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Introduction: The Cryosphere

Snow is the most reflective natural surface on Snow IS a natural water reservoir
earth (climate) (WYelellele}%)



Introduction: What drives snow and ice melt?
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Introduction: The Color of Snow
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Introduction: The Color of Snow
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Introduction: The Color of Snow

June, 2015



Introduction: Light Absorbing Impurities

Black Carbon or ‘Soot’




Introduction: How do we measure snow albedo?




Introduction: Retrieval of snow properties
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Ground Measurements

San Juan Mountains and Grand Mesa, Upper Colorado River Basin, CiD

Snow Dome/Blue Glacier, Mt. Olympus, WA

South Cascade Glacier, Cascade Mountains, WA

Mera Peak, Himalaya, Nepal

Saddle, accumulation zone, Greenland



Dust, Snow, and the Colorado River Basin

The Rockies are the headwatgrs of
the Colorado River, which is >70%
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Dust, Snow, and the Colorado River Basin

‘ | Senator Beck Basin
g2 1 ' Study Are :
; 4/

110°W 109°W

e 2003: Senator Beck Basin Study Area was establlshed to study the hydrologlc |mpacts of
dust on snow (DOS)

e 2005: Instrumentation is installed and consistent snow observations begin

 2010: Grand Mesa Study Plot established



A decade of studying dust on snow In the Colorado River Basin
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months
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(Neff et al., 2008; Painter et al., 2012; Skiles et al., 2012)



A decade of studying dust on snow In the Colorado River Basin

.;34,‘:
All studies of dust on snow in the CRB have used a semi-empirical representation
of dust radiative forcing developed at Senator Beck Basin Study Area
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Why not physically based?
Missing a high resolution long term dataset for model forcing and validation




Physically based modeling: Filling the observation data gap

Sparseness of snow impurity
measurements and uncertainty in
snow effective (optical) radius
variability suggest that more
ground measurements need to
be made -Flanner et al, 2007

Contact Probe

Spring 2013 Dataset

»
Gravimetrics Board

1L Density Cuts A Dally SNow. Sampling and

observations of snow optical
and physical properties across
70 days spanning peak snow
depth to snow depletion

10 snow samples every day
from across the top 30 cm of
snowpack

(Skiles, 2014)
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Measurements: Evolution of impurity content
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Radiative Transfer Modeling

Spectral Albedo

SNICAR Inputs

density (kg m™)

Mean
Grain Radius (um)

Bulk Dust
Concentration (ppb)

SNICAR Albedo

SNICAR Dust

3% D1 (0.1-1 um)

6% D2 (1.0-2.5 um)
9% D3 (2.5-5.0 um)
83% D4 (5.0-10.0 um)
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Optical/physical properties of deposited dust
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Inverting for the complex refractive index of deposited dust
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Updating dust in snow optical properties
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Using regionally specific dust optical properties improves modeling of net solar
radiation by 70% in the visible wavelengths and 50% across the full range of snow
reflectance



Partitioning the impacts from dust and black carbon

April 26th, 2013 May 2nd, 2013

Grain Radius : 139 pm Grain Radius : 224 um ]
Sniow Density: 307 kg m™ Snow Density:313kgm™ 1
BC Concentrtation: 5 ppb BC Concentrtation: 18 ppb 1
Dust Concentration: 5.5%10° ppb Dust Concentration: 4.6*10° ppb

Measured

LAl Concentration (ppb)
Spectral Albedo

Clean

BC
Dust Measured

100 110 120 Dust+BC
Day of Year 2013

0.5 . 15 20 5 . . 15 20 25

Mass Absorption Scaled
LAl Concentrations (m* kg™ * ppb)

BC: 4 W m (929 VIS, 8% NIR)
Dust: 50 W m™ (92% VIS, 8% NIR) 7]
Bust+HC: 51 W m™ (98 % VIS, 2% NIR)

Day of Year 2013

Spectral Radiative Forcing (W m?)

N

0.5 1.0 1.5

Wavelength (um)

of radiative forcing

In this region, dust strongly dominates mass and absorption,

BC: 7W m™ (96% VIS, 4% NIR) ]
Dust: 330 W m? (82% VIS, 18% NIR) ]
Bust+BC: 334 W m™ (82% VIS, 18% NIR)

1.0 1.5
Wavelength (um)

accounting for <97%




Partitioning the impacts from impurities and grain growth

Snow Depth (cm)
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Ground Measurements

San Juan Mountains and Grand Mesa, Upper Colorado River Basin, CO

Snow Dome/Blue Glacier, Mt. Olympus, WA

South Cascade Glacier, Cascade Mountains, WA

Mera Peak, Himalaya, Nepal

Saddle, accumulation zone, Greenland



Snow Dome, Mt. Olympus, WA
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South Cascade Glacier, WA

October 7, 2014
Surface Sample
Collection Sites

Grain size range:
232 — 705 pym.
450 ym average
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Kaspari, Skiles, et al., in prep



Ground Measurements

San Juan Mountains and Grand Mesa, Upper Colorado River Basin, CO

Snow Dome/Blue Glacier, Mt. Olympus, WA

South Cascade Glacier, Cascade Mountains, WA

Mera Peak, Himalaya, Nepal

Saddle, accumulation zone, Greenland



Mera Glacier, Hmalaya Mountains, Nepal

Mera Summit

Clean snow, r, = 350 um Clean snow, r, = 750 um
258 ug/L BC

(MAC 5.9-7.5) . 258 ng/L BC
(MAC 5.9-7.5)

Dust only (9.3 g/L) and Dust only (9.3 g/L) and
Dust + 258 ug/L BC . v / Dust + 258 ug/L BC
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BC has long been the focus of impurity in snow
research in the Himalaya

At Mera (south slope) radiative transfer modeling,
constrained by the observational data, indicate that
the albedo and radiative forcing of dust Is
considerably greater than BC

Kaspatri et al., 2014



Ground Measurements

San Juan Mountains and Grand Mesa, Upper Colorado River Basin, CO

Snow Dome/Blue Glacier, Mt. Olympus, WA

South Cascade Glacier, Cascade Mountains, WA

Mera Peak, Himalaya, Nepal

Saddle, accumulation zone, Greenland



Saddle, Accumulation Zone, Greenland

— Snow Albedo
— Snowmelt Runoff
—— Trend

Standardized JJA Anomaly

20 40 60 80 100 120 140
Depth (cm)

Skiles, et al., in prep



Ground Measurements: Summary and Concluding Thoughts

 Snow melt is driven by net solar radiation, itself controlled mainly by snow albedo

* Impurities in snow lower snow albedo in the visible wavelengths, directly
Increasing solar absorption

* |Impurities enhance snow grain growth, lowering snow albedo in the near infrared
wavelengths, and increasing absorption across the full range of snow reflectance

» This impact exhibits high variability in both space and time, and episodic events
(dust emission, forest fires) can have a large impact

 Ground measurements alone are not sufficient to characterize these impacts on
the scale of the global cryosphere




Airborne Measurements

Tuolumne River Basin, Sierra Nevada, CA

Upper Uncompahgre Watershed, Upper Colorado River Basin, CO






ASO Core Lidar Products
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ASO Imaging Spectrometer Products
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Detecting Snow/Spectral Unmixing
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Why not MODIS?
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MODIS spectral and spatial resolution
limit the ablility to accurately retrieve
SNow properties in mountainous terrain

The MODDRFS product (JPL snow data

server) provides a MODIS RF products,

but with relatively large errors (34 W m-2)
limiting use to impurity laden regions
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Snow Grain Size
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Radiative Forcing
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Questions or Comments?
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McKenzie Skiles: skiles@jpl.nasa.gov
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