
Machine Learning and Instrument 
Autonomy
Brian Bue
Group Supervisor: Tara Estlin
Alphan Altinok, Mike Burl, Selina Chu, Gary Doran, Rob Granat, 
William Huffman, Ravi Kiran, Lukas Mandrake, Umaa
Rebbapragada, Benyang Tang, Kiri Wagstaff

Jet Propulsion Laboratory
California Institute of Technology

January 2016

Copyright 2016 California Institute of Technology. Government  sponsorship acknowledged.



2

MLIA Research Areas

 Automated data analysis
 Ground-based and onboard
 Image analysis
 Remote sensing
 Computer vision
 Quality assurance
 Target detection
 Opportunistic science
 Science event monitoring
 Data summarization
 Data downlink prioritization 
 Novelty/discovery 
 Anomaly detection
 Data classification

New Image      Reference Image  Subtracted Image

Identifying supernovae from iPTF images

Classification of 
Mars landmarks

Onboard plume detection 

Scientific discovery for 
MSL Chemcam
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Astronomical Data Quality Assurance 
Real-Bogus Classification of Supernova Candidates

• Intermediate Palomar Transient Factory 
(iPTF) detects 500K-1M astronomical 
transients (e.g., supernovae) per night 

• <1% detection candidates real transients

• Number of detections exceeds human 
review capacity

• Real-time classifier (RB4) discriminates 
real transients from false positives, trained 
using labeled real/bogus examples 

• Prioritizes best detections for rapid 
validation by human reviewers

• Running in real-time since August 1, 2014

Contacts: Umaa Rebbapragada, Brian Bue

Palomar 48” 
Telescope

Detected Supernova
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Deep Learning for iPTF Asteroid Detection

Goal: discriminate real iPTF asteroid detections from bogus candidates

Deep network trained with raw imagery 
gives comparable accuracy to classifier 
using expert-engineered features 

Deep neural network

Contacts: Brian Bue, Umaa Rebbapragada
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Detecting Fast transients on the 
Very Long Baseline Array (VLBA)

Ongoing, commensal 
experiment on VLBA radio 
telescopes

Searches for anomalous 
fast radio transients in 
streaming TB-scale time-
series

Transients produced by 
Gamma Ray Bursts, 
intermittent radio pulsars 
or possibly merging black 
holes

Uses online adaptive 
pattern recognition

Online since July 2011

Image: NRAO

ASTRON / Curtin University / NRAO / JPL Contact: K. Wagstaff, D. Thompson
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• Prioritizes high-quality incoming OCO-2 soundings for further analysis
• Lets retrieval algorithms initially focus on cleanest data
• Advises scientists on which data to analyze
• Fully operational in OCO-2 DAC – enabled mission to meet 

Level 1 requirements

DOGO Intelligent Data Filtering for OCO-2

Contact: L. Mandrake

Runner Up for 
2015 NASA 
Software of the 
Year Award
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Content-based image retrieval: automatically locate visually salient regions 
(e.g. craters, dust devil tracks) in image data 
Approach: 
1) Determine high salience regions by computing statistical differences between 

pixel and surrounding context 
2) Classify landmarks using machine learning model and labeled training data

MOC, June 2000

Classification of Image Landmarks

Contact: Kiri Wagstaff
Salience Map

Examples of classified landmarks
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Landmarks Deployed to PDS (Planetary Data System)

Landmark classification deployed as Planetary Data Systems web service

New 
landmarks 
search box

pds.jpl.nasa.gov
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AEGIS Intelligent Targeting System
(Autonomous Exploration for Gathering Increased Science)

• Operational onboard MER Opportunity 
rover and recently uploaded MSL 
Curiosity rover

• Provides intelligent targeting and data 
acquisition capabilities

• Enables automated data collection for 
rover remote sensing instruments

– Identify rock targets onboard through image analysis
– Guided by scientist specified criteria
– Can be run at end of drive or mid drive 
– No communication with ground required

• Winner of 2011 NASA Software of the 
Year Award 

Contact: Tara Estlin
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AEGIS Result from MER B Sol 2172

Analysis of Navcam image (after drive). Targets are prioritized by size and low
albedo/reflectance. Shown are top ten targets in blue and top target in yellow.
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AEGIS Result from MER B Sol 2172

Final Pancams of top target (quarter-frame, 13F)
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Application to MSL Curiosity Rover Mission

• Requested by MSL ChemCam team to support intelligent 
targeting onboard MSL

• ChemCam is a Laser-Induced Breakdown Spectrometer 
(LIBS)

– Samples rocks from a distance of 1 to 7 meters 
– Able to rapidly identify rock elemental composition

• AEGIS will enable multiple autonomously targeted 
ChemCam measurements throughout the day
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Application for MSL ChemCam

Two ChemCam applications

• Automated targeting using MSL 
Navcams

– AEGIS analyzes Navcam for potential targets 
after or in middle of drive

– Acquires LIBS raster on top N targets found 

• Pointing refinement for small targets 
identified in Remote Micro Imager (RMI)

– Small target (e.g., vein, concretion, grain) 
identified by ground camera

– Ground points RMI
– AEGIS refines pointing to ensure LIBS raster 

hits target on first attempt
– Can acquire LIBS raster on top N targets 

found

Sol 530 RMI (FOV 15 cm)

Sol 548 Navcam
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AEGIS analysis of MSL Navcam (sol 59)

Using rock size

7m range
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AEGIS Analysis of MSL RMI (sol 165)

Using albedo
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Agile Science Operations: 
A new approach for primitive bodies exploration

Target locations 
are not known in 
advance

Surface activity 
is transient, 
time-variable

Targets have diverse 
morphologies, 
compositions

Geometry and 
illumination 
constraints

Features of interest are 
highly localized

Closest approach too fast for 
ground responses 
(sub-hour timescales)

Images: Tempel 1 (Deep Impact) PIA 02142, NASA/JPL/UMD

Challenges of collecting data on primitive bodies:

Contacts: David R. Thompson, Brian Bue
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Onboard automated plume detection

Typical performance is 70-100% recall with zero false positives 
(Hartley2, Enceladus)

1. Original 2. Edge detection

3. Convex hull 4. Bright regions beyond nucleus

Example detection for Enceladus

• Determine nucleus and mask out
• After edge detection find subset of of edge points that lie on exterior
• Model nucleus as conservative convex hull of edge points
• Apply 2D convex hull algorithm
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Onboard detection of high albedo features

• We use a machine learning random forest classifier, trained on 
similar surface features, and classify each pixel independently.

• Attributes are simple arithmetic and comparison operators applied to 
nearby pixel intensities

Detected features for 
followup obseravtions

Results shown on Hartley2 comet (images taken by EPOXI mission) 
and Tempel1 comet (images taken by Deep Impact Mission)
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EO-1 Autonomous Spectral Discovery

Compositional map 
generated onboard

Authoritative version 
[Kruse et al., 2003]

Silica

Alunite / 
Kaolinite

Steamboat Springs, NV – Oct 2011

• Onboard analysis for the EO-1 Hyperion VNIR imaging spectrometer 
• 220 spectral bands, 30m spatial resolution, 7.5x100km swath
• Endmembers detected and mapped onboard
• Summarizes a 250MB data product to 20KB for immediate downlink

Contacts: David R. Thompson, Brian Bue
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Extra Slides
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Onboard Science Autonomy

Traditional spacecraft operations:
• Select data collection opportunities on Earth
• Uplink commands to spacecraft and wait for data                                          

to be returned (often days or weeks)
• Analyze data after returned

Science autonomy enables a spacecraft to:
• Analyze science onboard and detection key signatures
• Recognize and capture dynamic or short-lived events
• Enable new science opportunities when ground communication cycle 

not possible
• Prioritize data onboard so critical data reaches scientists first

Spirit Sol 543 (July 13, 2005)
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Enables automated generation or modification 
of robotic command sequences

• Traditional approach has been manual, time intensive 
effort to create sequences by ground operators

• Instead, fast search techniques enable sequences to be 
created rapidly by using detailed model of vehicle

Model specifies robot tasks, resources, states
• Operation rules, resource profiles, state information,        

time deadlines

Allows ground operators to specify high-level 
goals vs. detailed commands

Can monitor robotic system, carrying out 
planned tasks and adapt tasks if necessary

Automated Planning and Scheduling

Orbital Express

JPL Airship

Slocum glider submersible
(courtesy Rutgers University)
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Analyze data onboard vehicle to recognize
• Key science or target signatures
• Dynamic changes
• Outliers or novel data
• Anomalies

Enables data to be prioritized or 
summarized for downlink

Enables responses to be triggered when 
events of interest are detected

Applicable to numerous instruments and 
data types (e.g., visual images, 
hyperspectral, infrared, seismic, radio)

Onboard Data Analysis

Applicable to Range of 
Platforms and Sensors

Silica

Alunite
/ 
Kaolinit
e

Analysis of Hyperion VisNIR data
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Coordinate multiple robotic agents in 
exploration or engineering activities

• Activities can be loosely or tightly coordinated 
• Agents can be homogenous or heterogeneous 

robotic platforms

Automated task distribution based on 
agent capabilities

Enable robust behavior in presence of 
hardware failures or communication 
dropouts

Gathered data can be shared among 
platforms to guide activities and create 
global environment models

Multi-Agent Coordination

Multi-spacecraft asset coordination 

Surface robot coordination
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TextureCam
A Smart Camera for Astrobiology Site Survey

David R Thompson
Jet Propulsion Laboratory, California Institute of Technology

• A suite of software and algorithms for automatic classification 
of geologic surfaces

• Maps surfaces with texture channels which signify statistical 
patterns of image pixels

• To create a set of classifiers, uses a decision forest. Trees are 
created by training on a subset of pxels. 
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TextureCam Example
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TextureCam Example
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S. Chien, J. Doubleday, D. R. Thompson, 
K. Wagstaff,  J. Bellardo, C. Francis, E. 
Baumgarten, A. Williams,  E. Yee, D. 
Fluitt, E. Stanton, J. Piug-Suari (2014).  
Onboard Autonomy on the Intelligent 
Payload EXperiment (IPEX) Cubesat
Mission as a pathfinder for the proposed 
HyspIRI mission Intelligent Payload 
Module.  Proceedings of the International 
Symposium on Artificial Intelligence, 
Robotics and Automation in Space, 
Montreal, Canada, 2014.

space

limb 
/haze

clear
cloud

cloud

clear

IPEX Cubesat onboard surface classification 
and cloud screening

We demonstrated fully-
automatic image analysis 
onboard the IPEX 
spacecraft 

A pattern recognition 
system based on the 
TextureCam codebase 
identifies surface features 
and excises clouds.

To date, thousands of 
images have been analyzed 
onboard

Contacts:  steve.a.chien@jpl.nasa.gov,  david.r.thompson@jpl.nasa.gov
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