M Anpqedes jsAfeue deoe
s1ordnnu Joyy
SUOI}ORIQ)UI SSO[UWILDS aanerado-0d A[feaiseq SUOIORIUI JNIYJIP AIOA UOISAYOD WEd) weaJ,
pajeuIwiI pajeuIWI[SYSL pajeUIWI[D SYSUI
SYSH [[B JO PIULOP SAOBJIAUI [[B | JSOW JO PIULIP SAOBLIAUI JSOW | MIJ JO PIUYIP SOBJINUI M UONN[OSAI YSLI O INIAIYOIL 1S9y
210J2q 2IBM}JOS
Terprwej A[y3noioy) MU JRYMIWOS | Jo pury siy) 3[inq JOAdU 2ABY Im ssaupajuapadaxd 221
G [9A9] NIAD € [9A9] WIAD 1 19A9] NIAD Kyumew ssadoxd yew
paxe| pauyop
pauyop S[eo3 [e1oud3 A[uo | -219q ued YoIym ‘saurfoping awos | A[snorogu ssaooxd juowdojorop Anqrxey yuowdoaaap Xo[

:810)08] d[e0g

{9°¢} =pua-ysiyg_|

{t'g)}=wnipay_|

{T'1} =pus-mo

[uonuya(]

_

Appendix B: System Parameters with Definitions and Examples

'sa|qeAojdap €

S| uelpa|A ‘siuswAo|dsp QT 01 O Wouy
sa3duel ele@ 219 ‘SwJe 213000 ‘SWooq
‘sheuse uejos ajqeho|dap jo JoquinN

"jye10aoeds Aq pafjonuos sojqedojdep anbrun jo roquinu [ej0],

sa|qeAojdaq jo Jaquiny

9|dwex3

uonduasag

sanjep

sa|qehojdaq jo Jaquiny

"SJUBWINJISUI SI URIPDIA|
‘syuswinJisul TT 01 T woJy sagued ereq

‘}ye109oeds Uo syudwInysul anbrun Jo roquinu [8)0],

SjuUaWINJISU| O Jaquiny

9|dwex3

uonduasaqg

sanjep

sjuswinJisuj jo JaquinN

091915

EOTEIT
40 33e21|dNp e S| 3jed90eds PUoIIS pue }yesdadeds SUO Uey} SIOW Sey UOISSIIA|

eJdadeds ajdnniy

uinias a)dwes
a|dwis e jo sjdwexa ue s| 3snpaeis

‘a8ei1s Juadse ue
saJinbaJ pue adejns 1aue|d e WoJj uiniaJd e 3¢ pjnom uiniad ajdwes xa|dwod
Vv "yuies 03 Sujuiniau ing agoud ajdwis e 91| e S| uiniaus ajdwes ajdwis

uinjaJ ajdwes

103 x3|dwod
e Jo 9|dwexa ue s IS “1d3 jdwis
e Jo 9jdwexa ue s| Japuljyied sie

"JUBWII3 13 UB SABY ||IM SJSAOY PUEB SISPUE| || ‘9IUBPIOAE piezey pue
Suipue| uoisidasd yum xajdwod Jo Aloloalesy o1nsljjeq e yum ajdwis aq ued 1@3

(1@3) 8uipueq pue juadsag Asju3

*2qoud Ajixajdwod

‘sjuawWnisul
x3|dwo2 A|9149pOW |BIBASS PUE ‘|0JIUOD 3dUBPINS |BUJISIUI BWOS dARY

wnipaw e pey 1oedw| daaq Aew ‘uoiiesedas Ja1je spueWILIOD SAI9I3L Aew yaiym Jooeduw) Ayixajdwod 970.d/4010edW|
9go.d a)dwis e sem suaSAnH-IuIsse)| -91eJ9pOoW Y SIUSWNIISUI SH WoJy elep spwsues) Aldwis)l paseajad aduo
pue Ayljigeded uoieSineu pue 3aueping ou Jo 33| Yyum Joyoedwi 3jdwis
S$4911040 1SO|N| 1usawa|d Auepuodas oN QUON
9|dwex3 uonduasag san|ep judwa|3 Arepuodas
‘doy Jo yjjem ‘imesd Aew Asyl suning syl ul Ing s[aaym aAey
(43IN) 49n0Y uoneso|dx3 sie|n SI9AO0J ||B 91Ep O] ‘9IBLINS Y} uO dnow 03 Alljige ay3 sey pue Apoq waisAs Jan0Yy

Je|0S B JO 9J3ejNS 9y} WOoJ} JO N}IS-Ul JU3IIS S} SI0p eyl tm‘_uwomam Jlloqol y

'uo13ed0| |eulSIIO S} WOoJ) dAOW J0u S90p 3| ‘Apoq waisAs

Xiuaoyd JapueTonels
Je|OS B JO 92BJJNS Y3 WOJJ JO N1IS-Ul 9IUIIIS S} S0P Jey) Jesdadeds 2110qod
*4109 JO AJNIXIW € IO
yoeduw| daag SAQA|4 10 $1911040 3¢ UBD UOISSIW 3SAY] "UNS SY} JO PI0JIISe }BWO0d ‘9)||91es aveds daag
Aselsueld Aue ‘spiojaue|d ‘3aue|d e s| uoljeullsap asoym uoissiw Aue sapnjoul
A10331e2 S1y1 0S "11040 suoow 3y} puoAaq s308 1ey) yesdadeds 2130004 Auy
‘uooW pue uns ‘yuea ayl
- 40 sp|aly Aunead ayy Aq paieasd w“c_og 98uespe snolien ay3 1e Suljiesy yues Aiorenasqo
JO SJ9}1040 Yynea aq ued Asy] ‘sa1ouanbauy Jo 19S 9pIM e ssoude Awououise
paseq a2eds poddns jey3 sadodass|a) paseq adeds aJe $311031eAIRSqO
*AJasnpul wouj sasnq
aul| uondnpoud asn uana pue adejuay ydiy aney ued ualyo Asyy ‘sayl||a3es
enby AJeyljlw Auew se ||9Mm Se UOI1eIIUNWWOID J0) PASN $31||91ES |BIDISWWO0D J9UQJQ Jeun/yue]
Auew ayj 01 |e213UapI 10U JI Jejiwis AJDA aue 1jesdadeds 9say ‘SluswaInsesaw
92U3125 3U13NPUOI UOOW JO YHED 3Y3 HGJO eyl jesddeds 2110q0Y
9|dwex3 uonduasag sanjep adA] uoissiA

s103di1saq waisAs

Appendix B: System Parameters with Definitions and Examples (cont)

ISIAl ‘uoissiw pausisse a8ueT uol|Iq 11§ < SI SIe[[op G A ul suonerodo Surpnjour 1500 UOISSIJA [B10], EEIERSEYN
uor[iq 11§ >
SUOISSIW SSB|D SI91IU0J4 MON a8.e7
pue uorjjru OOO% < SIESIe[[Op CTAA Ul wEOEwhoa—O wcm—u—\:o—: }SOJ UOISSIJA [810],
uorru 009§ >
suolssIWw sse|d A1anodsIq wnipan
pue uorIu 077$ < St SIe[[op G AJ Ul suonerodo Surpnjour 1500 UOISSIJA [B10],
51911040 Y1Jea [|ews ‘asIM UOHIH 022§ |lews
: : > pue JNOZI$ < SI SIB[[op ST A4 ul suonerddo Surpniout 3509 UOISSIA [EI0L
a|dwex3 uondusag sanjep 1509 UOISSIIAl [e30L
dWd-N-VVON ‘[!e4D ‘NIAVIA 202 PaIamIZP ysiH Asap
’ ’ JO 9,08 JO WNWIUIW € SI PO PAFIPOW FUIPN[OUT ‘OpOd PALIAYU] [€10], i
, , "9p0J PAISAI[P
2102 NdD OGS ONAM 10 048 > pur 0405 =< st 2pod paypou Surpnpou ‘apod pajusayuy [e10L HBIH
, "9P0J PAIGAI[IP
OMNUBUSSSIN| 15 940c - puv 9407 =< 1 9pO0 poIpOL FUIPRIoUI ‘3po0 PIHLOYU] (IO Hnipsn
"OPO9 PAISAI[IP
suozlaoH maN ‘yedw| daag MO
30 %07 01 %0 U9M)dq SI 9POd palJIpow Surpnfour ‘9pod pajLIoyu] [e10],
oY1 ‘@INIL ‘YA "9P09 PAISAI[IP JO %0 > SI 9POI PALJIPOW SUIPN]IUL OPOO PI)LISYU] [E}OL SUON 01 MO
a)dwex3 uonduasaqg sanjep 2Juejayu|
s1anoy DOTISI 07T < SI2pod Jo saul] [eo130] PAIdATR a84e7 Auap
X|uaoyd ‘dVIAIS ‘SSOHD1 OIS 07T > Pu8 DOIS 0TI > St 9poo JO saul[[89150] PAIdATA(S
J191day ‘oY DOTISA 0TI > Pue DOTIS 0 > SI 9pOD JO SAUI| [BIIB0] PAISAIT wnipay
51911040 Y1ied [|ews DOTIS 0 > SI 9po9 JO soul| [eI130] PAIdAI[D |lews
a|dwex3 uondusag sanjep 9p0) paianlaQg 31emios
(030 “9)e)S UMOUY ISB YIIM S1IB)SAI [01JU0D SPM)INIE “PIYIE)SAI
IS 9q Aewr 2ouanbas e “30) uorerodo snonuUUOd UTRIUTEUI O) PIAU JOU S0P dnyoeq wuep - 8uis jeng

nq ‘1eyndwos owirrd jo oyeis Sunrojiuow pue uo pardmod st 1ynduwos dnsjoeg

suolssiw adeds daaq 1SOIN

umop s208 Suins owiid uoym sjooq pue dn
paiomod st ‘o Ajjeuntou st dnyjoeq ‘sioindwos Jys1fJ Juepunpai sey Jerodoedg

dnyoeq pjo) - 8us |eng

$4911940 YMe3 1SoN

1ondwod WYSI[F oY Ul AoUBPUNPAI OU SeY| Je1dddedg

8ulis 9|8uls

ajdwex3

uondiiasag

sanjep

Aouepunpay 493ndwo) 1S4

