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DYNAMICS OF ASTEROID 2006 RH120: PRE-CAPTURE AND
ESCAPE PHASES

Brian D. Anderson�, and Martin W. Lo:

Asteroid 2006 RH120 was the first natural object captured by the Earth to be ob-
served called a Minimoon. In this work, we show that the invariant manifolds
of the orbits around the L1 and L2 Lagrange points play a significant role in the
capture of the asteroid around Earth and its eventual escape from the Earth approx-
imately 1 year later. This is similar to the Temporary Capture of comets around
Jupiter. We determined that the asteroid was in a 27:29 mean motion resonance
with the Earth and approached the Earth through the stable manifold of an L1
Northern Halo Orbit. After the Temporary Capture, the asteroid escaped the Earth
through the unstable manifold of an L2 Southern Halo orbit and into a 21:20 reso-
nant orbit with the Earth. The asteroid travelled through a series of resonant orbits
before and after the capture. These resonant transitions are similar to the orbits
of Galileo and Cassini during their touring phase, using resonant orbits to reduce
mission ∆V requirements.

INTRODUCTION

There are two types of moons, stable and temporary moons. Stable moons are in stable orbits 
around the planet; temporary moons are captured by the planet in highly chaotic orbits. The Outer 
Planets are known to have many temporary moons. In fact, the Jupiter Family of Comets like 
Oterma, Gehrels 3, Helin-Roman-Crockett were temporarily captured by Jupiter and then escaped. 
Shoemaker-Levy 9 was a temporary moon that eventually impacted Jupiter itself. In 2006, Near 
Earth Object (NEO) 2006 RH120 was captured into Earth orbit for nearly a year. It is the first 
temporary moon of the Earth to be observed. In previous work, we explained the dynamics of the 
Temporary Capture of Jupiter comets using invariant manifold theory.1, 2 The same dynamics is also 
at work for the Temporary Capture of Earth’s temporary moons. However, the small mass parameter 
of the Sun-Earth/Moon Barycenter Circular Restricted Three Body Problem as well as the large 
mass of Earth’s Moon greatly complicate the Temporary Capture of NEOs around the Earth as 
compared to the capture of comets around Jupiter or Saturn.

Although Asteroid 2006 RH120 is Earth’s first temporary moon to be observed, recent work by
Granvik, Vaubillon, and Jedicke indicates that these moons may be abundant.3 Their simulations 
showed  that  at  any time there  is at least one temporary moon of 1 meter diameter or larger orbit-
ing the Earth. They named the Earth’s temporary moons as Minimoons. If the prediction of this 
population of minimoons of the Earth is verified, this could open the door to many potentially 
interesting missions to NEOs right at our door step! Using CubeSats or SmallSats, these 
missions could be very low cost. Astronomers are currently busy at work to verify the existence  
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of this population of NEOs. Minimoons are difficult to detect because of their small size and their 
lower velocity profile which distinguishes them from the faster moving NEOs like Apophis. Given 
the potential for an abundance of these interesting Minimoons, a deeper understanding of their 
dynamics would help in locating them and in designing missions to explore them. In this paper, 
we examine the role that invariant manifolds of libration orbits around the Earth’s L1 and L2 play 
in the capture and escape of Asteroid 2006 RH120. We defer the study of the asteroid’s interaction 
with the Moon, which involves the Sun-Earth-Moon Four Body Problem, in later papers.

(a) (b)

Figure 1. (a) The trajectory of Asteroid 2006 RH120 (black), the L1 Northern Halo 
Orbit (blue) and the Southern Halo Orbit at L2 (red). The invariant manifolds of these 
orbits controlled the motion of the asteroid’s Temporary Capture and escape. (b) 
Global view of the asteroid orbit before capture (magenta) and after escape (black). 
The green surface is the Forbidden Region for the estimated Jacobi constant of the 
Pre-Capture Phase.

Figure 1(a) shows the black trajectory of Asteroid 2006 RH120 in Sun-Earth rotating frame, the 
blue Northern Halo orbit which controls the entry of the Asteroid into Temporary Capture by the 
Earth-Moon System; the red halo orbit at L2 controls the exit of the asteroid into heliocentric orbit. 
Note that the L1 Northern Halo Orbit has a smaller Jacobi constant than the L2 Southern Halo Orbit. 
The interaction of the Moon reduced the energy of the asteroid as it orbited the Earth-Moon before 
escaping. Alternatively, the elliptic nature of Earth’s orbit may be the reason that the Jacobi constant 
of the asteroid that we estimated is different before and after the Temporary Capture. The Jacobi 
constant is a quantity associated with the ideal system in the CRTBP and so introducing eccentricity 
to the Primaries’ motion nullifies the assumptions necessary for this quantity to be a constant.4, 5

Figure 1(b) is a global view of the asteroid trajectory for over 50 years. The magenta spiral curve is 
the resonant orbit which brought the asteroid to the Earth. The black spiral curve is the current orbit 
of the asteroid since it escaped the Earth in 2006. The close up view shows the orbit in the region 
around the Earth (the Earth is hidden by the surface of the Forbidden Region). The Temporary 
Capture Orbit is in red here and with a radius around 1 million km; it is much larger than the Moon’s 
orbit. The many spiral loops of the trajectory prior to the capture and after the escape show that the 
asteroid is trapped in some mean motion resonance with the Earth.

BACKGROUND

We model the dynamics of Minimoons using the Circular Restricted Three Body Problem (CRTBP). 
In this section, we provide a heuristic description of invariant manifolds of periodic orbits and their
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significance for the Temporary Capture problem. For more details, see Szebehely4 and Koon, Lo, 
Marsden, Ross6 and references therein for the equations of motion for the CRTBP and the theory of 
invariant manifolds of periodic orbits. The CRTBP utilizes a coordinate system that rotates along 
with two large bodies that orbit their common barycenter. This coordinate system is shown in Fig-
ure 2 for the Sun-Earth system. Although the two primary bodies can be any system of co-rotating 
celestial bodies, this work focuses on the Sun-Earth system so we will from here on refer to the 
primaries as the Sun and the Earth. Note that by "Earth" here we actually mean the Earth-Moon 
Barycenter orbiting the Sun in a circular orbit. In this reference frame, there are 5 equilibrium 
points known as Lagrange points labeled L1 through L5. L1-L3 lie on the x-axis while L4 and L5 are 
symmetrically placed on either side of the x-axis. All Lagrange points lie in the plane z � 0. This 
dynamical system has a constant of integration known as the Jacobi constant, which can at times be 
referred to as the “energy” in the literature as well. The energy-like behavior of the Jacobi constant 
is reversed however, as a low Jacobi constant is actually a high “mechanical energy”. In this paper, 
for clarity, when we refer to “energy” it will always mean “mechanical energy”, otherwise, we will 
refer to the Jacobi constant. An object with a given position and velocity in this frame that obeys the 
dynamics of the system will have a fixed Jacobi constant for all time. This Jacobi constant will 
determine the allowable regions of motion, and the regions where motion is not allowed which we 
call the “Forbidden Region”’. The Forbidden Region of an example Jacobi constant is shown in 
Figure 2. Since the system is spatial, the plots here only show a slice of a 3-dimensional Jacobi 
constant surface. For the level of the Jacobi constant plotted, we divide the region of allowable 
motion into 3 subregions separated by vertical planes through the L1 and L2 Lagrange points: the 
Interior Region, the Exterior Region and the Neck Region. The Interior Region is around the Sun 
inside the Earth’s orbit and Forbidden Region. The Exterior Region is outside of the Earth’s orbit 
and Forbidden Region. The Neck Region is the region containing the Earth and L1 and L2, 
connecting the Interior and Exterior Regions. For very low energy levels, all regions are completely 
cut off from each other. As the energy increases (Jacobi constant decreases), a hole opens up that 
allows for motion between the Interior and Neck Region through L1. Further increase in the energy 
opens a hole to the Exterior Region. At an even higher energy, all in-plane motion near the Ecliptic 
is allowed. The Forbidden Region is in fact a 3 dimensional surface and for these higher energies, 
motion between the Interior and Exterior Region can still be unlikely to occur at any point along the 
Earth’s orbit. Trajectories with non-trivial out of plane components will still be more likely to cross 
between regions where the Vertical opening between regions is the largest, such as the Neck Region 
near Earth. An example of the topological change in the Jacobi constant surface properties is seen in 
Figure 3. The low energy red surface only allows motion between Interior and Exterior Regions 
through the Neck Region near Earth, while the high higher surface in orange causes the top and 
bottom of the Forbidden Region to become two separate surfaces. The energy surfaces for the 
asteroid in question is shown in Figure 4. Two surfaces are indicated, since the estimated Jacobi 
constants for the Pre- and Post-Capture Phases are not the same. Note that the Neck Region for 
the Pre-Capture Jacobi constant is much more open and would more readily allow passage between 
the Interior and Exterior Regions. We will be studying this transit of the asteroid from the Interior 
Region, through the Neck Region and out to the Exterior Region.

It has been long observed that comets and asteroids can be temporarily captured by planets from 
time to time. A tremendous amount of work has been done to study this phenomenon with a vast 
literature. The most famous group of temporarily captured objects are the Jupiter Family of Comets, 
a few of which were mentioned earlier. The moons of Mars may be asteroids captured through a
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Figure 2. CRTBP coordinate frame with Lagrange point and region definitions (a)
Large scale. (b) Boxed area in detail showing Neck Region.

(a) (b)

Figure 3. Illustrative example of Forbidden Region surfaces showing topological
change for different Jacobi constants. The higher Jacobi constant (lower energy) in
red only has a Neck Region near Earth, while the Forbidden Region with lower Jacobi
constant (higher energy) in orange allows for motion in the entire plane z � 0. The low
Jacobi constant surface is only shown for y ¥ 0 in order for the high Jacobi constant
surface to be visible. (a) shows the whole surfaces while (b) shows the surfaces near
the Neck Region.

similar process. The transport mechanism is very complex. We know resonances play a significant 
role. The resonance transitions eventually bring the small body close to the L1 or L2 Lagrange 
points of the planet. At these locations, the invariant manifolds of libration orbits such as halo 
orbits or lissajous orbits are able to attract the small body and bring it into the region around the 
planet where it is temporarily captured. In the aforementioned papers, we showed how this occurs 
for Jupiter comets.1, 2 The same process works for other planets as well. The significance of this 
approach to explain the Temporary Capture Phenomenon is that it helps us to visualize the capture 
process and this could help to predict the location of the NEOs before and after Temporary
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Moser Condition for the existence of chaos. Hence any object following this chain is in a chaotic
orbit by this theorem.7 Figures 6(a) and (b) show this chain for Jupiter at the Jacobi constant of the
Comet Oterma, a well known member of the short period Jupiter Family of Comets. Figure 6(c)
shows Oterma’s orbit (red curve) closely following the one of Jupiters Heteroclinic-Homoclinic
Chains (black curve). See Koon, Lo, Marsden, Ross for details on the computation and dynamics
of the chain.1, 6

(a) (b) (c)

Figure 6. (a) The Heteroclinic-Homoclinic Chain for Jupiter. The Homoclinic orbit
(blue) in the Interior Region is following closely the 3:2 resonance with Jupiter. The
Homoclinic orbit (gold) in the Exterior Region is shadowing the 2:3 resonance with
Jupiter. (b) The two Lyapunov orbits (black) at L1 and L2 are the generators of this
chain. The magenta trajectories connecting the Lyapunov orbits are the Heteroclinic
orbits. (c) The orbit of Oterma (red) from 1910 to 1980 closely follows the chain
(black) showing that it is a chaotic orbit by the Conley-Moser Condition.

The same dynamics is present at all other bodies in the Solar System. For example, Figure 7 
shows a chain for the Sun-Earth system at the Jacobi constant of the Genesis trajectory. The Conley-
Moser Condition is satisfied here also; this shows that the Genesis trajectory is chaotic which 
explains why this mission required so little ∆V, hence fuel, for its control throughout the mission.

Figure 7. The figure on the right shows the Genesis trajectory in black and the Het-
eroclinic orbit connecting the two Lyapunov orbit at L1 and L2 in magenta. The
Homoclinic orbit for the L1 Lyapunov orbit is blue, for L2, it’s gold. The figure on
the left shows how the Homoclinic orbits have many periods around the Sun before
returning to the L1 Lyapunov orbit. They are in fact shadowing resonant orbits.

In the Jupiter problem, the Homoclinic Orbits (which connects the L1 Lyapunov Orbit to itself
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and similarly at L2) are also shadowing the resonant orbits. For Jupiter, the Interior Resonance is 
3:2 (the comet goes around the Sun 3 times for every 2 times Jupiter goes around the Sun), the 
Exterior Resonance is 2:3. For the Earth, typical of smaller planets, the resonances have many 
more revolutions. The unstable resonant orbits are the means by which asteroids and comets can 
quickly transport across the Solar System via Mean Motion Resonances which we call Resonant 
Transitions. This is precisely what is going on for resonant gravity assist maneuvers that has 
enabled missions from Voyager to Galileo and Cassini. See Anderson and Lo for details.8, 9 Secular 
resonances also play a crucial role in the dynamics of transport in the Solar System, but these require 
very long time span of many millions of years. In this paper, we will show the sequence of resonant 
and libration orbits used by Asteroid RH120 to approach the Earth for Temporary Capture, and then 
escape the Earth again through resonance transitions.

For comets Oterma and Genesis, we computed the chains in the 2D planar CR3BP model. Conley 
showed that for energies slightly above that of the L1 and L2 Lagrange points, the Lyapunov orbits 
control the dynamics around the planet.10 Any object at these energies can only approach and 
escape the planet by going through the invariant manifolds of the Lyapunov orbits. This is because 
for the planar CRTBP the invariant manifolds are 2D tubes in 3D energy surfaces. Since there is a 
well-defined inside and outside topologically for a 2D tube in 3D space, this constrains the motion 
of comets and asteroids in the planar CRTBP as stated above.

However, actual comets and asteroids move in 3D trajectories. Howell, Marchand, and Lo showed 
that several of the comets in the Jupiter Family (Gehrels 3, Helin-Roman-Crockett) closely follow 
the invariant manifolds of Jupiter Halo Orbits during their Temporary Capture Phase.2 This suggests 
that libration orbits around the L1 and L2 Lagrange points are gateways for the Temporary Capture 
Phenomenon. However, so far, this conjecture has not been proved except for a few specific comets. 
Even for the 2D case, the existence theorem of Conley does not specify the range of Jacobi constant 
for which it is true. For very high energies such as that of the Asteroid Apophis, halo orbits no 
longer exist. It is not known what libration orbits, if any, may control the dynamics of such 
asteroids and comets that approach the Earth or Jupiter. Recently, based on numerical study, Ren 
and Shan conjectured that the dynamics of objects approaching and departing a planet is controlled 
by the invariant manifolds of the Vertical Lyapunov Orbit and the Planar Lyapunov Orbit.11 This is 
an exciting result which requires closer study and verification.

The main result of this paper is the demonstration that the trajectory of Asteroid 2006 RH120 is 
guided by a sequence of resonant and libration orbits and their invariant manifolds. This is typical 
of Minimoons. Hence by understanding the dynamics of these resonant transitions and temporary 
capture trajectories, we may be able to formulate theories and rules of thumb to locate, renedezvous, 
deflect, or capture NEOs at the energy levels of Minioons.

CRTBP AND EPHEMERIS MODEL

The Sun-Earth/Moon Barycenter Circular Restricted Three Body Problem (CRTBP) (see Refer-
ence 4) is a simplification of the motion of an object around the Sun and Earth. Therefore, analysis 
within this system requires some form of transformation from the real physical system. The Jet 
Propulsion Laboratory DE431 ephemeris will be used to represent the “real system” in this case.12

In the CRTBP system, the distance between the primaries is assumed constant as is their rotation 
rate about the common barycenter. This would be the case if the two primary bodies were in circu-
lar orbits around their mutual barycenter and there are no other perturbing forces. In such a perfect 
system, units of length are nondimensionalized by this fixed distance and the units of time are
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nondimensionalized by setting the mean motion of the primaries to unity. Units of velocity and ac-
celeration are derived from length and time. The frame of reference rotates along with the primaries 
such that the x-axis lies along the line from the Sun to the Earth and the z-axis is along the angular 
momentum of their motion. Although there is no perfect method for converting real trajectories into 
the CRTBP frame, the method used for this work allows for a rough analysis and is described in 
detail by Anderson and Lo.13 Two methods are used for the work here, each with its advantages and 
disadvantages. Conversion Method 1 uses variable length and time units, representing the current 
position and motion of the primaries. The instantaneous distance between the primaries is selected 
as the distance unit, while the time unit is selected such that the instantaneous angular velocity of 
the primaries has unity magnitude. Conversion Method 2 uses fixed length and time units, chosen 
to represent the position and motion of the primaries at a specific reference time. The distance and 
time units are computed as in the Conversion Method 1, but the instantaneous conditions of the 
primaries at a fixed reference time is selected for units conversions. The common principles for 
frame conversion between both methods is the position of the right handed coordinate system. The 
x-axis is based on the instantaneous vector from the Sun to the Earth. The z-axis is aligned with
the angular momentum vector of the motion of the Sun and Earth. The y-axis completes the right
handed system and the origin is located at the barycenter of the two primaries.

The most natural conversion using Method 2 would be to use the mean semimajor axis and mean 
motion of the primaries, but this choice is not always the best one depending on the behavior one 
wants to analyze. For example, if Earth happens to be near its perihelion when an asteroid makes its 
closest approach, this conversion would place the asteroid around x � 0.983 which by theory is 
beyond L1 in the CRTBP and would not be near Earth. Any analysis of the motion of an asteroid in 
the region between L1 and L2 would be better suited by using Conversion Method 1, as it would 
more accurately represent the motion of the asteroid relative to Earth. This analysis is however 
deferred to a later paper and the current work focuses on the Pre-Capture and Post-Capture Phases 
of Asteroid 2006 RH120. For this purpose, Conversion Method 2 is used extensively with the 
reference time chosen appropriately to allow analysis of the Asteroid’s motion as it approaches L1 
and departs L2, as well as the  heliocentric motion, far from the gravitational influence of Earth. The 
equations for the conversions are given in the Appendix.

Conversion Method 1 has the advantage of producing an accurate visual representation of the 
positional trajectory in an approximate CRTBP frame of reference. Since the method displays the 
position of an object relative to the instantaneous position of Earth, the ellipticity effects of Earth’s 
orbit are minimized. Based on this work, Conversion Method 1 produced a position plot that more 
closely follows the dynamics of an ideal CRTBP system. However, due to the oscillatory nature of 
the unit conversions, the converted velocity also displays oscillations. There are several coupled 
frequencies, causing the velocity to not behave as expected in an ideal CRTBP model. Since the 
Jacobi constant is computed from the position and velocity of an object, in this case the Jacobi 
constant exhibits oscillations on multiple frequencies. Due to the better behaved position 
conversion of Method 1, it is better suited for analyzing the long term resonances of the asteroid. 
However, the behavior of the Jacobi constant of Method 1 is unsuitable for analyzing the libration 
orbits for the approach and departure phases near Earth. Method 2 is more suitable in this case.

Conversion Method 2 removes the oscillations in the unit conversions and thus eliminates some 
of the frequencies in the Jacobi constant oscillation. The frequency that remains is an annual cycle. 
However, this method has the drawback that while it is a more accurate representation of the 
behavior close to the reference point, it may be poor far from the reference point. For this work,
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Conversion Method 2 is well suited for the analysis of the interaction between the invariant 
manifolds of the libration orbits and the asteroid. It is less suited for the long-term analysis of the 
Asteroid’s resonances.

ASTEROID ORBIT

The Near Earth Object (NEO) 2006 RH120 is the first known natural celestial body to be tem-
porarily captured by the Earth.3, 14 The asteroid orbited Earth for approximately 1 year in a large, 
chaotic orbit beyond the orbit of the Moon, but between the Sun-Earth L1 and L2 Lagrange points. 
We call this the Temporary Capture (TC) phase. Before the TC Phase, Asteroid 2006 RH120 was on 
a heliocentric orbit inside the Earth’s orbit. After the TC encounter, the asteroid transitioned to an 
orbit outside the Earth’s orbit. The interaction of the asteroid with the Earth-Moon System is highly 
nonlinear and its orbit was significantly changed during the Temporary Capture Phase. Classical 
orbital elements varied wildly during this phase. In the Pre-Capture and Post-Capture Phases, the 
asteroid underwent a series of resonance hopping which is also exhibited by the Jupiter Family of 
Comets.

We use two methods to determine the resonances of Asteroid 2006 RH120. Resonance Method 1 
used visual inspection of the trajectory in the rotating frame as follows. Each “loop” or oscillatory 
cycle of the Asteroid’s path in the rotating frame represents one revolution around the Sun. Start-
ing the analysis immediately before or after Temporary Capture, a propagation of the Asteroid’s 
trajectory backward or forward in time respectively reveals details about its resonance cycle. After 
propagating the orbit for a certain amount of time, the asteroid returns to the vicinity of Earth, 
usually near L1 or L2. At this time, the number of heliocentric orbits of the asteroid is compared 
to the time elapsed in Earth years. The integer ratio of these two numbers will be the mean 
motion resonance of the cycle. Figure 8(a) shows the Pre-Capture orbit as converted to the 
rotating frame using Conversion Method 1 as described earlier. Analysis of the Pre-Capture 
orbit shows that a complete resonance cycle is completed in 27 years during which time the 
asteroid orbited the Sun 29 times. This suggests that the asteroid is initially in a 27:29 mean 
motion resonance with the Earth. Figure 8(b) shows the Post-Capture orbit converted to the 
rotating frame also using Conversion Method 1. Analysis of the Post-Capture orbit in the rotating 
frame shows that a complete resonance cycle is 21 years during which time the asteroid orbits the 
Sun 20 times. This suggests that the asteroid is in a 21:20 mean motion resonance with the Earth 
after TC. This initial analysis covers the time period April 1, 1979-November 1, 2028, which 
exhibits one full resonance cycle for both Pre-Capture and Post-Capture Phases.

The fundamental change in the orbit is clearly visible in the rotating frame as seen in Figure 8. If 
the same method of analysis is applied to an even longer time span, more interesting effects appear. 
As is seen in Figure 10(c), there are multiple rapid changes in the behavior of the Jacobi constant 
of Asteroid 2006 RH120. Upon closer correlation of these changes to the position of the asteroid, 
it is found that these events are the result of near-Earth approaches that do not result in Temporary 
Capture. At each Earth encounter, the asteroid changes resonance with the Earth. We will later 
correlate these changes to heteroclinic transitions between the resonant periodic orbits around the 
Sun in the CRTBP.

An alternate method for approximating the resonance of an object is through a simple Keplerian 
analysis. We call this Resonance Method 2. A period resonance in a pure 2-body situation can 
simply be described by the osculating period of an object relative to the period of some reference 
object (the Earth in this case). The semimajor axis of an object can be computed from its Kep-
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(a) (b)

Figure 8. Asteroid 2006 RH120 trajectory converted to CRTBP rotating frame by 
Conversion Method 1 (a) Asteroid trajectory in Pre-Capture Phase. (b) Asteroid 
trajectory in Post-Capture Phase.

lerian energy, which in turn is determined directly from the object’s position and velocity. In an 
unperturbed 2-body system, this energy should remain constant. But due to the multibody effects of 
the real physical system, the Two-Body energy changes with time. This allows us to determine the 
theoretical instantaneous period of an object over time. By focusing on parts of this period when 
it reaches a relatively constant value, a simple resonance analysis is possible. Figure 9 shows the 
semimajor axis of Asteroid 2006 RH120 over time. It is clear that when the asteroid is far enough 
away from Earth, the osculating semimajor axis is nearly constant. At these reference points, the 
Keplerian period indicates that the Pre-Capture resonance is 40:43 while the Post-Capture reso-
nance is 21:20. These results agree with the previous results for the Post-Capture trajectory, but are 
slightly different for the Pre-Capture trajectory. It should be noted that the ratio 40:43 and 27:29 are 
very close, both are nearly 1:1 resonances, small differences become difficult to tell apart. The 
discrepancy between the results can be attributed to the more approximate nature of the Keplerian 
analysis. While the period of the asteroid stays nearly constant for a large part of its resonance 
cycle, the non-keplerian effects near the beginning and end of this cycle have an effect that causes 
the overall resonance cycle to be slightly different. Therefore, while Resonance Method 1 may be 
more time consuming, it is the preferred method for computing more accurate resonances.

As mentioned before, estimating the Jacobi constant of a real physical object will be largely 
affected by the choice of method for converting the trajectory into the ideal CRTBP frame. It 
becomes important to have a good estimate of the Jacobi constant when discussing the interaction 
between libration orbit manifolds and the trajectory. Every periodic orbit in the ideal CRTBP has a 
specific Jacobi constant and as such one should choose orbits that match the Jacobi constant of the 
asteroid. We chose to approximate the Jacobi constant of the asteroid at an appropriate reference 
point for studying its behavior. More specifically, Conversion Method 2 was used as explained 
previously and the reference point was chosen to be at the crossing of the L1 plane for the Pre-
Capture Phase and at the crossing the L2 plane for the Post-Capture Phase. These reference points 
are indicated in Figure 10(a) while the Jacobi constant variation during the whole resonance cycle 
is shown in Figure 10(b). The planes through the Lagrange points are defined by the plane passing
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Figure 9. Osculating semimajor axis of Asteroid 2006 RH120 for the period 1950-
2050. Resonance Method 2 was used to estimate period resonance ratios. The data
shows multiple encounters and resonance transitions.

through the Lagrange point that is normal to the vector from the Sun to the Lagrange point. The
position of the Lagrange points were obtained from JPL Ephemeris DE431 (as objects “391” and
“392”).12 The Jacobi constants were estimated to be

C�
pre � 3.000228226120707 (1)

C�
post � 3.000425683288712 (2)

We realize the estimates cannot be accurate to 15 decimal places, but we have included the full value 
we used for finding orbits and surfaces in case anyone would like to reproduce some of our work.

If the time span under consideration is expanded to the full range provided for the object within 
the DE431 Ephemeris, 1950-2050, the Jacobi constant and semimajor axis both exhibit signs of 
repeated Earth encounters as seen in Figure 10(c) and Figure 9. Resonance Method 2 allows us to 
quickly approximate the resonances between each Earth encounter and are shown in Figure 9. The 
available data shows a trend of an increasing semimajor axis by repeated Earth encounters, with 
the most significant change occurring during the Temporary Capture. This behavior for an increas-
ing semimajor axis is typical for Solar System dynamics. What is happening is that the invariant 
manifolds of the resonant orbits in the CRTBP intersect, thus allowing for natural transfers of the 
asteroid between each resonance set. This is a basic transport mechanism of the Interplanetary 
Superhighway. This can be compared to the behavior of the Jupiter Family of short period comets 
such as Oterma.1 Further work is required to find the specific resonant orbits in the CRTBP and an-
alyze their manifolds for heteroclinic connections. However, due to the large time periods involved, 
such an analysis in the ideal system may not have much application to the real physical system. 
Furthermore, the large time span between encounters allows for buildup of small perturbations and 
model inaccuracies.
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(a) (b) (c)

Figure 10. Estimated Jacobi constant of Asteroid 2006 RH120. Pre- (purple) and
Post-Capture (black) phases used Conversion Method 2 with units chosen at their
respective reference points. The Temporary Capture Phase (red) used Conversion
Method 1. (a) Near TC with reference points. (b) Showing 1 full resonance cycle
on either side of TC. (c) Extended time showing several resonances 1950-2050. The
dashed lines indicate Jacobi constant for the Lagrange points. Values under the upper
black boundary indicate an open Neck Region near Earth, while values under the
lower black boundary indicate when all motion in the plane is allowed.

EARTH APPROACH THROUGH L1 MANIFOLDS

According to our theory, the asteroid approaches the Earth via the stable manifold of orbits 
around L1. We computed 4 periodic orbits around L1 and their invariant manifolds at the reference 
Jacobi constant of the Pre-Capture asteroid trajectory: a Planar Lyapunov orbit, a Vertical Lyapunov 
orbits, a northern halo orbit, and a southern halo orbit. We used a differential corrections algorithm 
which constrained the Jacobi constant to find these periodic orbits.15 We found that the asteroid  
following most closely the stable manifold of a Northern Halo Orbit around L1 shown in Figure 11.

EARTH DEPARTURE THROUGH L2 MANIFOLDS

A similar analysis was performed on the escaping trajectory and orbits around L2. In this case the 
unstable manifolds of L2 periodic orbits were used to compare with the departing asteroid 
trajectory. For the reference Jacobi constant of the asteroid’s Post-Capture Phase, 3 periodic orbits 
were found: a Planar Lyapunov orbit, a Vertical Lyapunov orbits, and a southern halo orbit. For the 
Post-Capture Phase, we found the southern halo orbit and its manifolds around L2 to provide the 
best fit with the departing asteroid trajectory. The halo orbit and its unstable manifold are shown in 
Figure 12. Visual inspection of the first two plots shows the asteroid closely following the surface of 
the unstable manifold as seen in Figure 12(b) and (c).

EXAMPLE OF COMPLEX LUNAR INTERACTIONS WITH ASTEROID-LIKE TRAJEC-
TORIES

Figure 13 shows a small portion of the unstable manifold (green curves) of the Genesis halo orbit 
(magenta orbit on the left) in the CRTBP rotating frame demonstrates the complex interactions with 
the Moon (in the gray orbit) and the Earth. Moving approximately from left to right, we see a Lunar 
Flyby has torn the manifold into two pieces. One piece of manifold resulted in orbits captured 
around the Moon like the Hiten trajectory. The other piece of the manifold resulted in an Earth 
Flyby where some of them became captured by the Earth (temporarily), others flyby the Earth once
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(c) (d)

Figure 11. (a) The stable manifold (green) of a Northern Halo Orbit at L1 attracting 
the asteroid (black) to approach Earth. The orange surface is Forbidden Region 
at the Pre-Capture energy. (b) Near Earth close-up. (c) A single trajectory on the 
manifold (green) selected for its similarity to the asteroid trajectory (black). (d) A 
close up view of the selected manifold trajectory (green), the Halo Orbit (blue) and 
asteroid trajectory (black). [NON] indicates nondimensional units.

and then escape via L2 into a Spitzer-like Earth Trailer Orbit. In particular, one of the trajectories 
of the unstable manifold makes a wide excursion to L2 and then impacts the Earth at the Utah Test 
and Training Range, sometime before 9 AM in September. This is the Genesis return trajectory to 
the Earth. Similarly, Near Earth Asteroids can approach the Earth from far away via the stable 
manifold of a halo orbit at L1 and then follow its unstable manifold into the Neck Region around the 
Earth-Moon where this complex range of motions are possible. What it tells us is that the asteroid 
Minimoon can be captured around the Moon, or Earth, flyby the Earth and escape via L2, or in the 
worst case, it may impact the Earth like the Genesis spacecraft. The analysis of the complex 
trajectory of Asteroid 2006 RH120 during its year-long capture phase requires the analysis of the
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Figure 12. (a) The unstable manifold (orange) of a Southern Halo Orbit at L2 guid-
ing the asteroid (black) away from Earth with the plot of the estimated Post-Capture 
Forbidden Region (yellow). (b) Near Earth close-up. (c) A single trajectory on the un-
stable manifold (orange) selected for its similarity to the asteroid trajectory (black).
(d) A close up view of the selected manifold trajectory (orange), the Halo Orbit (blue)
and asteroid trajectory (black). [NON] indicates nondimensional units.

orbital motions near the Moon separately from the motions near the Earth. The invariant manifolds 
of some Lunar L2 orbit are interacting with the invariant manifolds of the periodic orbits around 
the Sun-Earth L1 and L2 described earlier. The interaction with the Moon during the Temporary 
Capture Phase reduced the energy of the asteroid (raising its Jacobi constant) when it escaped the 
Earth via L2. A detailed analysis of this work will be described in the next paper.
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Figure 14. Distance between Asteroid 2006 RH120 and the Moon during Temporary
Capture. The RSOI is the radius of the Lunar Sphere of Influence.
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APPENDIX A: FRAME CONVERSION

Conversion Method 1: Variable Length and Time Units

The conversion method assumes the trajectory to be converted is an ephemeris state in the Ecliptic
J2000 coordinate system relative to the larger primary body. In this case, the length unit is the
instantaneous distance between the primaries and the time unit is such that the instantaneous angular
velocity of the primaries motion is 1. The conversion method uses the following steps for each
dimensional time, tD:

1.) Use the ephemeris to determine the position, ~R, and velocity, ~V of the smaller primary relative
to the larger primary in the ecliptic J2000 coordinate frame.

2.) Set length unit.
LU � |~R|

3.) Compute the current angular velocity vector of the primaries’ motion.

~ω �
~R
� ~V
LU2

4.) Set time and velocity units.
a) TU � 1

|~ω|

b) V U � LU
TU
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5.) Select the 1st rotating frame axis as a unit vector along ~R.
ê1 �

~R
|~R|

6.) Select the 3rd rotating frame axis as a unit vector along ~ω.
ê3 �

~ω
|~ω|

7.) Compute the final rotating axis to complete the right handed triad.
ê2 � ê3

�
ê1

8.) Assemble the rotation matrix with each unit vector on a row.

Q �

�
�
ê1
ê2
ê3

�
�

9.) Rotate the position vector into the rotating frame.
~rD � Q~rID, where ~rID is the position of the object in the inertial frame and dimensional units
and ~rD is the position in the rotating frame and dimensional units.

10.) Rotate the velocity vector into the rotating frame and subtract the velocity of the frame
~vD � Q~vID � ~ω

�
~rID, where ~vID is the velocity of the object in the inertial frame and dimen-

sional units and ~vD is the velocity in the rotating frame and dimensional units.

11.) Convert to nondimensional units.
~r � ~rD

LU

~v � ~vD
V U , where ~r and ~v are the position and velocity in the rotating frame and nondimensional

units.
t �

tD�tD,0

TU , where tD,0 is the initial time in dimensional units. This simply ensures that the
nondimensional time starts at zero.

12.) Adjust position vector origin to the primaries’ barycenter.

~r � ~r �

�
�
µ
0
0

�
�

Conversion Method 2: Fixed Length and Time Units

The conversion method assumes the trajectory to be converted is an ephemeris state in the ecliptic
J2000 coordinate system relative to the larger primary. In this case, the length unit is selected to
be the distance between the primaries at a selected reference time while the time unit is selected
such that the angular velocity of the primaries’ motion is unity at the selected reference time. One
first selects the reference time tD,ref and determines the appropriate length and time units. The
ephemeris is used to determine the position, ~R� � ~RptD,ref q, and velocity, ~V � � ~V ptD,ref q, of the
smaller primary relative to the larger primary in the ecliptic J2000 coordinate frame at this reference
time. The units are then chosen as
LU � |~R�|

~ω� �
~R�
� ~V �

LU2

TU � 1
|~ω�|

V U � LU
TU

The conversion method then uses the following steps for each dimensional time, tD:
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1.) Use the ephemeris to determine the position, ~R, and velocity, ~V of the smaller primary relative
to the larger primary in the ecliptic J2000 coordinate frame.

2.) Select the 1st rotating frame axis as a unit vector along ~R.
ê1 �

~R
|~R|

3.) Select the 3rd rotating frame axis as a unit vector along ~ω.
ê3 �

~ω
|~ω|

4.) Compute the final rotating axis to complete the right handed triad.
ê2 � ê3

�
ê1

5.) Assemble the rotation matrix with each unit vector on a row.

Q �

�
�
ê1
ê2
ê3

�
�

6.) Rotate the position vector into the rotating frame.
~rD � Q~rID, where ~rID is the position of the object in the inertial frame and dimensional units
and ~rD is the position in the rotating frame and dimensional units.

7.) Rotate the velocity vector into the rotating frame and subtract the velocity of the frame
~vD � Q~vID � ~ω

�
~rID, where ~vID is the velocity of the object in the inertial frame and dimen-

sional units and ~vD is the velocity in the rotating frame and dimensional units.

8.) Convert to nondimensional units.
~r � ~rD

LU

~v � ~vD
V U , where ~r and ~v are the position and velocity in the rotating frame and nondimensional

units.
t �

tD�tD,0

TU , where tD,0 is the initial time in dimensional units. This simply ensures that the
nondimensional time starts at zero.

9.) Adjust position vector origin to the primaries’ barycenter.

~r � ~r �

�
�
µ
0
0

�
�
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