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1 EXECUTIVE SUMMARY

This report defines well-accepted notions of verification, validation, and uncertainty quan-
tification (VVUQ), and places them in the context of retrievals of Earth science data. Un-
certainty quantification (UQ) is the process of characterizing the uncertainty of a measure-
ment system relative to the true, physical quantity it measures. UQ is needed when mea-
surements are used for scientific inference, assimilated into models with other data, and
used for decision-making and risk analysis. Additionally, UQ can affect formulation of new
measurement opportunties.

Many measurements come with associated measures of standard error or bias, but these
uncertainty measures are often less accurate than they can be. One reason is the opera-
tional need to assume crisp values for many parameters that are in fact uncertain, as well as
thefailure of certaintechnical assumptions that are needed by operational error-estimation
approaches. UQ provides a way to study which assumptions fail to hold, and a tool to im-
prove the measurement. We describe a particular UQ setup that has been successful for
OCO-2, and is applicable to many Earth science retrievals.

Besides our own work in UQ, the basis of this report is discussion from a JPL workshop
on UQ that was attended by about 25 practitioners, and subsequent interviews with re-
trieval scientists. We suggest the following improvements to JPL work practices, with the
objective of raising the level of JPL UQ practices to the “state of the practice” attained by
leading efforts elsewhere.

RP-1 [Collaboration] Develop an engagement process that identifies Laboratory needs in
UQ and parcels out research tasks to academics, postdoctoral associates, graduate
students, and summer students. Engagement would be coordinated by the program
office, mission scientists, and UQ points of contact in the line. A research topic list in
sec. 7 supplies examples.

RP-2 [Collaboration] Develop more robust connections between scientists, retrieval algo-
rithm developers, and line UQ specialists. The core objective is to connect domain
scientists to UQ technologists rather than to make scientists experts in UQ.

RP-3 [Formulation] Having an articulated planfor UQ, as well as for conventional V&V, should
be a requirement for new mission proposals. Define a scale of UQ maturity in the for-
mulation context to accommodate varying needs and infrastructure readiness. Ex-
ploit existing forward simulators, OSSE frameworks, and model runs, with modifica-
tions as needed. Develop proposal scaffolding for UQ. (sec. 6.3)

RP-4 [SDS Design] Explore UQ requirements that impact science data system (SDS) design
and implementation. Specific topics include technologies for incorporation of uncer-
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tainties throughout data pipelines, establishing standards for reporting uncertainties,
and developing extensions for spatial/temporal covariances. (sec. 3.4,5.2, 6.1)

RP-5 [Implementation] Develop a unified infrastructure for systematic UQ that can be ap-
pliedin the production stream, across different missions or types of retrievals. (sec. 5)

2 INTRODUCTION

Remote sensing uses space or aircraft measurements to find estimates of quantities of in-
terest (QOI) for later use by scientists, Earth system modelers, and decision-makers. As the
field has matured from reporting specific measured values to solving the inverse problems
relating measured values to the desired physical variables, associating estimates with an
uncertainty has become critical. In the context of retrievals of terrestrial state variables,
we can distinguish three use cases that drive the need for uncertainties. Scientists inter-
preting measurements need uncertainties to pose falsifible tests of scientific hypotheses.
Earth system modelers need uncertainties to combine measurements; for instance, when
measurements are assimilated into state-based models. Finally, decision-makers need un-
certainties to understand the likelihood of various outcomes. This report addresses these
issues by proposing approaches for quantifying the uncertainty of existing measurement
systems. Besides this, the tools used to compute uncertainties of given data products are
also useful elsewhereinthe missionlife cycle. Forinstance, in formulating new missions, the
same approaches that are used to assess measurement uncertainty can identify whether a
new measurement technique has enough accuracy to meet mission goals. The error bud-
gets and measurement biases that emerge from uncertainty assessment can also point out
opportunities for improved measurements.

2.1 \Verification, validation, and prediction

Recovery of uncertainties in complex retrievals is challenging. In standard remote-sensing
terminology, the uncertainties of Level 1 data may be assigned directly using known detec-
tor characteristics, but Level 2 data typically result from inversions applied to the sensing
chain. Uncertainties in the original data will be magnified by the retrieval algorithm, and
further increased due to use of ancillary data which may itself have attached or assigned
uncertainties. The formalism shown in Figure 1 is helpful in decomposing the elements of
this problem [NRC12]. An actually-existing physical system — such as the effect of atmo-
spheric composition on sensor radiances — is represented by a mathematical model. This
model is abstract, and can be thought of as a set of definitions and equations in a textbook.
In turn, the equations of the mathematical model are realized by a computational model run-
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FIGURE 1: Relationships between models and the verification, validation, and prediction pro-
cesses.

ning in a digital computer, with the intent that the computational model shadows the true,
physical system under the conditions of interest.

Several processes, also shown, help ensure this intent is realized. Verification is the pro-
cess of ensuring that the computational model faithfully implements the equations of the
mathematical model. This is typically a numerical analysis problem that can be addressed
over a broad span of realizations of the physical system without close reference to the par-
ticular problem at hand. In the retrieval setting, this could correspond to ensuring that ra-
diative transfer codes are numerically accurate as forward models. Validation is the process
of conducting experiments to ensure that the computational model is an accurate model
of the physical system. Validation experiments are performed under known conditions so
that ground truth data are available. Prediction is the process of using the computational
model to infer the state of the physical system under unknown conditions. In the retrieval
setting, validation might be done by making observations near an in situ sensor, and com-
paring the retrieved value with this ground truth. On the other hand, prediction refers to
normal instrument operations, away from the controlled environment of validation experi-
ments. Characterization of measurement uncertainty for prediction is the chief concern of
this report.

2.2 Uncertainty quantification

Implicit in the notions of validation and prediction is that some measure exists of an ac-
ceptable discrepancy between the physical system and the computational model, and this is
where uncertainty quantification (UQ) enters: UQ is the process of characterizing the uncer-
tainty of ameasurement system relative to the true, physical quantity it measures. Figure 2
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FIGURE 2: Validation, prediction, and uncertainty quantification, with figures of merit for a QOI.

recasts the above problem to highlight UQ of a QOIl shown at right. Again, the mathemat-
ical model abstractly represents the true, physical system, and the computational model
implements the math-model equations in computer calculations that have been verified.
Validation experiments measure the degree to which the computational model reflects the
true, physical system, especially for the most important QOls. In a validation experiment,
a given QOI can be extracted from the physical system and compared to one deduced from
the computational model: theresults from UQ inform this comparison. And furthermore, at
prediction time, when an estimate of the QOl is produced operationally without a ground-
truth check, the error assessment from UQ is used to inform downstream users about the
accuracy of the measurement. Accuracy can be characterized in terms of bias, shown as an
offset of the model from the truth, and standard error, shown as the width of the error bars
around the estimated QOlI.

Figure 3 shows how these concepts manifest in the retrieval setting. An unobserved
true state of nature X passesthrough a possibly-nonlinear sensing mechanism F', controlled
by parameters B. The instrument observes this signature through noise ¢, yielding an ob-
servation Y, corresponding to Level 1 data in sensor units. This observation is then pro-
cessed by a retrieval algorithm R, controlled by parameters B, to produce a state estimate
X, corresponding to a Level 2 or higher data product. The parameters may themselves be
a result of an estimation procedure that relies on ancillary data with its own error charac-
teristics. In this context, the computational model encompasses the chain above from X
to Y, optionally including the retrieval step. A validation experiment would correspond to
comparing the state estimate X to the true state X, in cases where X is accessible.

This decomposition illustrates the many ways error enters the sensing chain, including:

e Incompleteness of the true state X;

e Limitations of the forward model F or its parameters B in describing the mapping of
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the natural state to an observation;
e The stochastic instrument error ¢;
e Inaccurate values for the ancillary data B relative to the true values B;

e Degeneraciesintheretrieval algorithm R when given noisy data and inaccurate mod-
els.

Aswith all models of complex systems, it is not obvious which sources of error are dominant,
meaning that heritage and experience are important in bounding the scope and fidelity of
the model components. Once this has been done, validation experiments provide a way to
check the effectiveness of the overall measurement system.

This list of error mechanisms expands upon the terse cloud reading “errors, noise” in
Figure 2. Both hint that there are two broad categories of errors: epistemic (due to limita-
tions of knowledge, etymologically descended from the same roots as ‘epistemology’) and
aleatory (random in nature, descended from terms used for dice). Aleatory errors are con-
ceptually simpler — pertaining to things like detector noise or inaccurate parameter values
— whereas epistemic errors may not always be well-modeled by probability calculus. For
instance, two authorities may differ on the direction of an effect caused by some ancillary
variable. The direction is in fact one way or the other, but which is not known. In this case,
an average, or a weighting as supplied by conventional probability, is not meaningful. How-
ever, such cases of pure epistemic conflict are rare, and a simulation environment that is
capable of handling uncertainties due to aleatory errors is often also capable of simulating
epistemic effects. For these reasons, as well as for its tractability and analytic power, we
use conventional mathematical probability throughout to describe errors and uncertainty.

2.3 Inclusive error analysis

The significance of UQ for the retrieval problems encountered by JPL is that it offers a way
tofind all-inclusive error bars around measurements, in away that extends existing verifica-
tion and validation processes. We attempt toillustrate, in a general setting, the gap inerror

True Forward Noiseless . . State
state function observation Instrument Observation Retrieval estimate
X —| F(-,B) y (1) +e Y R(\B)F—— X

FIGURE 3: A simplified remote sensing observing system. A state of nature X passes through a
forward model F, is contaminated by instrument error ¢, and is then inverted into a state estimate

~

X.
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assessment that UQ attempts to close. The observing system uses Y to learn about a QOI
X, and the general way to capture this information is the posterior distribution P(X |Y'), as
shown on the right of Figure 2. If we fix an observation Y, this distribution, being a function
of X, is too unwieldy — it gives the relative probability of any value of X — so we typically
summarize it with the mean, E[X | Y], and the variance, var(X | Y'). We could take X to be
the former, and the uncertainty to be the latter, and the retrieval problem would be solved.
Indeed, well-known results in estimation theory show that these particular choices have
many desirable properties.

But, referring to Figure 3, we notice that the retrieval algorithm also uses the ancillary
parameters B — which are not exactly known. So, what we have actually computed is not
P(X |Y),but P(X |Y,B). In particular, our error bar is seen to be var(X | Y, B), and it
assumes that B is known exactly. The correct way to adjust the posterior for this is to inte-
grate out against the unknown B:

P(X|Y)_/BP(X]Y,B)P(B|Y) | (1)

This averages the posterior, P(X |Y, B), over all possible values for the unknown parameter
B. Thisintegral, though not tractable operationally, always has the effect of broadening the
posterior, thereby widening the error bars to account for the extra uncertainty of not know-
ing B. It could also shift the posterior, indicating a bias. Similar observations hold for the
other sources of uncertainty, such as inaccuracies in the forward function F and all other
parameter settings within the retrieval algorithm. Each injects its own error, broadening
the posterior density. The high-level goal of UQ is thus to account for the error-increasing
effects of all hidden assumptions, which can be seen as implicit conditioning. We will revisit
this observation below as we consider specific estimation approaches.

3 APPROACHES TO RETRIEVAL QUALITY ASSESSMENT

Every mission is unique and tailors an approach to its own retrieval problem, taking in to
account data characteristics, forward model tractability, and computational constraints.
Nevertheless, there are unifying principles for all retrievals. Depending on the coarse-level
approach adopted, UQ may be formulated in different ways. In this section, we survey dif-
ferent approaches to estimation and to quality assessment, and discuss the capabilities of
these approaches to accommodate UQ and the limitations of current practices.

3.1 Non-probabilistic quality indication

Quality flags are often used to characterize error conditions with retrieved data. We are
exclusively interested in probabilistic mechanisms in what follows, but some remarks onthe
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well-known limitations of quality flags may illustrate tradeoffs among different approaches
for error characterization. Quality flags are widely unused for several reasons in ways that
have analogies to the UQ problem.

First, they are not readily interpretable to users. That is, a flag may be set, but outside
of an instrument team, the significance of the problem that caused the flag to be set is of-
ten not known. Is the problem critical? If a particular quality flag is rarely set, how can |
discover whether | need to pay attention to it? The absence of an agreed-upon significance
level makes it difficult for downstream users to make intelligent decisions about flagged
data. Second, there are quickly too many flags to propagate forward, or to summarize with
error conditions that may be functions of multiple flags (“the timing jitter flag is only rele-
vant in nadir pointing mode”). The underlying problem is that there is no calculus to allow
meaningful combination of quality bits. These issues (no map between quality indicator and
real-world consequence; combinatorial explosion of error conditions) illustrate the power
of using probabilistic mechanisms for error characterization where appropriate.

3.2 Maximum likelihood and optimal estimation

In the retrieval setting of Figure 3, an observed Y is used to find an estimate X of the true
QO X, in the presence of ancillary parameters B. Maximum likelihood (ML) and optimal
estimation (OE) offer solutions to this statistical estimation problem, as well as methods to
derive standard errors. Both approaches are used by JPL retrievals; for example, AIRS uses
ML, and TES, MLS, and OCO-2 use OE. Maximum-likelihood standard errors are typically
derived from either the expected or the observed Fisher information matrix, both of which
are related to the curvature of the likelihood function evaluated at the estimate [EH78,
WasO04, ch. 10]. For remote sensing (“nonlinear regression” in the statistics literature), this
curvature reduces to a product of “sensitivity matrices” composed of partial derivatives of
F [Smil4, sec. 7.3]. Subject to regularity conditions, these matrices can be related to the
standard error of X.

Optimal estimation standard errors are derived from the posterior distribution of X
given Y, P(X | Y), which is the product of the same likelihood function used by ML, and
aprior on X assumed by OE. The prior has the beneficial effect of regularizing the estimate
X [Rod00]. Subject to the correctness of the choice of prior distribution, the posterior stan-
dard error yields the error of X. The standard error is computed by combining a sensitivity
matrix of derivatives of I (as used by ML) with the prior uncertainty.

Both of these error estimation approaches have limitations. ML relies on a large-sample
assumption to extract the estimator standard error [Smi14, sec. 7.2.4], while OE requires an
accurate prior. Additionally, the assumption of Gaussian observational errors, which leads
to tractable quadratic optimization targets, may not be accurate. These assumptions are
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difficult to validatein practice. Another problemwith the error estimates produced directly
by ML and OE was posed in Section 2.3: the variance injected by ancillary parametersiis, in
general, not completely accounted for, because some or all of the ancillary parameters B are
regarded as fixed, while in practice they contain errors. Furthermore, the assumption of a
Gaussian prior on B by OE may be unrealistic for certain parameters. Finally, as mentioned,
ML and OE error analysis is typically linearized about the solution, ignoring higher-than-
linear terms [CWSM16].

Technical means exist to address many of these limitations, extending the basic ML and
OE approaches according to specific measurement needs. UQ provides amechanismto test
these modeling assumptions and serves as an outer control loop around the overall error
assessment.

3.3 Complete Bayesian retrievals

Markov chain Monte Carlo (MCMC) techniques allow computation of posterior densities
over all parameters, without requiring Gaussian assumptions, and without a linearized er-
ror analysis. The resulting posterior can also include the uncertainty contributed by the an-
cillary data B. Computational capacity limits have generally prohibited operational MCMC
computation of full posteriors for Earth science. Experimental, non-operational MCMC has
been used in ademonstration capacity for some retrievals in the setting laid out in Figure 3
[TKO1, HLLT04,WJYJ13,PM14,BHBM17].

On the other hand, JPL has used MCMC retrievals outside Earth science for the Cos-
mic Microwave Background spatial field, during the NASA/ESA Planck mission. The re-
trieved data allows samples to be drawn from the full posterior density, enabling powerful
capabilities. For instance, multi-parameter confidence sets recovered from the retrieved
datacanbeintersected with those from other measurements to resolve ambiguities [Pla16,
Fig. 15]. Furthermore, these other measurements can be used to perform joint retrieval of
concordance parameters, while maintaining the ability to compute confidence intervals on
the pooled result [Plal16, sec. 5.6]. In Earth science, this would correspond to forming a a
confidence-weighted combination of L2 or L3 data from two disparate instruments (with
reference to only the L2/L3 data), a capability that does not now exist.

Evidently, MCMC techniques are poised to make an influential contribution to remote
sensing retrievals, in the same way that they have become dominant in other complex es-
timation problems. (For a sense of the scope of the method, see [Dia09, sec. 6.4].) The key
technical element has been the development and implementation of tools for fast sampling
of high-dimensional posteriors (hundreds to thousands of dimensions). On the theory side,
some key innovations have been development of adaptive, gradient-based, and multi-chain
strategies for samplers. This new generation of samplers has shown great ability to solve
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high-dimensional inference problems. On the implementation side, there are now several
multi-purpose packages (e.g., Stan [CGH™ 17]) that allow easy experimentation and model
development with the above best-practice samplers.

These improved MCMC techniques are a powerful tool, but they are not a panacea for
solving the UQ problem. This is simply because it is not known, a priori, what effects B
should be included in the so-called “full” posterior P(X |Y") of (1). That is, MCMC gives the
freedom to depart from Gaussian assumptions and linearized analysis of error interactions
within the posterior. However, MCMC initself does not illuminate the issue of which error-
causing effects should be folded into B. This is where UQ enters: to provide a means of
determining experimentally which errors coming from ancillary data or algorithm settings
are worth accounting for in the final error analysis. That is, UQ is a mechanism to bound
the scope of the error-inducing effects to be included. Similarly, UQ is the process by which
the errors produced by any retrieval algorithm (be it MCMC or OE) are evaluated for cor-
rectness. This “outer loop” validating the advertised error estimates needs to be present
whatever the capabilities of the particular retrieval algorithm used.

3.4 Computational barriers to operational use

At present, off-line (nhon-operational) uncertainty assessments are generally used, and com-
putational cost is a key reason. For example, as just noted, MCMC retrievals largely re-
main a case-by-case experiment. The OSUE process, described below, is also not opera-
tional. Spatially-extended retrievals will exacerbate the computational problem by intro-
ducing more variables into the retrieval, which generally scales worse-than-linear in the
number of variables.

One interpretation of this is that we need to introduce computational resources into
the trade-space, and make decisions about whether it continues to be acceptable to make
simplifying assumptions that produce poorer retrievals at lower computational cost, versus
more accurate models and retrievals at higher cost. This is partly acomputationalissue, and
it has not been well-examined from an engineering or cost/benefit point of view. Systems
like HySDS (Hybrid-cloud Science Data System, [HMS*15]) provide the computational in-
frastructure to enable selected retrievals to be run in the cloud as needed.

4 AN APPROACH TO UNCERTAINTY QUANTIFICATION

We describe a generally-applicable approach to UQ for remote sensing retrievals called an
Observing System Uncertainty Experiment (OSUE). Ensemble or Monte Carlo approaches
are needed, in the light of the limitations listed above: the OE approach does not take un-
certainties beyond the Gaussian prior into account, although it is computationally tractable
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insofar as it applies. The full Bayesian retrieval takes more uncertainties into account, but
itis not tractable. See also Povey and Grainger [PG15, sec. 2.4].

An OSUE is similar in spirit to an Observing System Simulation Experiment (OSSE): it
uses a model-based simulation of Nature to produce ground truth, and then mimics the op-
eration of a sensing and data processing system to produce a state estimate that is com-
pared against the reference values. The approach we describe is consistent with interna-
tional standards for quantifying and reporting uncertainties on physical measurements; see
[TK94, Wor09, Wor08a], and compare especially [Wor08b, Wor11]. In this section, we first
introduce notation for observing systems, then provide an overview of the OSUE frame-
work, and close with a discussion of the infrastructure needed for implementation of OS-
UEs at JPL.

4.1 Remote sensing observing systems

Figure 4, top, shows a schematic diagram of a remote sensing observing system, which has
three components. Nature generates a true state vector X, and defines a mechanism I
for converting this true state to a (noiseless) radiance spectrum. Nature also generates a
vector of ancillary parameters, B, that influences the radiance but is not part of the state
vector. The second element of the observing system is an instrument that observes the ra-
diances )y = Fy(Xo, By), contaminated by additive measurement error, ¢, resulting in an
observation, Y;. Finally, a retrieval algorithm, Ry, which typically depends on side parame-
ters, finds an estimate, X, of the original state vector.

Nature’s true state, forward function, and noiseless radiance vector are unknown, but
scientific theory provides a priori constraints upon them. Remote sensing makes inferences
about the true state, either from the observations alone (for least squares retrievals) or by
explicitly combining them with prior knowledge (for OE retrievals, [Rod00]). To character-

State Forwgrd N0|§eless Instrument  Observation Retrieval S’Fate
function radiance estimate
Xo —{ Fo(+, Bo) Yo (1) +eo Yo Ro(-,...) Xo
Xsim — Fl('aBl) —— Vsim —— (‘)"‘esim Ysim R1(',,/,“‘2,B-’_>,...) — Xsim

FIGURE 4: An observing system (top) and OSUE simulation (below). A state vector is mapped
through a forward function, F', which depends on ancillary information B, generating a noiseless
radiance spectrum, ). The observing system sees ) plus noise e. The resulting observation is in-
verted by a retrieval algorithm, yielding an estimate of the true state vector.

UQ For Retrievals 10



ize the performance of this observing system, the quantities driving Figure 4 (X,, By, and
€o) can be modeled as draws from probability distributions. Typically, ¢, is taken as indepen-
dent of X, but some elements of B, may be dependent on X,,. Having specified the input
distributions, the boxed elements correspond to transformations of these inputs, linking
the whole collection of random variables, and in particular, X, and X,. The OSUE proceeds
from this idea.

4.2 Basis and implementation of OSUEs

The OSUE (Figure 4, bottom) is a simulation experiment that characterizes transformations
of a QOI through a processing chain that estimates that QOI. Since the QOI itself is un-
known, the OSUE uses synthetic examples represented by the random variable X, and
drawn from a representative distribution. As long as the synthetic examples are represen-
tative of the real world, and the transformations implemented in the OSUE are accurate
depictions of the real processing chain, the statistical properties of the retrieved estimates
Xam, relative to the synthetic truth, X, will mirror those of the actual retrievals X, rela-
tive to the QOI, X,.

Figure 5 highlights the parallel elements of the real observing system and its OSUE model.
The left side represents the real world, and the right side is the OSUE simulation. Process-
ing flows from top to bottom. The OSUE studies the relationship between a true QOI (X))
and its retrieved estimate (X,) via the relationship between synthetic QOls, X<, and their
retrieved estimates, X, The success of the OSUE depends how well the pdf( Xsim, Xsim)
matches that of pdf( Xy, XO), or at least how well the bias and variance of X, match those
of X,. The experiment will be successful if we ensure that the elements on the right side of
Figure 5 are each accurate representations of the corresponding elements on the left side.

We consider three types of retrieval algorithm: least squares/maximum likelihood, op-
timal estimation, and forward calculation. The first two are similar in that the retrieved
guantity minimizes a cost function, and is thereby found indirectly. MISR is an example
of a least-squares retrieval, and OCO-2 is an example of an optimal estimation retrieval.
Other retrievals (ECOSTRESS, AVIRIS-NG) are obtained by direct forward calculation of
physically-motivated relationships to retrieved, precursor quantities. The three types of
retrieval require slightly different versions of the OSUE — we illustrate by describing the
least squares OSUE below, and defer the other two approaches to Appendix A.

For the maximum likelihood (ML) retrieval, the OSUE model of Figure 4 applies directly,
since the retrieval output, X, directly estimates the QOI, X Figure 6, depicting the
ML OSUE, is therefore the same as the bottom row of Figure 4, except that 1) it indicates,
through the use of {-} notation, that the simulation experiment uses ensembles of realiza-
tions; and 2) it shows the comparison of the matched ensemble members of X, against
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True QOI Xo Xsim Synthetic QOI

l I

True . Modeled
forward function FO(XE’ Bo) £ (Xs'lm’ B1) forward function
Actual noiseless Y V. Modeled noiseless
radiance 0 sim radiance
Modeled
Meaztrjrrggnent €0 €sim measurement
> < error
Instrument v V.. Model of instrument
observable f 1”“ observable
Actual retrieval R R Model of retrieval
algorithm f f algorithm
Actual estimate e . Modeled estimate
of QOI 0 sim of synthetic QOI
Uncertainty pdf(XO,Xo) — pdf(Xsim,Xsim)
Bias bias(Xo, Xo) «— bias(Xsim, Xsim)
Variance var(Xg) «— var(Xgim)

FIGURE 5: OSUE parallel worlds. The left side represents the real world, while the right represents
the OSUE simulation, in which each element faithfully represents its parallel real-world element.
Arrows between the parallel tracks show correspondences that must be established by the OSUE
design. Correspondences between other elements then hold due to the construction of the exper-
iment.

Xgm to produce estimates of the bias and variance of X, for instance, the bias of the mea-
surement, bias(Xsim, Xsim), is estimated by the OSUE ensemble bias,

(2)

N
bias(Xsim, Xom) = - > X~ Xy

i=1
and likewise for the variance. As noted in sec. 3.2, if certain conditions are satisfied, then
standard limit theorems can provide uncertainties of these maximum likelihood retrieval
estimates. However, these conditions include linearization of the forward model about the
solution, perfect solution of the nonlinear least-squares problem, and a large-sample condi-
tion that is hard to satisfy. Finally, some parameters will be assumed as fixed operationally,
when in fact only imprecise values are known (sec. 2.3). Encapsulating the retrieval as done
in the OSUE allows assessing the impacts of all these factors.
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True Forward Noiseless Instru- Obser- . State
. . . Retrieval .
state function radiance ment vation estimate

{Xsim} — F(, By) — {ysim} — (+) + €sim — {Ysim} = Ri(s 1o, Boy o) = {Xsim}

Compare/
quantify

—

bias(Xsim, Xsim) var(Xgim)

FIGURE 6: OSUE model of a remote sensing observing system for maximum likelihood retrievals.
The ensemble of state estimate vectors is {Xsim}, and their true counterparts in the OSUE are
corresponding members of the ensemble, input {Xsim }

4.3 Relationship to observing system simulation experiments

Observing System Simulation Experiments (OSSEs; [MSE*10]) have long been used to un-
derstand how new data sources can improve forecast skill. OSSEs are starting to play are-
lated role in JPL mission formulation as a tool to demonstrate that instruments in formula-
tion will attain the goals expressed in a science traceability matrix (STM). The conventional
practice of using small datasets taken under controlled conditions to support traceability
is yielding to large-scale computational experiments. By making a quantitative, repeatable
connection between mission measurements and science goals, the OSSE can strengthen
formulation and enable principled, defensible trade-offs between sensing approach and
measurement quality. The OSUE method provides a computational tool to demonstrate
that the measurement is adequate, particularly with regard to error margins and sensitiv-
ity to environmental assumptions.

OSSE studies for formulation share infrastructure with OSUEs. Indeed, the infrastruc-
ture for the conversion of synthetic state vectors to radiances, the instrument model, and
application of the retrieval algorithm should be almost identical. The differences between
an OSSE and an OSUE are in the way that the synthetic truth is generated, and in how the
differences between the retrieved estimates and true states are evaluated.

In an OSSE, the synthetic true state is called a nature run, implying that it comes from
a deterministic model of the natural system. Typically, the nature run is computationally
expensive, and can only be performed a few times. Parameter settings for those runs are
perturbed purposefully, rather than being sampled from a distribution of possible settings.
The OSSE therefore is more like a sensitivity study than a randomized Monte Carlo study.
Another difference is that the nature run produces a spatial or spatio-temporal field, while
the OSUE above produces only individual realizations of the process. Additional research
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is needed to develop methods for simulating ensembles of statistical replicates of spatial
fields, with the proper spatially correlated error structures, from a handful of nature runs.

OSSE infrastructures, which almost always exist for missions and retrieval algorithms
in development, can provide the infrastructure needed for such a combined framework.
OSSEs will likely have solved the problem of sampling the synthetic true field to create syn-
thetic observed radiances more accurately than would a stand-alone OSUE set up without
the knowledge of instrument characteristics available to an OSSE team. The OSUE team
can bring principles of experimental design to determining which nature runs can be per-
formed, and potentially how to create additional replicates for the ensemble using statisti-
cal methods and emulators. On the evaluation side, the OSUE team can contribute multi-
variate metrics of agreement and hypothesis testing procedures to determine whether the
estimated ensemble of fields agrees with the synthetic true ensemble.

4.4 Strengths and weaknesses of OSUEs

The above OSUE setup has proved effective in UQ for JPL retrievals, and in particular, it has
produced many key results on system bias and error for the OE retrieval of OCO-2[HBC*17].
Some strengths that became apparent are the ability to re-use modules that probably al-
ready exist, most obviously, a forward simulator F' and a retrieval R, an instrument noise
model, and a notion of a nature model to produce X;,,. Gradients of F" are not needed by
the OSUE, except as R may already require them. The Monte Carlo formalism is easy to un-
derstand, very general in applicability, and the parallel construction of the OSUE (Figure 5)
allows for experimental designs that mimic the way the system is used operationally. One
weakness is the computational demands of the Monte Carlo simulations needed for en-
semble construction, which may in effect require afast, reduced-complexity forward model
(section 5.4). Another issue is the lack of analytical insight provided by the numerical sim-
ulation, which can be partly addressed by comparison with linearized analysis or tailored
summary diagnostics of the simulation results.

5 TOOLS AND INFRASTRUCTURE

Inthis section we discuss some aspects of the implementation of stand-alone OSUEs. These
may be regarded as required tools, and their associated infrastructures, for performing un-
certainty quantification for geophysical retrievals.

UQ For Retrievals 14



5.1 Sampling the true state

The true distribution of the QOl is unknown, but it is required by the OSUE simulation. The
entire OSUE is driven by sampling from the distribution of X, so we require that it be
a good representation of the marginal distribution of X, (see Figure 5), particularly with
regard to complete sampling of all observing conditions.

To this end, define a template set as any collection of state vectors thought to be repre-
sentative of the distribution of the QOI, X, under circumstances of interest (e.g., “the area
off the U.S. Pacific coast during cloudy days in 2016”). The template set can be taken from
the output of a physical model, remote sensing or in situ observations, or created by a do-
main expert. The key is that, if the results of the OSUE are to reflect the performance of the
real observing system, the template set must be plausible in type and relative proportion of
types. Figure 7 shows a template set derived from a partitioning of OCO-2 state vectors.

To obtain an ensemble of X§;, values, note that using the template set itself will lead to
ensembles with many repeated values of the same state. Gaussian noise is typically added
to the sampled values to broaden the ensemble, but then the covariance matrix of the per-
turbation must be chosen. Small covariances lead to ensembles concentrated around the
templates, while large covariances will cause the centers of mass to be diminished. Gaus-
sian mixture models can provide a flexible way to fit such a distribution to a collection of
ensemble values. In fact, re-weighted or non-independent sampling of X, can produce
much faster convergence of ensemble averages such as eq. (2). Such techniques include
importance sampling, antithetic variables, and quasi Monte Carlo [Owe13, ch. 8-10].

| 0CO-2: Soundings, | Selected Clusters in Map Coordinates
Clusters, and Templates - e S e e s S g —
P " _:‘.?, ’ =

20

10

=10

FIGURE 7: Sampling of OCO soundings: Left panel, two-dimensional projection of 200K sound-
ings (tiny points), partitioned into 25 similar clusters (color-coded), each cluster spanned by repre-
sentative templates (gray dots). Right panel, projection of selected clusters into map coordinates,
revealing some cluster interpretations (green: clouds; red, orange: desert). Result: Lukas Man-
drake.
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5.2 Simulation and downscaling of spatial fields

In many applications, footprint-by-footprint standard errors are not enough to character-
ize measurement uncertainties for later use: error covariances are required. For instance,
error covariances are required to compute the error of spatial differences, such as spatial
gradients in CO, fields as needed for flux modeling, or to compute the standard error of
any spatial average. A similar problem can occur in the temporal domain, such as with daily
evapotranspiration (ET) cycles as retrieved by ECOSTRESS. Any function of the entire daily
ET cycle, such as total daily ET, will have standard error that depends on the correlation of
multiple measurements. Error sources like instrument noise will tend to average out over
the daily cycle, but systematic errors will reinforce. A full-day UQ will be able to assess this,
provided that the temporal covariance structure of the systematic factors is correct. For
more on application motivations for such error covariances, see section 6.1; for definite-
ness, we focus below on the spatial setting.

Estimating spatial covariances requires not just an ensemble of state vectors, but an en-
semble of geophysical fields that contain state vectors at all locations. Just as the state vec-
tors must be realistic, the spatial relationships among state vectors in the field must be re-
alistic to achieve accurate uncertainty assessment. In particular, it is not enough to simply
add independent noise to the output of a nature run because independent noise does not
reflect the spatial covariance. A single nature run is not sufficient to estimate covariance
structure without gross simplifying assumptions such as stationarity or isotropy. An en-
semble of nature runs would be sufficient, but these are typically expensive to obtain and
the perturbations to nature run parameters may be purposeful rather than random.

One path forward is to simulate statistical replicates of one (or a few) model-generated
spatial fields using spectral methods (Fourier or wavelet transforms). In this approach, the
spatial field of interest is transformed into the spectral domain, and spectral coefficients
are partitioned into those associated with scales representing signals and those represent-
ing noise. Random perturbations are made to the noise coefficients, and the transform is
inverted to yield a new realization of the field [MKBN17]. Research is needed to determine
the proper choice of basis, how to set the threshold for defining noise components, and how
to generate appropriate random perturbations. Nature runs tend to be at coarser resolu-
tion than the footprints of remote sensing observations, but for OSUE purposes, they must
be at acomparable resolution. It may be possible to use the spectral approach to simultane-
ously perturb noise-scale basis function coefficients and downscale the resulting perturbed
field.
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5.3 Accounting for forward model discrepancy

The forward models used in the retrieval embody the best available knowledge about the
system. Of course, the models remain imperfect, and we should include uncertainty due to
this model discrepancy in the uncertainty estimates. If the best available physical models are
already used in the retrievals, then what other models can be used in the OSUE? We discuss
three ways to address this problem.

A simple way to deal with model discrepancy is to add an error component to the ob-
served radiances [BO14, Smil4, ch. 12]. As shown in Figure 8, F; and B, generate radi-
ances, and are used in the retrieval R,. But, a perturbation § is added to Y, compensating
for the assumption that the forward model and its parameters are identical to the forward
function and its parameters. The perturbation may be Gaussian with a given mean ys and
covariance ;. This simplifies the problem from specifying the mechanistic differences be-
tween the forward function and the forward model, to specifying the numerical impact of
that difference on the radiances. Information about 115 and X5 can be gleaned by examining
the differences between actual observed radiances (Y} in Figure 5) and radiances computed
by the retrieval algorithm during processing (F} (XO, By) inFigure 5).

A related way to deal with model discrepancy is to use the fact that the forward model
and the forward model parameters are intimately related, and distinguishing their separate
effects may not be possible. That is, consider two forward functions and their associated
forward function parameters such that F (X, B,) = F»(X, Bs). No one can say which for-
ward model is “correct” or which forward model parameters are “correct”. We can exploit
this lack of identifiability [Smi14] and adopt a single functional form for the forward model
and attribute any radiance differences to parameter differences. This recasts the model dis-
crepancy problem as a numerical one, rather than a more abstract comparison of different
physics or software implementations.

Finally,in some cases there may exist a progression of forward models ranging from very

True Forward Noiseless . State
) X Instrument Retrieval .
state function radiance estimate
Xsim — Fi(-, By) YVsim (-) + €sim Ry(Fy, By,-,...) —— Xsim
Observation Ysim

|

() + o ¥

Model
Discrepancy

FIGURE 8: Accounting for model discrepancy by adding a perturbation to the radiance vector.
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realistic to very simple. One can use the more exact models to simulate nature, and the less
exact modelsintheretrieval. For example, if Fj is nature’s true forward function, and 7 and
F; are progressively cruder forward models, then one might use Fi(-, B;) as the forward
function in Figure 4 and Fy(-, By) in the retrieval. If the relationship between F; and F3 is
representative of that between F, and I, then the experiment would indicate how much
uncertainty is added by this model discrepancy.

5.4 Surrogate models and emulators

The computational complexity of the retrieval algorithm may preclude using it in a Monte
Carlo experiment, and a simplified version must be used instead. In Figure 5, this possibility
is admitted by denoting the actual retrieval algorithm as R, and the OSUE retrieval algo-
rithm as R;. A simplified version of a physical model that can be used in UQ studies is often
called a surrogate model [Smi14, ch. 13].

For example, a radiative transfer model that accounts for multiple scattering, call it F7,
is relatively slow but more physically accurate than one that does not. A surrogate forward
model, say F5, that implements only single scattering can be embedded in the OSUE re-
trieval, R,. This will enable a larger ensemble of radiance vectors to be processed, but it in-
troduces an unwanted source of uncertainty due to the mismatch between Ry(F1,...) and
Ry (Fy,...). The additional uncertainty must be quantified, and the final determination of
the uncertainty in the retrieved quantities relative to their respective QOls must be ad-
justed. A standard solution is to use tools from Analysis of Variance to quantify the impact
of different “treatments” on an outcome variable. Here, the outcome is bias and/or vari-
ance, and the treatment is the choice of forward model used in the retrieval. This requires
separate, off-line experiments to quantify the contribution to total uncertainty of using a
surrogate retrieval rather than the actual retrieval.

If the surrogate model approach is still too slow, an alternative is to use an emulator, that
is, a function approximator (selected by statistical or machine learning methods) that pre-
dicts the output of a physical model as a function of its inputs [Smi14, ch. 13]. Emulators
are trained on judiciously selected sets of inputs and corresponding outputs of the physical
model (or retrieval). Then, predictions are offered for new inputs of interest. Some em-
ulators (e.g., Gaussian process emulators) have the advantage of automatically producing
uncertainty estimates for the prediction, and these can be incorporated into final estimates
of bias and variance of the observing system.
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6 WORKSHOP, DISCUSSION, AND NEEDS

Table 1 categorizes selected retrievals in operation for JPL measurements as being based
onregression, maximume-likelihood (ML), or optimal estimation (OE). It includes microwave,
visible/UV/IR, radar, and gravimetric examples. In general, regression-based retrievals di-
rectly invert a known physical relationship between the sensed quantity and the desired
one. Note that maximum-likelihood in the Gaussian error context reduces to nonlinear
least squares estimation, and OE can be viewed as the same least squares estimation but
regularized by a prior.

The overview and methodology here were presented to a group of JPL Earth scientists
at a “Workshop on VVUQ for Retrievals,” held March 27, 2017. About ten of the approxi-
mately 25 participants (attendees are listed in the Appendix) offered comments, which are
broken down thematically as follows. Where possible, the commenter has been noted.

6.1 Correlated errors, including spatial correlations

Several present (Worden, Landerer, Livesey) raised the question of computation of corre-
lationsinerrorsinthe estimates fromretrievals. There are two issues: modeling correlated
errors in retrieval algorithm inputs, and computing error correlations of multiple retrieved
outputs.

The latter received more attention because of its effect on assimilation. Indeed, some
current retrievals exhibit multi-variate correlation between separate QOls, and error cor-
relations across spatial extents (e.g., MLS). Such QOls with spatially-correlated errors,

X=X+e (3)

if assimilated into models as if errors are independent, will perturb the state estimate. For
example, in the setting where X has a prior mean 1 and covariance Ky, and X is a noisy
observation of X, then the minimum mean square error estimate (MMSE) of X is

Xmmse = o+ Kx(Kx + K)7'X . (4)

The reported standard errors are the diagonal entries of the covariance K, but the MMSE
state estimate depends on the entire matrix. The correlated errors € in (3) will be propa-
gated through (4) without being properly down-weighted. The effects of this problem have
been noted in CO2 flux inversion and gravimetric data assimilation.

A consequent question (Yadav) is finding technical means to compactly parameterize
spatial or temporal covariances. The reported standard errors, as above, are the diagonal
entries of the full error covariance K. For most applications, it is not feasible to report the
entire covariance. A middle ground could be to report low-rank corrections to a diagonal
covariance, but this has not been done operationally for retrievals.
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TABLE 1: Approaches Used for Selected Earth Science Retrievals

Mission Target Approach
TES O3 OE
MLS Trace gases OE
0OCO-2 CO,, fluorescence (SIF) OE
Cloudsat Cloud Water Content (CWC), OE

Cloud Ice Water Content (IWC))
AIRS H,O ML
GRACE Mass anomaly OE!
MAIA Particulates and trace gases OE
Ecostress Evapotranspiration via Regression

brightness temperature
AVIRIS-NG Surface reflectance Regression, OE?

1 The JPLRLOS5 version of the GRACE OE retrieval initially uses a temporally-
unlinked prior followed by a second, temporally-chained solution using the
first solution as a prior.

2 The AVIRIS-NG surface reflectance retrieval is ordinarily done by a ra-
diometric correction (regression), but OE approaches have recently been
tested.

6.2 Validation of standard errors

We define validation as the NRC report [NRC12] does: processes for determining biases
and standard errors where ground truth data is present. (A related but different question
is evaluation of stated standard errors in the more general “prediction” case, i.e., away from
ground truth data.) Multiple commenters (including Worden, Boening) asked about for-
malizing and standardizing processes for validation of standard errors. Claims about the
guantitative accuracy of measurement uncertainties are also related to another question,
below, on communication of uncertainty.

A key question (Boening, Wiese) is scale mismatch in validation experiments against
ground truth (model or in situ) that has a different scale than the measurement. A case
in point is GRACE, where observational footprints, and accompanying standard errors, on
the domains extending 100s of km may conflict with model data, or in situ data like water
wells, on much smaller scales. Similar questions but for temporal scale mismatches arise
for atmospheric data (Livesey). In situ data from Fluxnet sites may be available at very fine
temporal and spatial scales, and need to be validated against a microwave sounder mea-
surement taken over a longer time window.

It is important to tailor validation experiments, both for measurements as well as stan-
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dard errors, to specific science goals (B. Kahn). As pointed out in the NRC report [NRC12,
sec. 7.1.2] (Mannucci), no estimation procedure can be considered universally “validated,”
only validated within a domain of applicability that is covered by the observations used in
the assessment.

6.3 UQfor formulation

UQ for formulation is outside the focus of this report, but several present noted that the
rigor of UQ in formulation can set the stage for later rigor of retrieval UQ (Mannucci, Gun-
son). Experience has indicated that projects should discuss UQ needs early on (Gunson),
and should plan for the UQ needs of science and operational users (Mannucci). One way
to address this is to ensure UQ is present in standard templates used in formulation, such
as WBS breakdowns and proposal templates, so it is considered in mission planning (Man-
nucci).

6.4 Communication of uncertainty

Selected high-risk Earth science domains, like groundwater and sea level rise, would bene-
fit from accurate error assessment of measurements so that risks can be evaluated or out-
comes could be priced. In some cases, legal consequences can follow from such determina-
tions (Fisher). Use of measurement uncertainties outside purely scientific contexts would
depart from Lab convention (Gunson) and would require a higher level of validation and
methodological maturity than is available now.

7 RECOMMENDATIONS

We suggest the following improvements to JPL work practices, with the objective of rais-
ing the level of JPL UQ practices to the “state of the practice” attained by leading efforts
elsewhere.

RP-1 [Collaboration] Develop an engagement process that identifies Laboratory needs in
UQ and parcels out research tasks to academics, postdoctoral associates, graduate
students, and summer students. Engagement would be coordinated by the program
office, mission scientists, and UQ points of contact in the line. A research topic list
below supplies examples, but actual tasks will be at the intersection of missions and
technical demands. (sec. 5)

RP-2 [Collaboration] Develop more robust connections between scientists, retrieval algo-
rithm developers, and line UQ specialists. The core objective is to connect domain
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scientists to UQ technologists rather than to make scientists experts in UQ.

RP-3 [Formulation] Having an articulated planfor UQ, as well as for conventional V&V, should
be a requirement for new mission proposals. Define a scale of UQ maturity in the for-
mulation context to accommodate varying needs and infrastructure readiness. Ex-
ploit existing forward simulators, OSSE frameworks, and model runs, with modifica-
tions as needed. Develop proposal scaffolding for UQ. (sec. 6.3)

RP-4 [SDS Design] Explore UQ requirements that impact science data system (SDS) design
and implementation. Specific topics include technologies for incorporation of uncer-
tainties throughout data pipelines, establishing standards for reporting uncertainties,
and developing extensions for spatial/temporal covariances. (sec. 3.4,5.2,6.1)

RP-5 [Implementation] Develop a unified infrastructure for systematic UQ that can be ap-
plied inthe production stream, across different missions or types of retrievals. (sec. 5)

The following research and technology development topics came up most in the work-
shops and in interviews with practitioners (sec. 6). These topics are the best opportunities
we know of to connect Laboratory needs to research, within and outside JPL, that is ad-
vancing the state of the art as described in RP-1 above.

RT-1 Researchmeanstoderive better surrogate models oremulators (e.g., neural networks).
Many retrieval algorithms are too slow to support Monte Carlo UQ experiments. (sec. 5.4)

RT-2 Perform research to define and compute what it means for one forward model to ap-
proximate another one, for example, in radiance space. Find experimental designs
that can quantify model discrepancy for common retrieval types, building trust that
the approximate model is adequate. (sec. 5.3)

RT-3 Expand UQ to spatial fields, versus computing errors of single-site retrievals. Con-
nect spatial UQ to science requirements, notably, standard errors of Level 3 regrid-
ded data, or accuracy of Level 4 model outputs. (sec. 5.2, 6.1)

RT-4 Identify and pursue an opportunity for use of fully-Bayesian techniques (MCMC) for
an operational retrieval, thus accounting automatically for more sources of uncer-
tainty. (sec 3.3)

RT-5 Perform research on advanced sampling strategies, such as quasi-Monte Carlo, strat-
ified sampling, or importance sampling, which have the potential to increase accuracy
of UQ estimates by orders of magnitude. (sec. 5.1)
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A APPENDIX: OTHER TYPES OF OSUE

A.1 Optimal estimation

Optimal estimation (OE; [Rod00]) is based on Bayes’ Theorem:

PY[X)

PXIY) = 5

P(X)x P(Y|X) P(X), (5)
where X isthetruestate, Y isthe observed radiance vector, P(X)and P(Y') arethe marginal
distributions of X and Y, respectively, and the vertical bar in P(X | Y) and P(Y | X) in-
dicates conditional probability distributions. Optimal estimation retrievals solve for the
mean vector and covariance matrix of the posterior distribution, P(X | Y'): the distribution
of the true state, given the observed radiances, under the assumption that the distributions
of X,and Y given X, are Gaussian.

It is crucial to appreciate that the output of an OE retrieval is a distribution: the Gaussian
distribution with mean vector conventionally denoted by X, and covariance matrix denoted
by S. In particular, the output of the OE retrieval is not a direct estimate of the true state’s
particular realization at the time and location of the observation — rather, the output is a
posterior distribution. Therefore, the goal of the OSUE in this case is to quantify the bias

True Forward Noiseless Instru- Obser- . State
. . . Retrieval .
state function radiance ment vation estimate

~

{Xsim} — F1(-, B1) — {ysim} —1 (*) + €&im — {Ysim} — Ri(-...) — {Xsimagsim}

\ / Com£are/

{Xsimyysim} — P(Xsim, Ysim) — {Mgi(TY’Zgi(TY}

quantify

biaS(Xsim,,uii(Ty) var(Xsim)

~

bias(Ssim, XTy)  var(Ssim)

FIGURE 9: OSUE model of a remote sensing observing system for optimal estimation retrievals.
Since the state estimate is a pair of parameters of a distribution, the state estimate must be com-
pared to its true counterpart, the first two moments of the conditional distribution X, given Ysim:
3y and S,
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and variance of the retrieved Gaussian parameter estimates relative to the true parameter
estimates. This makes the OSUE in this case more complex than for least squares/maximum
likelihood. See Figure 9.

We denote the true parameters of the posterior by M?(TY and 23‘(“'}, respectively. These
are the quantities estimated by the retrieved posterior mean X and the retrieved posterior
covariance matrix S. In the OSUE environment, the true parameters phy and 57, can be
determined by fitting a probability model to the joint ensemble, { Xqim, Ysim }- Thisis shownin
the second row of Figure 9. We denote the resulting probability model P( Xy, Ysim). From
this joint distribution, the conditional (posterior) distribution P( X, | Ysim) can be com-
puted. Finally, N?(TY and 23‘(% can be derived from P(Xim | Ysim). It is then these quantities
(Xsim and pi‘{&, and the covariances) that are compared during UQ.

A.2 Forward calculation

In some cases, estimates of QOls are obtained by explicit forward calculations rather than
an indirect minimization process. See figure 10. Here, the retrieval GG is simply the func-
tional inverse of a forward model, or a mapping of observed values onto an empirically-
established functional input-output relationship. Computed standard errors in this case
would typically be given by mapping expected measurement standard errors through the
same functional relationship G, according to standard rules of error propagation. The top
row of the figure emphasizes that the retrieved values Weim may not include any or all of the
system state Xgmn.

Despite this difference, the UQ approach here is not that different from the ML case. To
drive the comparison, a function GG, is needed that derives the portion of the state corre-
sponding to the QOI from the full system state X;,; the result is Ws;». Then, the bias be-
tween the OSUE ground truth ensemble, { W, } and the estimated ensemble can be readily
computed, as can the standard error of the OSUE estimated ensemble.
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True
state

Forward Noiseless Instru- Obser- . State
Retrieval

function radiance ment vation estimate

{Xsim} — Fi(-, B1) — {ysim} —{ (1) + &sim — {Ysim} — Ga(,...) — {Wsim}

|

G1(")

—— {Wsim } —— Compare/quantify

— T~

bias(Weim, Wiim) var(Wsim)

FIGURE 10: OSUE model of an observing system for estimates based on forward calculation.
The ensemble of estimated vectors is {Wsim } and they may not correspond directly to the system
state. Their ground-truty counterparts in the OSUE are the corresponding members of the input
ensemble {Wsim }, each of which is derived from the corresponding X ;.
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@ UQ Is Situated Within the VVUQ Process

Jet Propulsion Laboratory
California Institute of
Technology

NRC UQ Report (2012)

e N

TRUE, PHYSICAL
SYSTEM

Validation & — Representation
Prediction
COMPUTATIONAL ‘ MATHEMATICAL |
MODEL MODEL
g from
ASSESSING THE RELIABILITY NRC 2012

Verification

OF COMPLEX MODELS

“Verification determines how well the
computational model solves the math-model
equations,

Uncertainty Quantification
Theory, Implementation, and Applications

=um . Validation determines how well the model
represents the true physical system, and

Evaluation of mo:
data— Guida o 6 xprossion
of uncertainty in measurement

e | Uncertainty quantification (UQ) plays
N important roles in validation and prediction.”

VVUQ Conceptual Relationships

Jet Propulsion Laboratory
California Institute of
Technology

Physical system shadowed by a computational model
Random noise and model errors disrupt estimated Qol
Existing VV processes characterize model fidelity

Qol disruptions are statistical and motivate UQ

Quantity of Interest

(Qol)
’ True Physical System 0
N
Representation /A _¢_
v v >
Mathematical R Computational \K
Model - Model

Verification

errors,
noise

Adapted from NRC 2012
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Validation, Prediction, and UQ

Jet Propulsion Laboratory
California Institute of
Technology

Uncertainty Quantification overlaps Validation
» UQ results should be used in validation processes (NRC, p. 11)

But UQ is especially important for Prediction (retrieval)
» Previously-controlled variables within validation experiments take on
more diverse values (NRC, p.12, 67ff) 0C0-2 Standard Error

0CO-2 Predictions . Under-Estimation

2 e H 5; ;é
cogbed  eiitiglh.e
1 e'sh ViU bg eeg

Under-Estimation

Lat./Lon. Region

* OCO-2: Validation at ~20 TCCON sites versus global prediction
- Unknowns can multiply standard errors relative to OE values
» UQ specifically targets parameters critical for measurement re-use:
biases, standard errors, and/or confidence intervals
Map: Wunch et al., 2016, AMT. Result: Hobbs et al., 2016, SIAM UQ Conf. + p.c.

Move Information Left of the Bar

Jet Propulsion Laboratory
California Institute of
Technology

We desire to compute
var(retrieval | obs. data)

. retrieva
P(retrieval | obs. data) Many plausible IR
values for /
In fact, we are examining side information
P(retrieval | obs. data, side info) / i =
retrieval

Bayesian would recover these extra parameters:
P(retrieval, side info | obs. data)

or integrate them out A
P(retrieval | obs. data) = / ﬁ \

/ P(retrieval, side info | obs. data) P(side info) """
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Decision-Making Under Uncertainty

Jet Propulsion Laboratory
California Institute of

Te
Planck 2015 results. Xlll. Cosmological parameters
June 20, 2016
ABSTRACT

This paper presents cosmological results based on full-mission Planck of and polarization anisotropies of the cosmic
microwave background (CMB) radiation. Our results are in very good agreement with the 2013 mlym of the Planck nominal-missi
ture data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter

ACDM cosmology with a power-law spectrum of adiabatic scalar (denoted “base-ACDMinthi JFrom the Planck tempera-
" Planck lensing, for this cosmology we ﬁndk Hubble constant, Ho = (67.8+0.9) km s IMpc J matter density parameter
atited scalar s spectral index with n, = 0.9 ly in this abstract we quote
a S on measured parameters and 95 % upper limits on other parameters. We present the ﬁm results of polarization measure-

ith-the 1 ] scales. Combined with the Pl g data, these
glch reionization opum dcpth of 7 = 0,066 = 0,016, o;]m ponding to a reionizati n:d(ﬁlft of 2 = 8817, Th{sc results are consistent with
thosc-fromr WMAP eleaned for dust emission using 353-GHz. ; 3 High Frequency Instrument.

We find no evidence for any. for example, combining Planck observ
other astrophysical data we fi
of the Standard Model of p

limit on the ten: lar ratio of o2 < 0.11, consistent with the Planck 20}

from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding i

Foo2 < 0.09 and d:s avours inflationary models with a V(¢) « ¢? potential. The WU DE0I 18

deviations from a purely adiabatic spectrum of fluctuations. We find no evidence
iadefe Combining Rlanck.datawith.oth: ical data, including Typ

ittt A rain falls in California,

constraints on annihilating dark matter and on possible deviations from the stan|
for new physics. The Planck results for base ACDM are in good agreement with

e Hae a0 e e e tenSions rise over who gets

of rich cluster counts and weak gravitational lensing. We show that these tensio/
ACDM cosmology. Apart from these tensions, the base ACDM cosmology proy

many other astrophysical data sets. th e W at er —

Sen. Dianne Feinstein calls for feds to pump
more water south

A measurement without uncertainty Fisheriesoffcalssay more pumping could push
. . fish to extinction

is hard to use in theory development,

downstream modeling, or decision-making.

Tensions highlight competing demands on
fragile Delta estuary

Retrievals vs. Assimilation

Jet Propulsion Laboratory
California Institute of
Technology

UQ for Retrievals can proceed footprint-by-footprint
UQ for Assimilation uses an entire spatial field
UQ requires hard-to-assess spatial/temporal covariance Results:
Propagating state uncertainty through time is challenging Vineet Yadav
This workshop focuses on retrievals

Fossil Fuel CO2 Emissions (kilograms/hour)
2011-09-11 16:00:00 PST

Atmospheric CO2 Concentrations (parts per million)
2011-09-11 16:00:00 PST
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@ UQ Toolkit: Surrogate Models & Emulators

Jet Propulsion Laboratory
California Institute of
Technology

Assume a forward model

I i

Surrogate models X —> F(X,B)+e—> Y — R(Y.8) —%
. . . state radiance —— etrieve
*  Mimic a retrieval with €0, aerosols

lightened computational load
» Enables Monte Carlo studies

X-X

Related model-replacement strategies

* Reduced-order models (spectral or other decompositions)
» Spectral methods tested for WSWM hydrology UQ

» Emulators, typically using kriging methodology

The Bayesian toolkit
+ MCMC and its variants for Bayesian error bars in non-OE settings
* Heavily used in Planck (7x) and tested in OCO-2

Diagram and formulation: Hobbs, Braverman

UQ Toolkit: Sampling

Jet Propulsion Laboratory
California Institute of
Technology

NRC report distinguishes between validation and prediction

— Prediction: find uncertainty under novel conditions, e.g., away
from validation sites

— Full posteriors often not computable at operational scale

Partition into clusters where posterior variance behaves
similarly to a central template

Also serves experimental design for uncertainty validation

0CO0-2 Sounding Clusters . Selected Clusters in Real Space

R

Point: Sounding
Color: Cluster
Dot: Template

{ Clouds: #

reen Desert: red, orange

Result:

Lukas Mandrake
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| Relationship to OSSE

California Institute of
Technology

OSSE: Observing System Simulation Experiment
Require ensembles of underlying conditions
Forward models (retrieval or event outcome)
Large-scale Monte Carlo experiments
Measure and reduce uncertainty of some Qol

Simple Complex

Specific General

Fact Ensemble Slow
Sensitivity

Mission T.rade Studies Experiments Forecast/Data

* Sampling Assimilation OSSE

* Synthetic Retrievals

JPL Current External

Capability Partnerships

Concept and Diagram: Derek Posselt

National Aeronautics and
Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

An Uncertainty Quantification Framework
for Remote Sensing Retrievals

Amy Braverman

March 27, 2017
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National Aeronautics and

et Propusion abrsory Introduction

ropul
California Institute of Technology
Pasadena, California

» Fundamentally, retrievals are complex, algorithmic estimates of Qol’s.

» Estimates are subject to uncertainty: the number we compute is not
necessarily the “truth”.

» Uncertainty = the probability that the estimate is within a specified distance
of the true value of the Qol.

> Requires that we quantify the probability distribution of the estimate.

National Aeronautics and
Space Administration

Outline

» Model of an observing system.

» Retrievals as estimators.

» Quantifying uncertainty in retrieval estimates.

» Observing System Uncertainty Experiment (OSUE).

» Example case: OCO-2.
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National Aeronautics and

@/ oo oy Model of an observing system

California Institute of Technology
Pasadena, California

True Forwgrd Radiance = Observation Retrieval S.tate
state  function estimate

x —|F(.B ¥ +e Y [R(,F,...B)— &

B = other quantities on which the forward function depends.

B = best proxy for B.

@ IS Model of an observing system
True Forwgrd Radiance = Observation Retrieval Sltate
state function estimate

x —|F(.B ¥ +e Y R(-F....,B) X

» Uncertainty propagation: uncertainty in Y transformed by R to uncertainty
in X.

» Additional uncertain quantities injected along the way.

» Uncertainty quantification: uncertainty in X as an estimate of X.

P(|X — X| < ¢) = 0.95, for example.
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Observation
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Retrieval as estimator

Retrieval S.tate
estimate
R(-,F,...,B) x

pdf
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Observation
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Maximum likelihood estimate (MLE)

7

Retrieval as estimator

Retrieval S.tate
estimate
R(, F,...,B) X
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Space Administration

Pasadena, California

Retrieval as estimator

Observation Retrieval S.tate
estimate
Y R(-, F,..., B) x
X, Y =Yo)

pdf

!

A

2

——————————

Pasadena, California

y llllr"""l“'u \
nllllli” ll’#},,,,;”l;'%‘

A
-w::::f/ii}’ii/II'IIIIII,!,,, \

=

=l /e

0

MLE: choose X = x such that
P(Y = yo|X = x) is maximized.

How stable is the MLE?
Sample alternative values 9f
Y, construct distribution of X’s

l,'
M
"',"'Ill',i[;z—iéiz:a -

Retrieval as estimator

P(X|Y =Yy)

ps

il \‘“" |||||u‘ hh

OE: choose X’ = the first two
moments of P(X|Y = yo).

How stable is the OE estimate?
Sample alternative values of
Y, construct distribution of X’s
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@/ S Retrieval as estimator

Pasadena, California

A taxonomy of retrieval algorithms:

> MLE (least-squares): AIRS, MISR, SMAP(?)

» OE (Bayes/regularized least-squares): OCO-2, TES, MLS, GRACE,
CloudSAT

» Machine learning/statistical: IASI

» Direct forward computation: SWOT(?)

Quantifying retrieval uncertainty

True State
state estimate
X — — X

> The stability of the retrieval estimate can be assessed by simulating an
ensemble of Y’s and calculating the variance of the ensemble of X values
(uncertainty propagation).

» But uncertainty is more than variance alone.

» The uncertainty in X as an estimate of X is fully described by the joint
probability distribution of X and X’.

» Summarize the relationship between X and X with bias and variance.
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California Institute of Technology
Pasadena, California

@ erepoe s Quantifying retrieval uncertainty

< { V" R
) 4‘““”\“‘\
A

» Bias: is the mean of the distribution P(X|X = x,) equal to X, for all
possible xo?

» Variance: what is the variance of P(X|X = xo) for all possible x,?

» Quantify bias and variance by averaging over possible values of X.

Quantifying retrieval uncertainty

Once we have the joint distribution of the true state and its estimate, P(X, X)
(or a summary of it in the form of bias and variance of the estimator), we can
make statements like

P(|% — x| < c) = 0.95,

or at least give bounds.

Our approach: simulate P(X, X) with a Monte Carlo experiment— an Observing
System Uncertainty Experiment (OSUE).
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lational Aeronautics an
ac
e popusion abrsory OSUE
California Institute of Technology
Pasadena, California

Observing System Uncertainty Experiment (OSUE):
1. Obtain an ensemble of plausible values of X, X4,..., Xp.
2. Simulate corresponding radiances.
3. Process through retrieval algorithm to obtain X1,..., Xn.
4. Empirical ensemble {X, X}, is a proxy for P(X, X).

Analyze the empirical ensemble to quantify bias and variance representing
different geophysical or processing conditions.

National Aeronautics and
Space Administration
- OSUE
i ‘echnol
asa

X1—ﬁFo('7Bo)}—>’y1+€1} Y @ X
X5 —ﬁ Fo(wBo)}—>’ y2+62} Y @ x>
XN—){FO(’yBO)}—){yN‘i‘EN} Yn @ Ay

> {X,,}ﬁ=1 are drawn from an ensemble of plausible realizations of the true
state.

> Fo(-,Byp) is a forward function and its parameters, playing the role of
nature.

» Ris the retrieval function. It's a “black box" in this experiment.
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@

National Aeronautics and

é‘:‘.a‘;:ﬁf’a“.nsmé’&°{:l‘;%my OSUE
X Fo(-,Bo) Vitei| Y 'R X
Xo Fo(-, Bo) Vot el Y @ X,
X Fo(-, Bo) Yy +en — Yy 'R] X

» For MLE retrievals, straightforward analysis of {.5(,,, X,,}L.

» For OE retrievals, X is an estimate of the posterior mean and posterior
(co)variance (matrix) of the state (vector).

» For OE, the empirical ensemble { X, Y,,},’Y=1 approximates P(X,Y), from
which the “true" posterior moments can be deduced.

National Aeronautics and

Spa‘ce Aummistvatio:'::% O C O = 2 eX a m p I e

XCO2; X1 |5 Fo(-,Bo) = V1 + & | Y1 B[R] X4, 8, — XCO02:, 8
XCO2; - X2 (51 Fo(-,Bo) | V2 + €2 | Yo B R X0, 8, — XCO02,, 3,

XCOZN <~ XN _ﬁ FO(HBO)HJ)N‘FEN}_)YN 9@_))/\(/\/,@/\1_) X/CE?N,SN

» Ensemble {X,}_, drawn from a Gaussian mixture model fit to set of
representative state vectors.

» Compare distribution of {)(/052n}ﬁ:1 to target value of pixcozyv, and the
distribution of {3,}_, to its target value of U>2(coz|v-

P(X,Y)| o< P(X|Y) = (tay, Zxpy) = (lixcorv: Oeony)-
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National Aeronautics and
Space Administration

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California

Region 16
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OCO-2 example

Region16

> About 9448 retrievals in Region 16 (south-central Pacific ocean), July 5-11,
2015. State vectors are 45-dimensional. Color scale = retrieved XCO2.

» Sample 2000 times from distribution fit to these data, and use as synthetic

truth.

» Upper right panel: two-dimensional projection of the probability density
contours of the modeled P(X,Y).
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National Aeronautics and
Space Administration
@ Jet Propulsion Laboratory OCO'Z exam ple
California Institute of Technology
Pasadena, California
Region 16, 2015-07-05 Region 16, 2015-07-05
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sqrt(hatS) (bias=-0.76, se=0.0333)

> Realistic retrieval experiment (almost): all retrieval parameters set to
operational values. Forward function = forward model*.

> Left panel: distribution of XCO2 relative to ixco|y-

» Right panel: distribution of v/3 relative to TXCO2|Y-

*It is unrealistic to expect this to be true. We are working on adding a compensating error term.
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National Aeronautics and

Discussion

ropul
California Institute of Technology
Pasadena, California

» For this to work for Mission X, Mission X must have:

» a well-defined state vector that is itself the Qol, or of which the Qol is
a known function

» a realistic forward simulator
» known measurement error characteristics on the radiances

» aretrieval algorithm that can ingest synthetic radiances and produce
synthetic retrievals fast enough to permit the Monte Carlo simulation

» information sufficient to create a set of representative states likely to
be encountered by the instrument— could be from a physical model,
another data source, or even expert judgement

20

National Aeronautics and

Space Administration
ey FAQ
i ‘echnol
asa

1. How can this be done with out knowing the true forward function F and its
parameters, B?

2. How do you know your ensemble of plausible values covers the space of
possible inputs to the retrieval?

3. What if your retrieval algorithm is too slow to process a large ensemble of
radiance vectors?

4. How do you use the results to put uncertainties on individual retrievals
produced by the operational algorithm?

21
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National Aeronautics and

Space
e popusion abrsory FAQ

rop:
California Institute of Technology
Pasadena, California

5. We are already doing validation- why should we bother with this?

6. Isn’t UQ just uncertainty propagation? Why do you care about bias and
variance?

7. What if there aren’t enough examples of “plausible values"?

8. Doesn’t “optimal estimation" already take care of UQ?

22
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