
Three Viewpoints for Analysis and Synthesis
in Systems Engineering

Steven Jenkins
j.s.jenkins@jpl.nasa.gov

Jet Propulsion Laboratory
California Institute of Technology1

NSF Workshop on Research Challenges in Modeling & Simulation
2016-01-13

1Copyright © 2016 California Institute of Technology. Government sponsorship
acknowledged. This research was carried out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National Aeronautics and Space Administration.

j.s.jenkins@jpl.nasa.gov

Outline

1 Preliminaries

2 Three Viewpoints
Mission Operations Viewpoint
System Design Viewpoint
Fault Management Viewpoint

3 Roles of Modeling and Simulation

About Me

B.S., Mathematics, Millsaps College, 1977
M.S., Applied Mathematics, Southern Methodist University, 1980
Ph.D., Electrical Engineering (Control Systems), UCLA, 1987
Joined JPL in 1989 as an overeducated computer system administrator
Now Principal Engineer in the Formulation & Systems Engineering Division
Primary interest is advancing systems engineering practice through
applications of computer science and information technology
Not a theoretician nor an expert in much of anything
Have made a career out of knowing a little about many things

About Jet Propulsion Laboratory

An operating division of the California Institute of Technology, a private
university
Located (mostly, now) in La Cañada Flintridge, California, a northeastern
suburb of Los Angeles
A Federally-Funded Research and Development Center (FFRDC) operated by
Caltech under contract to NASA
Active in propulsion research since the 1930s, long before establishment of
NASA in 1958
Emphasis on robotic exploration of the solar system

I JPL spacecraft have visited every planet, plus asteroids, the Sun

5000 employees and on-site contractors
Annual budget: $1.6 billion

Jet Propulsion Laboratory
California Institute of Technology

Curiosity on Mars
2012

JPL’s Design Environment

Interplanetary spacecraft typically consist of a flying or landing bus carrying
scientific instruments
Sometimes JPL designs and builds instruments, sometimes our customers do
Sometimes JPL designs and builds buses, sometimes we contract that out
Sometimes JPL designs and executes mission operations, sometimes our
customers do
Today we’ll consider the simple case in which JPL does it all
For this purpose we can consider the bus and instruments as a single flight
system

JPL’s Operations Environment

There are several factors that make deep space flight challenging:
I harsh thermal and radiation environments
I one-way light times measured in minutes to hours
I occultations, conjunctions that cause loss of communications
I severe mechanical loads and vibration during launch and maneuvers

Perhaps the single most distinctive characteristic of deep space is the utter
infeasibility of any maintenance or repair of the vehicle itself after launch

I except software updates and designed-in capabilities

Consequently, both the flight system design and its operations must
demonstrate considerable robustness
Example: Voyager 2’s primary command receiver failed and its backup
receiver suffered severe degradation in April 1978. An operational workaround
devised shortly thereafter has been in continuous use for almost forty years.

Outline

1 Preliminaries

2 Three Viewpoints
Mission Operations Viewpoint
System Design Viewpoint
Fault Management Viewpoint

3 Roles of Modeling and Simulation

Mission Operations Viewpoint

Suppose we have a fixed flight system design. We can consider it to be an
observatory that maps input commands to output observations in a way that
depends on the environment (including targets of scientific interest):

y = f (θ, v , u)

where y is a vector representing observations, f is a function denoting the
fixed structure of the flight system behavior, θ is a vector of flight system
design parameters, v is a vector of environmental parameters, and u is a
vector representing command input.
Almost none of the assumptions that would simplify the problem are true:

I f is typically nonlinear, discontinuous, time-varying
I v and u are typically functions of time but may not be continuous

We also have some success metric M (y) and target MT .
The simplest design problem is to find an input u such that
M(y) = M(f (θ, v , u)) ⊆ MT .

An Aside on Success Criteria

Note that the success criteria are not stated in terms of extrema:

M(y) ⊆ MT

That is, the success metric is merely required to be in the target set, not any
optimal value.
Good requirements take this form, e.g.:

I The Mission shall return not less than 100Gbyte of mapping data.

Not
I The Mission shall return as much mapping data as possible.

Optimization is a design technique; we often employ it to show by analysis
that a requirement can be satisfied. Success, however, is always “good
enough”, not “as good as possible”.

Back to Our Mission Operations Design Problem

Our system is described by y = f (θ, v , u), where (for the moment) we
consider the flight system behavior f and the parameters θ and v to be fixed.
We wish to find an input u such that M(y) = M(f (θ, v , u)) ⊆ MT .
The search space for u is not dense, nor convex

I For example, there are typically only a handful of feasible trajectories for
interplanetary missions

I Averaging two feasible trajectories doesn’t give you a feasible trajectory

Calculus-based optimization techniques don’t work, at least as the outer
strategy
Solution techniques often involve discrete search with nested optimization
This problem is already hard, but it’s naïvely optimistic

I We have to make it harder

A More Realistic Mission Operations Design Problem

Two issues with our simple design problem:
I It finds only a single acceptable input; maybe we’d like to select from a set of

acceptable inputs
I It assumes the environment (characterized by v) is known, which is often not

the case in exploration
F e.g, atmospheric density, radiation flux, etc.

What we really want is a mapping U() from a set of “likely” environments V
to a set of acceptable inputs such that for every v ∈ V and every
u(v) ∈ U(v),

M(y) = M(f (θ, v , u (v))) ⊆ MT

That is, the acceptable inputs depend explicitly on the environment, so we
can re-plan as we learn more
We haven’t made the problem qualitatively harder, but we’ve dramatically
enlarged the search space
We can make it more general still by noting that some system behavior
parameters may not be known precisely until after launch

I e.g. vibration modes of deployed structures

Outline

1 Preliminaries

2 Three Viewpoints
Mission Operations Viewpoint
System Design Viewpoint
Fault Management Viewpoint

3 Roles of Modeling and Simulation

System Design Viewpoint

In this viewpoint we consider system design, which in our formalism is the
specification of the function f and the parameter vector θ . (In principle we
could incorporate θ into the definition of f ; this approach helps us to think
about structural and parametric variation separately.)
It is similar to the Mission Operations Viewpoint but subtly different.
We wish to find f and θ such that for every v ∈ V (the space of all likely
environments), there exists some u such that

M(y) = M(f (θ, v , u (v))) ⊆ MT

That is, find some structure for the system (f) and values for its parameters
(θ) so that it is possible to operate it in such a way as to satisfy the success
criteria.
As before, we don’t want to stop with a single design solution. We’d like to
find a family of design options F such that, for every f ∈ F there exists a set
of parameters θf such that there exists some u (f , θf , v) such that

M(y) = M(f (θf , v , u (f , θf , v))) ⊆ MT

The set F is typically sparse in practice, corresponding to architecturally
distinct approaches (e.g., orbiter vs flyby)

Viewpoints and the Real World

The purpose of an architectural viewpoint is to show how a set of concerns is
addressed
Some concerns are featured, others are attenuated
Viewpoints are rarely orthogonal
Our Mission Operations Design and System Design Viewpoints share the
same concerns (as embodied by the target set MT) but they have different
emphases
In the real world, different groups of experts concentrate on different
viewpoints, but their work requires periodic reconciliation
Ideally, we’d have an integrated viewpoint to attack the joint optimization
problem in truly parallel fashion
There is such an integrated viewpoint, at least for one fairly narrow purpose

Outline

1 Preliminaries

2 Three Viewpoints
Mission Operations Viewpoint
System Design Viewpoint
Fault Management Viewpoint

3 Roles of Modeling and Simulation

Fault Management Viewpoint

For the purposes of analysis, we can say “let the system dynamics be
described by y = f (θ, . . .)”, but that description may not be valid for the life
of the mission

I e.g., the Voyager 2 receiver degradation caused a severe reduction in the
phase-locked loop tracking bandwidth, in which case we could say the system
dynamics were described by y = f (θ + δθ, . . .)

I unanticipated couplings (e.g., radio-frequency interference) can be seen as
perturbations of system structure, i.e., y = (f + δf) (θ + δθ, . . .)

The major difference between the Fault Management and System Design
Viewpoints is the space of system behavior variants

I In System Design we consider only “reasonable” choices for f and θ
I In Fault Management we consider likely deviations (due to failures or

uncertainty) from our nominal behavior (f + δf and θ + δθ) and evaulate their
consequences

Fault Management

Analysis of a given fault may lead us to take one or more actions:
I We may modify the system design so as to make that fault less likely; in the

limiting case we assess the residual likelihood as low enough to disregard. We
call this prevention.

F e.g., using radiation-hardened parts

I We may modify the system design so that the system dynamics as they affect
success criteria are largely unchanged in the presence of the fault. We call this
mitigation.

F e.g., using redundant components

I We may modify the operations plan in order to satisfy the success criteria in
the presence of the fault. We call this a workaround.

F e.g., reducing operational duty cycle to conserve energy

Modeling

I think of a model as merely a description of a system in a formal language
with grammar rules

I generally, the language and grammar are chosen to support analysis
I if a description can’t be wrong, it’s not precise enough to be called a model

Does a traditional mathematical model qualify? Of course:
I ẍ = −kx is a grammatical statement; x − kx=̈ is not

Knowledge Representation languages are good for modeling too:
I :Requirement.143 :binds :Component.17
I :Requirement.143 :binds :Stakeholder.4 is ill-formed

F Requirements are about acquired artifacts, not people, organizations, etc.

I Many rules will be in form of logical predicates, e.g., For every requirement r
there exists a unique component c such that r binds c.

I Lots of analysis possible (e.g., consistency, satisfiability, entailments, etc.)

Analysis and Synthesis

I think of analysis as the elucidations of entailed consequences of a system
description, e.g.,

I finding an analytical solution to a differential-algebraic system
I computing a trace through state space for a scenario (i.e., simulation)
I generating a set of views (e.g., System Requirements Document, System

Stability Analysis)
I auditing the description for well-formedness, completeness, consistency, etc.

I think of synthesis as finding a system description that has specified
consequences

I a much harder problem—but the one systems engineers are stuck with
I all the easy ones (e.g., linear Gaussian quadratic regulator) were solved long

ago
I what remains requires cleverness and brute force

Fortunately
I there is a lot of untapped cleverness in computer science (e.g., graph theory)
I brute force is a lot cheaper than it used to be

Desiderata

Modeling facilities that make use of Knowledge Representation theory and
practice to help us build more expressive and precise models of more things
Intimate, principled coupling between descriptive and analytic views

I to avoid unnecessary work: if I assert two terminals are connected, I shouldn’t
also have to assert Kirchhoff’s Laws

I to avoid mistakes: if I don’t have to assert Kirchhoff’s Laws, then I can’t get
them wrong

I to reuse basic phenomenological expertise: I shouldn’t need deep expertise in
mechanics to predict deflection of a boom; I should be able to access that
expertise via technology

I to reuse well-established but not widely-known numerical analysis expertise: an
identity is not an algorithm; we forget that at our peril

A vigorous attack on synthesis that exploits expertise not (yet) part of
standard systems engineering doctrine:

I computer science
I large-scale computation

	Preliminaries
	Three Viewpoints
	Mission Operations Viewpoint
	System Design Viewpoint
	Fault Management Viewpoint

	Roles of Modeling and Simulation

