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1 EXECUTIVE SUMMARY

This report defineswell-accepted notions of verification, validation, and uncertainty quan-

tification (VVUQ), and places them in the context of retrievals of Earth science data. Un-

certainty quantification (UQ) is the process of characterizing the uncertainty of ameasure-

ment system relative to the true, physical quantity it measures. UQ is needed when mea-

surements are used for scientific inference, assimilated into models with other data, and

used for decision-making and risk analysis. Additionally, UQ can affect formulation of new

measurement opportunties.

Manymeasurementscomewithassociatedmeasuresofstandarderrororbias, but these

uncertainty measures are often less accurate than they can be. One reason is the opera-

tional need to assumecrisp values formanyparameters that are in fact uncertain, aswell as

the failureofcertain technicalassumptions thatareneededbyoperationalerror-estimation

approaches. UQ provides a way to study which assumptions fail to hold, and a tool to im-

prove the measurement. We describe a particular UQ setup that has been successful for

OCO-2, and is applicable tomany Earth science retrievals.

Besides our ownwork in UQ, the basis of this report is discussion from a JPL workshop

on UQ that was attended by about 25 practitioners, and subsequent interviews with re-

trieval scientists. We suggest the following improvements to JPL work practices, with the

objective of raising the level of JPL UQ practices to the “state of the practice” attained by

leading efforts elsewhere.

RP-1 [Collaboration] Develop an engagement process that identifies Laboratory needs in

UQ and parcels out research tasks to academics, postdoctoral associates, graduate

students, and summer students. Engagement would be coordinated by the program

office, mission scientists, and UQ points of contact in the line. A research topic list in

sec. 7 supplies examples.

RP-2 [Collaboration] Develop more robust connections between scientists, retrieval algo-

rithm developers, and line UQ specialists. The core objective is to connect domain

scientists to UQ technologists rather than tomake scientists experts in UQ.

RP-3 [Formulation]Havinganarticulatedplan forUQ,aswell as forconventionalV&V,should
be a requirement for newmission proposals. Define a scale ofUQmaturity in the for-

mulation context to accommodate varying needs and infrastructure readiness. Ex-

ploit existing forward simulators, OSSE frameworks, and model runs, with modifica-

tions as needed. Develop proposal scaffolding for UQ. (sec. 6.3)

RP-4 [SDS Design] Explore UQ requirements that impact science data system (SDS) design

and implementation. Specific topics include technologies for incorporation of uncer-
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tainties throughoutdatapipelines, establishingstandards for reportinguncertainties,

and developing extensions for spatial/temporal covariances. (sec. 3.4, 5.2, 6.1)

RP-5 [Implementation] Develop a unified infrastructure for systematic UQ that can be ap-

plied in theproduction stream, acrossdifferentmissionsor typesof retrievals. (sec. 5)

2 INTRODUCTION

Remote sensing uses space or aircraft measurements to find estimates of quantities of in-

terest (QOI) for later use by scientists, Earth systemmodelers, anddecision-makers. As the

field hasmatured from reporting specific measured values to solving the inverse problems

relating measured values to the desired physical variables, associating estimates with an

uncertainty has become critical. In the context of retrievals of terrestrial state variables,

we can distinguish three use cases that drive the need for uncertainties. Scientists inter-

preting measurements need uncertainties to pose falsifible tests of scientific hypotheses.

Earth system modelers need uncertainties to combine measurements; for instance, when

measurements are assimilated into state-based models. Finally, decision-makers need un-

certainties to understand the likelihood of various outcomes. This report addresses these

issues by proposing approaches for quantifying the uncertainty of existing measurement

systems. Besides this, the tools used to compute uncertainties of given data products are

alsousefulelsewhere in themission lifecycle. For instance, in formulatingnewmissions, the

same approaches that are used to assessmeasurement uncertainty can identify whether a

new measurement technique has enough accuracy to meet mission goals. The error bud-

gets andmeasurement biases that emerge from uncertainty assessment can also point out

opportunities for improvedmeasurements.

2.1 Verification, validation, and prediction

Recovery of uncertainties in complex retrievals is challenging. In standard remote-sensing

terminology, the uncertainties of Level 1 datamay be assigned directly using known detec-

tor characteristics, but Level 2 data typically result from inversions applied to the sensing

chain. Uncertainties in the original data will be magnified by the retrieval algorithm, and

further increased due to use of ancillary data which may itself have attached or assigned

uncertainties. The formalism shown in Figure 1 is helpful in decomposing the elements of

this problem [NRC12]. An actually-existing physical system — such as the effect of atmo-

spheric composition on sensor radiances — is represented by a mathematical model. This
model is abstract, and can be thought of as a set of definitions and equations in a textbook.

In turn, the equations of themathematicalmodel are realized by a computationalmodel run-
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FIGURE 1: Relationships between models and the verification, validation, and prediction pro-
cesses.

ning in a digital computer, with the intent that the computational model shadows the true,

physical system under the conditions of interest.

Several processes, also shown, help ensure this intent is realized. Verification is the pro-
cess of ensuring that the computational model faithfully implements the equations of the

mathematical model. This is typically a numerical analysis problem that can be addressed

over a broad span of realizations of the physical systemwithout close reference to the par-

ticular problem at hand. In the retrieval setting, this could correspond to ensuring that ra-

diative transfer codes arenumerically accurate as forwardmodels. Validation is theprocess
of conducting experiments to ensure that the computational model is an accurate model

of the physical system. Validation experiments are performed under known conditions so

that ground truth data are available. Prediction is the process of using the computational

model to infer the state of the physical system under unknown conditions. In the retrieval

setting, validation might be done by making observations near an in situ sensor, and com-

paring the retrieved value with this ground truth. On the other hand, prediction refers to

normal instrument operations, away from the controlled environment of validation experi-

ments. Characterization ofmeasurement uncertainty for prediction is the chief concern of

this report.

2.2 Uncertainty quantification

Implicit in the notions of validation and prediction is that some measure exists of an ac-

ceptablediscrepancybetween thephysical systemandthecomputationalmodel, and this is

where uncertainty quantification (UQ) enters: UQ is the process of characterizing theuncer-

tainty of ameasurement systemrelative to the true, physical quantity itmeasures. Figure2
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FIGURE2: Validation, prediction, and uncertainty quantification, with figures of merit for aQOI.

recasts the above problem to highlight UQ of a QOI shown at right. Again, the mathemat-

ical model abstractly represents the true, physical system, and the computational model

implements the math-model equations in computer calculations that have been verified.

Validation experimentsmeasure the degree towhich the computationalmodel reflects the

true, physical system, especially for the most important QOIs. In a validation experiment,

a givenQOI can be extracted from the physical system and compared to one deduced from

thecomputationalmodel: the results fromUQinformthis comparison. And furthermore, at

prediction time, when an estimate of the QOI is produced operationally without a ground-

truth check, the error assessment from UQ is used to inform downstream users about the

accuracy of themeasurement. Accuracy can be characterized in terms of bias, shown as an

offset of themodel from the truth, and standard error, shown as thewidth of the error bars

around the estimatedQOI.

Figure 3 shows how these concepts manifest in the retrieval setting. An unobserved

truestateofnatureX passes throughapossibly-nonlinearsensingmechanismF , controlled

by parameters B. The instrument observes this signature through noise ϵ, yielding an ob-

servation Y , corresponding to Level 1 data in sensor units. This observation is then pro-

cessed by a retrieval algorithmR, controlled by parameters B̂, to produce a state estimate

X̂ , corresponding to a Level 2 or higher data product. The parameters may themselves be

a result of an estimation procedure that relies on ancillary data with its own error charac-

teristics. In this context, the computational model encompasses the chain above from X

to Y , optionally including the retrieval step. A validation experiment would correspond to

comparing the state estimate X̂ to the true stateX , in cases whereX is accessible.

This decomposition illustrates themanyways error enters the sensing chain, including:

• Incompleteness of the true stateX ;

• Limitations of the forward model F or its parametersB in describing the mapping of
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the natural state to an observation;

• The stochastic instrument error ϵ;

• Inaccurate values for the ancillary data B̂ relative to the true valuesB;

• Degeneracies in the retrieval algorithmRwhengivennoisy data and inaccuratemod-

els.

Aswithallmodelsof complexsystems, it isnotobviouswhichsourcesoferroraredominant,

meaning that heritage and experience are important in bounding the scope and fidelity of

the model components. Once this has been done, validation experiments provide a way to

check the effectiveness of the overall measurement system.

This list of error mechanisms expands upon the terse cloud reading “errors, noise” in

Figure 2. Both hint that there are two broad categories of errors: epistemic (due to limita-

tions of knowledge, etymologically descended from the same roots as ‘epistemology’) and

aleatory (random in nature, descended from terms used for dice). Aleatory errors are con-

ceptually simpler—pertaining to things like detector noise or inaccurate parameter values

— whereas epistemic errors may not always be well-modeled by probability calculus. For

instance, two authorities may differ on the direction of an effect caused by some ancillary

variable. The direction is in fact one way or the other, but which is not known. In this case,

an average, or aweighting as supplied by conventional probability, is notmeaningful. How-

ever, such cases of pure epistemic conflict are rare, and a simulation environment that is

capable of handling uncertainties due to aleatory errors is often also capable of simulating

epistemic effects. For these reasons, as well as for its tractability and analytic power, we

use conventional mathematical probability throughout to describe errors and uncertainty.

2.3 Inclusive error analysis

The significance of UQ for the retrieval problems encountered by JPL is that it offers away

tofindall-inclusiveerrorbarsaroundmeasurements, inawaythatextendsexistingverifica-

tion and validation processes. Weattempt to illustrate, in a general setting, the gap in error

True
state

Forward
function

Noiseless
observation Instrument Observation Retrieval State

estimate

X F (·, B) Y (·) + ϵ Y R(·, B̂) X̂

FIGURE 3: A simplified remote sensing observing system. A state of natureX passes through a
forwardmodelF , is contaminated by instrument error ϵ, and is then inverted into a state estimate
X̂ .
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assessment that UQ attempts to close. The observing system uses Y to learn about a QOI

X , and the generalway to capture this information is the posterior distributionP (X |Y ), as

shownon the right of Figure 2. If we fix an observation Y , this distribution, being a function

ofX , is too unwieldy — it gives the relative probability of any value ofX — so we typically

summarize it with the mean, E[X |Y ], and the variance, var(X |Y ). We could take X̂ to be

the former, and the uncertainty to be the latter, and the retrieval problemwould be solved.

Indeed, well-known results in estimation theory show that these particular choices have

many desirable properties.

But, referring to Figure 3, we notice that the retrieval algorithm also uses the ancillary

parameters B̂ —which are not exactly known. So, what we have actually computed is not

P (X | Y ), but P (X | Y,B). In particular, our error bar is seen to be var(X | Y,B), and it

assumes thatB is known exactly. The correct way to adjust the posterior for this is to inte-

grate out against the unknownB:

P (X |Y ) =

∫
B

P (X |Y,B)P (B |Y ) . (1)

This averages theposterior,P (X |Y,B), over all possible values for theunknownparameter

B. This integral, thoughnot tractable operationally, always has the effect of broadening the

posterior, therebywidening theerrorbars toaccount for theextrauncertaintyofnotknow-

ing B. It could also shift the posterior, indicating a bias. Similar observations hold for the

other sources of uncertainty, such as inaccuracies in the forward function F and all other

parameter settings within the retrieval algorithm. Each injects its own error, broadening

the posterior density. The high-level goal of UQ is thus to account for the error-increasing

effects of all hidden assumptions, which canbe seen as implicit conditioning. Wewill revisit

this observation below as we consider specific estimation approaches.

3 APPROACHES TORETRIEVALQUALITYASSESSMENT

Every mission is unique and tailors an approach to its own retrieval problem, taking in to

account data characteristics, forward model tractability, and computational constraints.

Nevertheless, there are unifying principles for all retrievals. Depending on the coarse-level

approach adopted, UQmay be formulated in different ways. In this section, we survey dif-

ferent approaches to estimation and to quality assessment, and discuss the capabilities of

these approaches to accommodate UQ and the limitations of current practices.

3.1 Non-probabilistic quality indication

Quality flags are often used to characterize error conditions with retrieved data. We are

exclusively interested inprobabilisticmechanisms inwhat follows, but someremarksonthe

UQ For Retrievals 6



well-known limitationsof qualityflagsmay illustrate tradeoffs amongdifferent approaches

for error characterization. Quality flags are widely unused for several reasons in ways that
have analogies to the UQ problem.

First, they are not readily interpretable to users. That is, a flag may be set, but outside

of an instrument team, the significance of the problem that caused the flag to be set is of-

ten not known. Is the problem critical? If a particular quality flag is rarely set, how can I

discoverwhether I need to pay attention to it? The absence of an agreed-upon significance

level makes it difficult for downstream users to make intelligent decisions about flagged

data. Second, there are quickly toomany flags to propagate forward, or to summarizewith

error conditions that may be functions of multiple flags (“the timing jitter flag is only rele-

vant in nadir pointing mode”). The underlying problem is that there is no calculus to allow

meaningful combinationofqualitybits. These issues (nomapbetweenquality indicator and

real-world consequence; combinatorial explosion of error conditions) illustrate the power

of using probabilistic mechanisms for error characterization where appropriate.

3.2 Maximum likelihood and optimal estimation

In the retrieval setting of Figure 3, an observed Y is used to find an estimate X̂ of the true

QOIX , in the presence of ancillary parameters B. Maximum likelihood (ML) and optimal

estimation (OE) offer solutions to this statistical estimation problem, aswell asmethods to

derive standard errors. Both approaches are used by JPL retrievals; for example, AIRS uses

ML, and TES, MLS, and OCO-2 use OE. Maximum-likelihood standard errors are typically

derived from either the expected or the observed Fisher informationmatrix, both ofwhich

are related to the curvature of the likelihood function evaluated at the estimate [EH78,

Was04, ch. 10]. For remote sensing (“nonlinear regression” in the statistics literature), this

curvature reduces to a product of “sensitivity matrices” composed of partial derivatives of

F [Smi14, sec. 7.3]. Subject to regularity conditions, these matrices can be related to the

standard error of X̂ .

Optimal estimation standard errors are derived from the posterior distribution of X

given Y , P (X | Y ), which is the product of the same likelihood function used by ML, and

a prior onX assumed byOE. The prior has the beneficial effect of regularizing the estimate

X̂ [Rod00]. Subject to thecorrectnessof thechoiceofpriordistribution, theposterior stan-

dard error yields the error of X̂ . The standard error is computed by combining a sensitivity

matrix of derivatives of F (as used byML) with the prior uncertainty.

Bothof these error estimation approacheshave limitations. ML relies ona large-sample

assumption toextract theestimator standarderror [Smi14, sec. 7.2.4],whileOErequiresan

accurate prior. Additionally, the assumption of Gaussian observational errors, which leads

to tractable quadratic optimization targets, may not be accurate. These assumptions are
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difficult tovalidate inpractice. Anotherproblemwith theerrorestimatesproduceddirectly

byML andOEwas posed in Section 2.3: the variance injected by ancillary parameters is, in

general, notcompletelyaccounted for, becausesomeorallof theancillaryparametersB are

regarded as fixed, while in practice they contain errors. Furthermore, the assumption of a

Gaussian prior onB byOEmaybeunrealistic for certain parameters. Finally, asmentioned,

ML and OE error analysis is typically linearized about the solution, ignoring higher-than-

linear terms [CWSM16].

Technical means exist to addressmany of these limitations, extending the basicML and

OEapproachesaccording tospecificmeasurementneeds. UQprovidesamechanismtotest

these modeling assumptions and serves as an outer control loop around the overall error

assessment.

3.3 Complete Bayesian retrievals

Markov chain Monte Carlo (MCMC) techniques allow computation of posterior densities

over all parameters, without requiring Gaussian assumptions, and without a linearized er-

ror analysis. The resulting posterior can also include theuncertainty contributedby the an-

cillary dataB. Computational capacity limits have generally prohibited operationalMCMC

computationof full posteriors forEarth science. Experimental, non-operationalMCMChas

been used in a demonstration capacity for some retrievals in the setting laid out in Figure 3

[TK01, HLL+04,WJYJ13, PM14, BHBM17].

On the other hand, JPL has used MCMC retrievals outside Earth science for the Cos-

mic Microwave Background spatial field, during the NASA/ESA Planck mission. The re-

trieved data allows samples to be drawn from the full posterior density, enabling powerful

capabilities. For instance, multi-parameter confidence sets recovered from the retrieved

datacanbe intersectedwith those fromothermeasurements to resolveambiguities [Pla16,

Fig. 15]. Furthermore, these other measurements can be used to perform joint retrieval of

concordance parameters, whilemaintaining the ability to compute confidence intervals on

the pooled result [Pla16, sec. 5.6]. In Earth science, this would correspond to forming a a

confidence-weighted combination of L2 or L3 data from two disparate instruments (with

reference to only the L2/L3 data), a capability that does not now exist.

Evidently, MCMC techniques are poised to make an influential contribution to remote

sensing retrievals, in the same way that they have become dominant in other complex es-

timation problems. (For a sense of the scope of the method, see [Dia09, sec. 6.4].) The key

technical element has been the development and implementation of tools for fast sampling

of high-dimensional posteriors (hundreds to thousands of dimensions). On the theory side,

somekey innovations have been development of adaptive, gradient-based, andmulti-chain

strategies for samplers. This new generation of samplers has shown great ability to solve
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high-dimensional inference problems. On the implementation side, there are now several

multi-purpose packages (e.g., Stan [CGH+17]) that allow easy experimentation and model

development with the above best-practice samplers.

These improved MCMC techniques are a powerful tool, but they are not a panacea for
solving the UQ problem. This is simply because it is not known, a priori, what effects B

should be included in the so-called “full” posterior P (X |Y ) of (1). That is, MCMC gives the

freedom to depart fromGaussian assumptions and linearized analysis of error interactions

within the posterior. However,MCMC in itself does not illuminate the issue ofwhich error-

causing effects should be folded into B. This is where UQ enters: to provide a means of

determining experimentally which errors coming from ancillary data or algorithm settings

are worth accounting for in the final error analysis. That is, UQ is a mechanism to bound

the scope of the error-inducing effects to be included. Similarly, UQ is the process bywhich

the errors produced by any retrieval algorithm (be it MCMC or OE) are evaluated for cor-

rectness. This “outer loop” validating the advertised error estimates needs to be present

whatever the capabilities of the particular retrieval algorithm used.

3.4 Computational barriers to operational use

Atpresent, off-line (non-operational)uncertaintyassessmentsaregenerallyused, andcom-

putational cost is a key reason. For example, as just noted, MCMC retrievals largely re-

main a case-by-case experiment. The OSUE process, described below, is also not opera-

tional. Spatially-extended retrievals will exacerbate the computational problem by intro-

ducing more variables into the retrieval, which generally scales worse-than-linear in the

number of variables.

One interpretation of this is that we need to introduce computational resources into

the trade-space, and make decisions about whether it continues to be acceptable to make

simplifyingassumptions thatproducepoorer retrievals at lowercomputational cost, versus

moreaccuratemodels and retrievals athigher cost. This is partly a computational issue, and

it has not been well-examined from an engineering or cost/benefit point of view. Systems

like HySDS (Hybrid-cloud Science Data System, [HMS+15]) provide the computational in-

frastructure to enable selected retrievals to be run in the cloud as needed.

4 ANAPPROACHTOUNCERTAINTYQUANTIFICATION

Wedescribe a generally-applicable approach toUQ for remote sensing retrievals called an

Observing SystemUncertainty Experiment (OSUE). Ensemble orMonte Carlo approaches

are needed, in the light of the limitations listed above: the OE approach does not take un-

certainties beyond theGaussianprior into account, although it is computationally tractable
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insofar as it applies. The full Bayesian retrieval takes more uncertainties into account, but

it is not tractable. See also Povey and Grainger [PG15, sec. 2.4].

An OSUE is similar in spirit to an Observing System Simulation Experiment (OSSE): it

uses amodel-based simulation ofNature to produce ground truth, and thenmimics the op-

eration of a sensing and data processing system to produce a state estimate that is com-

pared against the reference values. The approach we describe is consistent with interna-

tional standards forquantifyingandreportinguncertaintiesonphysicalmeasurements; see

[TK94,Wor09,Wor08a], and compareespecially [Wor08b,Wor11]. In this section,wefirst

introduce notation for observing systems, then provide an overview of the OSUE frame-

work, and close with a discussion of the infrastructure needed for implementation of OS-

UEs at JPL.

4.1 Remote sensing observing systems

Figure 4, top, shows a schematic diagram of a remote sensing observing system, which has

three components. Nature generates a true state vector X0 and defines a mechanism F0

for converting this true state to a (noiseless) radiance spectrum. Nature also generates a

vector of ancillary parameters, B0, that influences the radiance but is not part of the state

vector. The second element of the observing system is an instrument that observes the ra-

diances Y0 = F0(X0, B0), contaminated by additive measurement error, ϵ0, resulting in an

observation, Y0. Finally, a retrieval algorithm,R0, which typically depends on side parame-

ters, finds an estimate, X̂0, of the original state vector.

Nature’s true state, forward function, and noiseless radiance vector are unknown, but

scientific theory provides a priori constraints upon them. Remote sensingmakes inferences

about the true state, either from the observations alone (for least squares retrievals) or by

explicitly combining themwith prior knowledge (for OE retrievals, [Rod00]). To character-

State
Forward
function

Noiseless
radiance

Instrument Observation Retrieval
State

estimate

X0 F0(·, B0) Y0 (·) + ϵ0 Y0 R0(·, . . .) X̂0

Xsim F1(·, B1) Ysim (·) + ϵsim Ysim R1(·, F2, B2, . . .) X̂sim

FIGURE 4: An observing system (top) and OSUE simulation (below). A state vector is mapped
through a forward function, F , which depends on ancillary informationB, generating a noiseless
radiance spectrum, Y . The observing system sees Y plus noise ϵ. The resulting observation is in-
verted by a retrieval algorithm, yielding an estimate of the true state vector.
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ize the performance of this observing system, the quantities driving Figure 4 (X0, B0, and

ϵ0) can bemodeled as draws fromprobability distributions. Typically, ϵ0 is taken as indepen-

dent ofX0, but some elements of B0 may be dependent onX0. Having specified the input

distributions, the boxed elements correspond to transformations of these inputs, linking

thewhole collection of randomvariables, and in particular,X0 and X̂0. TheOSUE proceeds

from this idea.

4.2 Basis and implementation of OSUEs

TheOSUE (Figure4, bottom) is a simulationexperiment that characterizes transformations

of a QOI through a processing chain that estimates that QOI. Since the QOI itself is un-

known, the OSUE uses synthetic examples represented by the random variable Xsim, and

drawn from a representative distribution. As long as the synthetic examples are represen-

tative of the real world, and the transformations implemented in the OSUE are accurate

depictions of the real processing chain, the statistical properties of the retrieved estimates

X̂sim, relative to the synthetic truth,Xsim, will mirror those of the actual retrievals X̂0 rela-

tive to theQOI,X0.

Figure5highlights theparallelelementsof therealobservingsystemand itsOSUEmodel.

The left side represents the real world, and the right side is the OSUE simulation. Process-

ing flows from top to bottom. The OSUE studies the relationship between a true QOI (X0)

and its retrieved estimate (X̂0) via the relationship between synthetic QOIs,Xsim, and their
retrieved estimates, X̂sim. The success of the OSUE depends how well the pdf(Xsim, X̂sim)

matches that of pdf(X0, X̂0), or at least howwell the bias and variance of X̂sim match those

of X̂0. The experiment will be successful if we ensure that the elements on the right side of

Figure 5 are each accurate representations of the corresponding elements on the left side.

We consider three types of retrieval algorithm: least squares/maximum likelihood, op-

timal estimation, and forward calculation. The first two are similar in that the retrieved

quantity minimizes a cost function, and is thereby found indirectly. MISR is an example

of a least-squares retrieval, and OCO-2 is an example of an optimal estimation retrieval.

Other retrievals (ECOSTRESS, AVIRIS-NG) are obtained by direct forward calculation of

physically-motivated relationships to retrieved, precursor quantities. The three types of

retrieval require slightly different versions of the OSUE — we illustrate by describing the

least squares OSUE below, and defer the other two approaches to Appendix A.

For themaximum likelihood (ML) retrieval, theOSUEmodel of Figure 4 applies directly,

since the retrieval output, X̂sim, directly estimates the QOI, Xsim. Figure 6, depicting the

ML OSUE, is therefore the same as the bottom row of Figure 4, except that 1) it indicates,

through the use of {·} notation, that the simulation experiment uses ensembles of realiza-

tions; and 2) it shows the comparison of the matched ensemble members of X̂sim against
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TrueQOI X0 Xsim Synthetic QOI

True
forward function

F0(X0, B0) F1(Xsim, B1)
Modeled

forward function

Actual noiseless
radiance

Y0 Ysim
Modeled noiseless

radiance

Measurement
error

ϵ0 ϵsim
Modeled

measurement
error

Instrument
observable

Y0 Ysim
Model of instrument

observable

Actual retrieval
algorithm R0 R1

Model of retrieval
algorithm

Actual estimate
of QOI X̂0 X̂sim

Modeled estimate
of synthetic QOI

Uncertainty pdf(X0, X̂0) pdf(Xsim, X̂sim)

Bias bias(X̂0, X0) bias(X̂sim, Xsim)

Variance var(X̂0) var(X̂sim)

FIGURE5: OSUEparallelworlds. The left side represents the realworld,while the right represents
the OSUE simulation, in which each element faithfully represents its parallel real-world element.
Arrows between the parallel tracks show correspondences that must be established by the OSUE
design. Correspondences between other elements then hold due to the construction of the exper-
iment.

Xsim to produce estimates of the bias and variance of X̂sim, for instance, the bias of themea-

surement, bias(X̂sim, Xsim), is estimated by theOSUE ensemble bias,

b̂ias(X̂sim, Xsim) =
1

N

N∑
i=1

X̂
(i)
sim −X

(i)
sim , (2)

and likewise for the variance. As noted in sec. 3.2, if certain conditions are satisfied, then

standard limit theorems can provide uncertainties of these maximum likelihood retrieval

estimates. However, these conditions include linearization of the forwardmodel about the

solution, perfect solutionof thenonlinear least-squaresproblem, anda large-sample condi-

tion that is hard to satisfy. Finally, some parameters will be assumed as fixed operationally,

when in fact only imprecise values are known (sec. 2.3). Encapsulating the retrieval as done

in theOSUE allows assessing the impacts of all these factors.
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True
state

Forward
function

Noiseless
radiance

Instru-
ment

Obser-
vation

Retrieval
State

estimate{
Xsim

}
F1(·, B1)

{
Ysim

}
(·) + ϵsim

{
Ysim

}
R1(·, F2, B2, . . .)

{
X̂sim

}
Compare/
quantify

bias(X̂sim, Xsim) var(X̂sim)

FIGURE6: OSUEmodel of a remote sensing observing system formaximum likelihood retrievals.
The ensemble of state estimate vectors is

{
X̂sim

}
, and their true counterparts in the OSUE are

corresponding members of the ensemble, input
{
Xsim

}
.

4.3 Relationship to observing system simulation experiments

Observing System Simulation Experiments (OSSEs; [MSE+10]) have long been used to un-

derstand how new data sources can improve forecast skill. OSSEs are starting to play a re-

lated role in JPLmission formulation as a tool to demonstrate that instruments in formula-

tionwill attain the goals expressed in a science traceabilitymatrix (STM). The conventional

practice of using small datasets taken under controlled conditions to support traceability

is yielding to large-scale computational experiments. Bymaking a quantitative, repeatable

connection between mission measurements and science goals, the OSSE can strengthen

formulation and enable principled, defensible trade-offs between sensing approach and

measurement quality. The OSUE method provides a computational tool to demonstrate

that the measurement is adequate, particularly with regard to error margins and sensitiv-

ity to environmental assumptions.

OSSE studies for formulation share infrastructure with OSUEs. Indeed, the infrastruc-

ture for the conversion of synthetic state vectors to radiances, the instrument model, and

application of the retrieval algorithm should be almost identical. The differences between

an OSSE and an OSUE are in the way that the synthetic truth is generated, and in how the

differences between the retrieved estimates and true states are evaluated.

In an OSSE, the synthetic true state is called a nature run, implying that it comes from

a deterministic model of the natural system. Typically, the nature run is computationally

expensive, and can only be performed a few times. Parameter settings for those runs are

perturbed purposefully, rather than being sampled from a distribution of possible settings.

The OSSE therefore is more like a sensitivity study than a randomizedMonte Carlo study.

Another difference is that the nature run produces a spatial or spatio-temporal field, while

the OSUE above produces only individual realizations of the process. Additional research
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is needed to develop methods for simulating ensembles of statistical replicates of spatial
fields, with the proper spatially correlated error structures, from a handful of nature runs.

OSSE infrastructures, which almost always exist for missions and retrieval algorithms

in development, can provide the infrastructure needed for such a combined framework.

OSSEswill likely have solved the problemof sampling the synthetic true field to create syn-

thetic observed radiancesmore accurately than would a stand-aloneOSUE set upwithout

the knowledge of instrument characteristics available to an OSSE team. The OSUE team

can bring principles of experimental design to determining which nature runs can be per-

formed, and potentially how to create additional replicates for the ensemble using statisti-

cal methods and emulators. On the evaluation side, the OSUE team can contribute multi-

variatemetrics of agreement and hypothesis testing procedures to determinewhether the

estimated ensemble of fields agrees with the synthetic true ensemble.

4.4 Strengths andweaknesses of OSUEs

TheaboveOSUEsetuphasprovedeffective inUQfor JPL retrievals, and in particular, it has

producedmanykeyresultsonsystembiasanderror for theOEretrievalofOCO-2[HBC+17].

Some strengths that became apparent are the ability to re-use modules that probably al-

ready exist, most obviously, a forward simulator F and a retrieval R, an instrument noise

model, and a notion of a nature model to produceXsim. Gradients of F are not needed by

theOSUE, except asRmay already require them. TheMonteCarlo formalism is easy to un-

derstand, very general in applicability, and the parallel construction of theOSUE (Figure 5)

allows for experimental designs that mimic the way the system is used operationally. One

weakness is the computational demands of the Monte Carlo simulations needed for en-

semble construction,whichmay ineffect requirea fast, reduced-complexity forwardmodel

(section 5.4). Another issue is the lack of analytical insight provided by the numerical sim-

ulation, which can be partly addressed by comparison with linearized analysis or tailored

summary diagnostics of the simulation results.

5 TOOLSAND INFRASTRUCTURE

In this sectionwediscuss someaspectsof the implementationof stand-aloneOSUEs. These

may be regarded as required tools, and their associated infrastructures, for performing un-

certainty quantification for geophysical retrievals.
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5.1 Sampling the true state

The true distribution of theQOI is unknown, but it is required by theOSUE simulation. The

entire OSUE is driven by sampling from the distribution of Xsim, so we require that it be

a good representation of the marginal distribution of X0 (see Figure 5), particularly with

regard to complete sampling of all observing conditions.

To this end, define a template set as any collection of state vectors thought to be repre-
sentative of the distribution of theQOI,X0, under circumstances of interest (e.g., “the area

off the U.S. Pacific coast during cloudy days in 2016”). The template set can be taken from

the output of a physical model, remote sensing or in situ observations, or created by a do-

main expert. The key is that, if the results of theOSUEare to reflect the performance of the

real observing system, the template setmust be plausible in type and relative proportion of

types. Figure 7 shows a template set derived from a partitioning of OCO-2 state vectors.

To obtain an ensemble ofXsim values, note that using the template set itself will lead to

ensembles with many repeated values of the same state. Gaussian noise is typically added

to the sampled values to broaden the ensemble, but then the covariancematrix of the per-

turbation must be chosen. Small covariances lead to ensembles concentrated around the

templates, while large covariances will cause the centers of mass to be diminished. Gaus-

sian mixture models can provide a flexible way to fit such a distribution to a collection of

ensemble values. In fact, re-weighted or non-independent sampling of Xsim can produce

much faster convergence of ensemble averages such as eq. (2). Such techniques include

importance sampling, antithetic variables, and quasiMonte Carlo [Owe13, ch. 8–10].

FIGURE 7: Sampling of OCO soundings: Left panel, two-dimensional projection of 200K sound-
ings (tiny points), partitioned into 25 similar clusters (color-coded), each cluster spanned by repre-
sentative templates (gray dots). Right panel, projection of selected clusters into map coordinates,
revealing some cluster interpretations (green: clouds; red, orange: desert). Result: Lukas Man-
drake.
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5.2 Simulation and downscaling of spatial fields

In many applications, footprint-by-footprint standard errors are not enough to character-

ize measurement uncertainties for later use: error covariances are required. For instance,

error covariances are required to compute the error of spatial differences, such as spatial

gradients in CO2 fields as needed for flux modeling, or to compute the standard error of

any spatial average. A similar problem can occur in the temporal domain, such aswith daily

evapotranspiration (ET) cycles as retrievedbyECOSTRESS. Any function of the entire daily

ET cycle, such as total daily ET, will have standard error that depends on the correlation of

multiple measurements. Error sources like instrument noise will tend to average out over

the daily cycle, but systematic errorswill reinforce. A full-dayUQwill be able to assess this,

provided that the temporal covariance structure of the systematic factors is correct. For

more on application motivations for such error covariances, see section 6.1; for definite-

ness, we focus below on the spatial setting.

Estimating spatial covariances requires not just an ensemble of state vectors, but an en-

semble of geophysical fields that contain state vectors at all locations. Just as the state vec-

tors must be realistic, the spatial relationships among state vectors in the field must be re-

alistic to achieve accurate uncertainty assessment. In particular, it is not enough to simply

add independent noise to the output of a nature run because independent noise does not

reflect the spatial covariance. A single nature run is not sufficient to estimate covariance

structure without gross simplifying assumptions such as stationarity or isotropy. An en-

semble of nature runs would be sufficient, but these are typically expensive to obtain and

the perturbations to nature run parameters may be purposeful rather than random.

One path forward is to simulate statistical replicates of one (or a few)model-generated

spatial fields using spectral methods (Fourier or wavelet transforms). In this approach, the

spatial field of interest is transformed into the spectral domain, and spectral coefficients

are partitioned into those associatedwith scales representing signals and those represent-

ing noise. Random perturbations are made to the noise coefficients, and the transform is

inverted to yield a new realization of the field [MKBN17]. Research is needed to determine

theproper choiceofbasis, howto set the threshold fordefiningnoise components, andhow

to generate appropriate random perturbations. Nature runs tend to be at coarser resolu-

tion than the footprints of remote sensing observations, but forOSUEpurposes, theymust

beat a comparable resolution. Itmaybepossible touse the spectral approach to simultane-

ouslyperturbnoise-scalebasis functioncoefficientsanddownscale the resultingperturbed

field.
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5.3 Accounting for forwardmodel discrepancy

The forward models used in the retrieval embody the best available knowledge about the

system. Of course, themodels remain imperfect, andwe should include uncertainty due to

thismodel discrepancy in theuncertainty estimates. If thebest available physicalmodels are

alreadyused in the retrievals, thenwhatothermodels canbeused in theOSUE?Wediscuss

three ways to address this problem.

A simple way to deal with model discrepancy is to add an error component to the ob-

served radiances [BO14, Smi14, ch. 12]. As shown in Figure 8, F1 and B1 generate radi-

ances, and are used in the retrievalR1. But, a perturbation δ is added to Ysim, compensating

for the assumption that the forwardmodel and its parameters are identical to the forward

function and its parameters. The perturbation may be Gaussian with a given mean µδ and

covarianceΣδ . This simplifies the problem from specifying themechanistic differences be-

tween the forward function and the forward model, to specifying the numerical impact of

that difference on the radiances. Information about µδ andΣδ can be gleaned by examining

thedifferencesbetweenactual observed radiances (Y0 inFigure5) and radiances computed

by the retrieval algorithm during processing (F1(X̂0, B0) in Figure 5).

A related way to deal with model discrepancy is to use the fact that the forward model

and the forwardmodel parameters are intimately related, anddistinguishing their separate

effects may not be possible. That is, consider two forward functions and their associated

forward function parameters such that F1(X,B1) = F2(X,B2). No one can say which for-

ward model is “correct” or which forward model parameters are “correct”. We can exploit

this lack of identifiability [Smi14] and adopt a single functional form for the forwardmodel

andattributeanyradiancedifferences toparameterdifferences. This recasts themodeldis-

crepancy problem as a numerical one, rather than amore abstract comparison of different

physics or software implementations.

Finally, in somecases theremayexist aprogressionof forwardmodels ranging fromvery

True
state

Forward
function

Noiseless
radiance

Instrument Retrieval
State

estimate

Xsim F1(·, B1) Ysim (·) + ϵsim R1(F1, B1, ·, . . .) X̂sim

Observation Ysim

Model
Discrepancy

(·) + δ Y δ
sim

FIGURE 8: Accounting for model discrepancy by adding a perturbation to the radiance vector.
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realistic to very simple. One can use themore exactmodels to simulate nature, and the less

exactmodels in the retrieval. Forexample, ifF0 is nature’s true forward function, andF1 and

F2 are progressively cruder forward models, then one might use F1(·, B1) as the forward

function in Figure 4 and F2(·, B2) in the retrieval. If the relationship between F1 and F2 is

representative of that between F0 and F1, then the experiment would indicate how much

uncertainty is added by this model discrepancy.

5.4 Surrogatemodels and emulators

The computational complexity of the retrieval algorithm may preclude using it in a Monte

Carlo experiment, and a simplified versionmust be used instead. In Figure 5, this possibility

is admitted by denoting the actual retrieval algorithm as R0 and the OSUE retrieval algo-

rithm asR1. A simplified version of a physical model that can be used in UQ studies is often

called a surrogate model [Smi14, ch. 13].

For example, a radiative transfer model that accounts for multiple scattering, call it F1,

is relatively slowbutmore physically accurate than one that does not. A surrogate forward

model, say F2, that implements only single scattering can be embedded in the OSUE re-

trieval,R1. This will enable a larger ensemble of radiance vectors to be processed, but it in-

troduces an unwanted source of uncertainty due to the mismatch betweenR0(F1, . . .) and

R1(F2, . . .). The additional uncertainty must be quantified, and the final determination of

the uncertainty in the retrieved quantities relative to their respective QOIs must be ad-

justed. A standard solution is to use tools fromAnalysis of Variance to quantify the impact

of different “treatments” on an outcome variable. Here, the outcome is bias and/or vari-

ance, and the treatment is the choice of forward model used in the retrieval. This requires

separate, off-line experiments to quantify the contribution to total uncertainty of using a

surrogate retrieval rather than the actual retrieval.

If the surrogatemodel approach is still too slow, an alternative is to use an emulator, that
is, a function approximator (selected by statistical or machine learning methods) that pre-

dicts the output of a physical model as a function of its inputs [Smi14, ch. 13]. Emulators

are trained on judiciously selected sets of inputs and corresponding outputs of the physical

model (or retrieval). Then, predictions are offered for new inputs of interest. Some em-

ulators (e.g., Gaussian process emulators) have the advantage of automatically producing

uncertainty estimates for theprediction, and these canbe incorporated intofinal estimates

of bias and variance of the observing system.
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6 WORKSHOP, DISCUSSION, ANDNEEDS

Table 1 categorizes selected retrievals in operation for JPL measurements as being based

onregression,maximum-likelihood (ML), oroptimal estimation (OE). It includesmicrowave,

visible/UV/IR, radar, and gravimetric examples. In general, regression-based retrievals di-

rectly invert a known physical relationship between the sensed quantity and the desired

one. Note that maximum-likelihood in the Gaussian error context reduces to nonlinear

least squares estimation, and OE can be viewed as the same least squares estimation but

regularized by a prior.

The overview andmethodology here were presented to a group of JPL Earth scientists

at a “Workshop on VVUQ for Retrievals,” held March 27, 2017. About ten of the approxi-

mately 25 participants (attendees are listed in the Appendix) offered comments, which are

broken down thematically as follows. Where possible, the commenter has been noted.

6.1 Correlated errors, including spatial correlations

Several present (Worden, Landerer, Livesey) raised the question of computation of corre-

lations in errors in theestimates fromretrievals. There are two issues: modeling correlated

errors in retrieval algorithm inputs, and computing error correlations ofmultiple retrieved

outputs.

The latter received more attention because of its effect on assimilation. Indeed, some

current retrievals exhibit multi-variate correlation between separate QOIs, and error cor-

relations across spatial extents (e.g., MLS). SuchQOIs with spatially-correlated errors,

X̂ = X + ϵ (3)

if assimilated into models as if errors are independent, will perturb the state estimate. For

example, in the setting where X has a prior mean µ and covariance KX , and X̂ is a noisy

observation ofX , then theminimummean square error estimate (MMSE) ofX is

XMMSE = µ+KX(KX +Kϵ)
−1X̂ . (4)

The reported standard errors are the diagonal entries of the covarianceKϵ, but theMMSE

state estimate depends on the entire matrix. The correlated errors ϵ in (3) will be propa-

gated through (4)without beingproperly down-weighted. Theeffects of this problemhave

been noted in CO2 flux inversion and gravimetric data assimilation.

A consequent question (Yadav) is finding technical means to compactly parameterize

spatial or temporal covariances. The reported standard errors, as above, are the diagonal

entries of the full error covarianceKϵ. Formost applications, it is not feasible to report the

entire covariance. A middle ground could be to report low-rank corrections to a diagonal

covariance, but this has not been done operationally for retrievals.
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TABLE 1: Approaches Used for Selected Earth Science Retrievals

Mission Target Approach

TES O3 OE

MLS Trace gases OE

OCO-2 CO2, fluorescence (SIF) OE

Cloudsat CloudWater Content (CWC),

Cloud IceWater Content (IWC) )

OE

AIRS H2O ML

GRACE Mass anomaly OE1

MAIA Particulates and trace gases OE

Ecostress Evapotranspiration via

brightness temperature

Regression

AVIRIS-NG Surface reflectance Regression, OE2

1 TheJPLRL05versionof theGRACEOEretrieval initiallyusesa temporally-

unlinked prior followed by a second, temporally-chained solution using the

first solution as a prior.
2 The AVIRIS-NG surface reflectance retrieval is ordinarily done by a ra-

diometric correction (regression), but OE approaches have recently been

tested.

6.2 Validation of standard errors

We define validation as the NRC report [NRC12] does: processes for determining biases

and standard errors where ground truth data is present. (A related but different question

is evaluation of stated standard errors in themore general “prediction” case, i.e., away from

ground truth data.) Multiple commenters (including Worden, Boening) asked about for-

malizing and standardizing processes for validation of standard errors. Claims about the

quantitative accuracy of measurement uncertainties are also related to another question,

below, on communication of uncertainty.

A key question (Boening, Wiese) is scale mismatch in validation experiments against

ground truth (model or in situ) that has a different scale than the measurement. A case

in point is GRACE, where observational footprints, and accompanying standard errors, on

the domains extending 100s of km may conflict with model data, or in situ data like water

wells, on much smaller scales. Similar questions but for temporal scale mismatches arise

for atmospheric data (Livesey). In situ data from Fluxnet sites may be available at very fine

temporal and spatial scales, and need to be validated against a microwave sounder mea-

surement taken over a longer timewindow.

It is important to tailor validation experiments, both for measurements as well as stan-
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dard errors, to specific science goals (B. Kahn). As pointed out in the NRC report [NRC12,

sec. 7.1.2] (Mannucci), no estimation procedure can be considered universally “validated,”

only validated within a domain of applicability that is covered by the observations used in

the assessment.

6.3 UQ for formulation

UQ for formulation is outside the focus of this report, but several present noted that the

rigor of UQ in formulation can set the stage for later rigor of retrieval UQ (Mannucci, Gun-

son). Experience has indicated that projects should discuss UQ needs early on (Gunson),

and should plan for the UQ needs of science and operational users (Mannucci). One way

to address this is to ensure UQ is present in standard templates used in formulation, such

asWBS breakdowns and proposal templates, so it is considered in mission planning (Man-

nucci).

6.4 Communication of uncertainty

Selected high-risk Earth science domains, like groundwater and sea level rise, would bene-

fit from accurate error assessment of measurements so that risks can be evaluated or out-

comes could be priced. In some cases, legal consequences can follow from such determina-

tions (Fisher). Use of measurement uncertainties outside purely scientific contexts would

depart from Lab convention (Gunson) and would require a higher level of validation and

methodological maturity than is available now.

7 RECOMMENDATIONS

We suggest the following improvements to JPL work practices, with the objective of rais-

ing the level of JPL UQ practices to the “state of the practice” attained by leading efforts

elsewhere.

RP-1 [Collaboration] Develop an engagement process that identifies Laboratory needs in

UQ and parcels out research tasks to academics, postdoctoral associates, graduate

students, and summer students. Engagement would be coordinated by the program

office, mission scientists, and UQ points of contact in the line. A research topic list

below supplies examples, but actual tasks will be at the intersection of missions and

technical demands. (sec. 5)

RP-2 [Collaboration] Develop more robust connections between scientists, retrieval algo-

rithm developers, and line UQ specialists. The core objective is to connect domain
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scientists to UQ technologists rather than tomake scientists experts in UQ.

RP-3 [Formulation]Havinganarticulatedplan forUQ,aswell as forconventionalV&V,should
be a requirement for newmission proposals. Define a scale ofUQmaturity in the for-

mulation context to accommodate varying needs and infrastructure readiness. Ex-

ploit existing forward simulators, OSSE frameworks, and model runs, with modifica-

tions as needed. Develop proposal scaffolding for UQ. (sec. 6.3)

RP-4 [SDS Design] Explore UQ requirements that impact science data system (SDS) design

and implementation. Specific topics include technologies for incorporation of uncer-

tainties throughoutdatapipelines, establishingstandards for reportinguncertainties,

and developing extensions for spatial/temporal covariances. (sec. 3.4, 5.2, 6.1)

RP-5 [Implementation] Develop a unified infrastructure for systematic UQ that can be ap-

plied in theproduction stream, acrossdifferentmissionsor typesof retrievals. (sec. 5)

The following research and technology development topics came up most in the work-

shops and in interviews with practitioners (sec. 6). These topics are the best opportunities

we know of to connect Laboratory needs to research, within and outside JPL, that is ad-

vancing the state of the art as described inRP-1 above.

RT-1 Researchmeanstoderivebettersurrogatemodelsoremulators (e.g., neuralnetworks).

ManyretrievalalgorithmsaretooslowtosupportMonteCarloUQexperiments. (sec.5.4)

RT-2 Perform research to define and computewhat it means for one forwardmodel to ap-

proximate another one, for example, in radiance space. Find experimental designs

that can quantify model discrepancy for common retrieval types, building trust that

the approximatemodel is adequate. (sec. 5.3)

RT-3 Expand UQ to spatial fields, versus computing errors of single-site retrievals. Con-

nect spatial UQ to science requirements, notably, standard errors of Level 3 regrid-

ded data, or accuracy of Level 4model outputs. (sec. 5.2, 6.1)

RT-4 Identify and pursue an opportunity for use of fully-Bayesian techniques (MCMC) for

an operational retrieval, thus accounting automatically for more sources of uncer-

tainty. (sec 3.3)

RT-5 Perform research on advanced sampling strategies, such as quasi-MonteCarlo, strat-

ified sampling, or importance sampling, which have the potential to increase accuracy

of UQ estimates by orders of magnitude. (sec. 5.1)
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A APPENDIX: OTHER TYPESOFOSUE

A.1 Optimal estimation

Optimal estimation (OE; [Rod00]) is based on Bayes’ Theorem:

P (X |Y ) =
P (Y |X)

P (Y )
P (X) ∝ P (Y |X)P (X), (5)

whereX is thetruestate,Y is theobservedradiancevector,P (X)andP (Y )arethemarginal

distributions of X and Y , respectively, and the vertical bar in P (X | Y ) and P (Y | X) in-

dicates conditional probability distributions. Optimal estimation retrievals solve for the

mean vector and covariancematrix of the posterior distribution,P (X |Y ): the distribution

of the true state, given theobserved radiances, under the assumption that thedistributions

ofX , and Y givenX , are Gaussian.

It is crucial to appreciate that the output of an OE retrieval is a distribution: the Gaussian
distributionwithmeanvectorconventionallydenotedby X̂ , andcovariancematrixdenoted

by Ŝ. In particular, the output of the OE retrieval is not a direct estimate of the true state’s

particular realization at the time and location of the observation — rather, the output is a

posterior distribution. Therefore, the goal of the OSUE in this case is to quantify the bias

True
state

Forward
function

Noiseless
radiance

Instru-
ment

Obser-
vation

Retrieval
State

estimate{
Xsim

}
F1(·, B1)

{
Ysim

}
(·) + ϵsim

{
Ysim

}
R1(·, . . .)

{
X̂sim, Ŝsim

}

{
Xsim, Ysim

}
P (Xsim, Ysim)

{
µsimX|Y ,Σ

sim
X|Y

} Compare/

quantify

bias(X̂sim, µ
sim
X|Y ) var(X̂sim)

bias(Ŝsim, Σ
sim
X|Y ) var(Ŝsim)

FIGURE 9: OSUE model of a remote sensing observing system for optimal estimation retrievals.
Since the state estimate is a pair of parameters of a distribution, the state estimate must be com-
pared to its true counterpart, the first twomoments of the conditional distributionXsim givenYsim:
µsim
X|Y andΣsim

X|Y .
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and variance of the retrievedGaussian parameter estimates relative to the true parameter

estimates. Thismakes theOSUE in this casemorecomplex than for least squares/maximum

likelihood. See Figure 9.

We denote the true parameters of the posterior by µsim
X|Y and Σsim

X|Y , respectively. These

are the quantities estimatedby the retrievedposteriormean X̂ and the retrievedposterior

covariancematrix Ŝ. In the OSUE environment, the true parameters µsim
X|Y andΣsim

X|Y can be

determinedbyfittingaprobabilitymodel to the jointensemble,{Xsim, Ysim}. This is shown in
the second row of Figure 9. We denote the resulting probability model P (Xsim, Ysim). From

this joint distribution, the conditional (posterior) distribution P (Xsim | Ysim) can be com-

puted. Finally, µsim
X|Y andΣsim

X|Y can be derived from P (Xsim |Ysim). It is then these quantities

(X̂sim and µsim
X|Y , and the covariances) that are compared during UQ.

A.2 Forward calculation

In some cases, estimates of QOIs are obtained by explicit forward calculations rather than

an indirect minimization process. See figure 10. Here, the retrieval G2 is simply the func-

tional inverse of a forward model, or a mapping of observed values onto an empirically-

established functional input-output relationship. Computed standard errors in this case

would typically be given by mapping expected measurement standard errors through the

same functional relationshipG2 according to standard rules of error propagation. The top

rowof thefigure emphasizes that the retrieved values Ŵsimmaynot include anyor all of the

system stateXsim.

Despite this difference, theUQapproach here is not that different from theMLcase. To

drive the comparison, a function G1 is needed that derives the portion of the state corre-

sponding to the QOI from the full system stateXsim; the result isWsim. Then, the bias be-

tween theOSUEground truthensemble, {Wsim}and theestimatedensemble canbe readily

computed, as can the standard error of theOSUE estimated ensemble.
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function

Noiseless
radiance

Instru-
ment

Obser-
vation

Retrieval
State

estimate{
Xsim

}
F1(·, B1)

{
Ysim

}
(·) + ϵsim

{
Ysim

}
G2(·, . . .)

{
Ŵsim

}
G1(·)

{
Wsim

}
Compare/quantify

bias(Ŵsim, Wsim) var(Ŵsim)

FIGURE 10: OSUE model of an observing system for estimates based on forward calculation.
The ensemble of estimated vectors is

{
Ŵsim

}
, and theymay not correspond directly to the system

state. Their ground-truty counterparts in the OSUE are the corresponding members of the input
ensemble

{
Wsim

}
, each of which is derived from the correspondingXsim.
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B APPENDIX:WORKSHOPPRESENTATIONS

Uncertainty Quantification Overview

Michael Turmon
contributions from: 

Amy Braverman and Jon Hobbs
March 27, 2017
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Jet Propulsion Laboratory
California Institute of 
Technology

UQ Is Situated Within the VVUQ Process

“Verification determines how well the 
computational model solves the math-model 
equations, 

Validation determines how well the model 
represents the true physical system, and 

Uncertainty quantification (UQ) plays 
important roles in validation and prediction.”

NRC UQ Report (2012)

from 
NRC 2012

Jet Propulsion Laboratory
California Institute of 
Technology

VVUQ Conceptual Relationships

Physical system shadowed by a computational model
Random noise and model errors disrupt estimated QoI
Existing VV processes characterize model fidelity
QoI disruptions are statistical and motivate UQ

True Physical System

Mathematical

Model

Computational

Model

Quantity of Interest
(QoI)

Validation

Verification

Representation

UQ

errors,
noise

Adapted from NRC 2012
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Jet Propulsion Laboratory
California Institute of 
Technology

Validation, Prediction, and UQ

Uncertainty Quantification overlaps Validation
• UQ results should be used in validation processes (NRC, p. 11)

But UQ is especially important for Prediction (retrieval)
• Previously-controlled variables within validation experiments take on 

more diverse values (NRC, p.12, 67ff)

• OCO-2: Validation at ~20 TCCON sites versus global prediction
- Unknowns can multiply standard errors relative to OE values

• UQ specifically targets parameters critical for measurement re-use: 
biases, standard errors, and/or confidence intervals

Map: Wunch et al., 2016, AMT. Result: Hobbs et al., 2016, SIAM UQ Conf. + p.c.

OCO-2 Standard Error

Under-Estimation
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1
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nOCO-2 Validations  OCO-2 Predictions

Jet Propulsion Laboratory
California Institute of 
Technology

Move Information Left of the Bar

We desire to compute

In fact, we are examining

Bayesian would recover these extra parameters:

or integrate them out

Many plausible
values for
side information

retrieval

retrieval

retrieval

σ

σ′
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Jet Propulsion Laboratory
California Institute of 
Technology

Decision-Making Under Uncertainty

A measurement without uncertainty 
is hard to use in theory development, 
downstream modeling, or decision-making. 

Jet Propulsion Laboratory
California Institute of 
Technology

Retrievals vs. Assimilation

UQ for Retrievals can proceed footprint-by-footprint
UQ for Assimilation uses an entire spatial field

UQ requires hard-to-assess spatial/temporal covariance
Propagating state uncertainty through time is challenging

This workshop focuses on retrievals

Results: 
Vineet Yadav
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Jet Propulsion Laboratory
California Institute of 
Technology

UQ Toolkit:  Surrogate Models & Emulators

Assume a forward model

Surrogate models
• Mimic a retrieval with 

lightened computational load
• Enables Monte Carlo studies

Related model-replacement strategies
• Reduced-order models (spectral or other decompositions)
• Spectral methods tested for WSWM hydrology UQ
• Emulators, typically using kriging methodology

The Bayesian toolkit
• MCMC and its variants for Bayesian error bars in non-OE settings
• Heavily used in Planck (7x) and tested in OCO-2

Diagram and formulation: Hobbs, Braverman

Jet Propulsion Laboratory
California Institute of 
Technology

UQ Toolkit:  Sampling

NRC report distinguishes between validation and prediction
– Prediction: find uncertainty under novel conditions, e.g., away 

from validation sites
– Full posteriors often not computable at operational scale

Partition into clusters where posterior variance behaves 
similarly to a central template
Also serves experimental design for uncertainty validation

9
Clouds: 
green Desert: red, orange

Point: Sounding
Color: Cluster
Dot: Template

Result:
Lukas Mandrake

OCO-2 Sounding Clusters

Selected Clusters in Real Space
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Jet Propulsion Laboratory
California Institute of 
Technology

Relationship to OSSE

OSSE: Observing System Simulation Experiment
Require ensembles of underlying conditions
Forward models (retrieval or event outcome)
Large-scale Monte Carlo experiments
Measure and reduce uncertainty of some QoI

10
Concept and Diagram: Derek Posselt

An Uncertainty Quantification Framework
for Remote Sensing Retrievals

March 27, 2017

1

Amy Braverman
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Introduction

I Fundamentally, retrievals are complex, algorithmic estimates of QoI’s.

I Estimates are subject to uncertainty: the number we compute is not
necessarily the “truth".

I Uncertainty = the probability that the estimate is within a specified distance
of the true value of the QoI.

I Requires that we quantify the probability distribution of the estimate.

2

Outline

I Model of an observing system.

I Retrievals as estimators.

I Quantifying uncertainty in retrieval estimates.

I Observing System Uncertainty Experiment (OSUE).

I Example case: OCO-2.

3
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Model of an observing system

True
state

Forward
function Radiance Observation Retrieval State

estimate

X F(·,B) Y + ✏
Y

R(·,F , . . . ,B) X̂

B = other quantities on which the forward function depends.

B = best proxy for B.

4

Model of an observing system

True
state

Forward
function Radiance Observation Retrieval State

estimate

X F(·,B) Y + ✏
Y

R(·,F , . . . ,B) X̂

I Uncertainty propagation: uncertainty in Y transformed by R to uncertainty
in X̂ .

I Additional uncertain quantities injected along the way.

I Uncertainty quantification: uncertainty in X̂ as an estimate of X .

P(kX̂ �Xk  c) = 0.95, for example.

5
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Retrieval as estimator

True
state

Forward
function Radiance Observation Retrieval State

estimate

X F(·,B) Y + ✏
Y

R(·,F , . . . ,B) X̂

y0

X

x1
x2

x3
x4 x5

x6

P(Y,X = x)P(Y,X )

6

Retrieval as estimator

True
state

Forward
function Radiance Observation Retrieval State

estimate

X F(·,B) Y + ✏
Y

R(·,F , . . . ,B) X̂
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P(Y,X = x)P(Y|X = x)

Maximum likelihood estimate (MLE)

7
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Retrieval as estimator

True
state

Forward
function Radiance Observation Retrieval State

estimate

X F(·,B) Y + ✏
Y

R(·,F , . . . ,B) X̂
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x4 x5

x6

P(X ,Y = y0)P(X |Y = y0)

Bayes estimate (OE)

8

Retrieval as estimator

P(Y|X = x)P(X = x)

y0
y1

y2
y3

Y

P(X |Y = y)P(Y = y)

y0

X

x1
x2

x3
x4 x5

x6

MLE: choose X̂ = x such that
P(Y = y0|X = x) is maximized.

How stable is the MLE?
Sample alternative values of

Y, construct distribution of X̂ ’s

OE: choose X̂ = the first two
moments of P(X |Y = y0).

How stable is the OE estimate?
Sample alternative values of

Y, construct distribution of X̂ ’s

9
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Retrieval as estimator

A taxonomy of retrieval algorithms:

I MLE (least-squares): AIRS, MISR, SMAP(?)

I OE (Bayes/regularized least-squares): OCO-2, TES, MLS, GRACE,
CloudSAT

I Machine learning/statistical: IASI

I Direct forward computation: SWOT(?)

10

Quantifying retrieval uncertainty

True
state

Forward
function Radiance Observation Retrieval State

estimate

X F(·,B) Y + ✏
Y

R(·,F , . . . ,B) X̂

I The stability of the retrieval estimate can be assessed by simulating an
ensemble of Y’s and calculating the variance of the ensemble of X̂ values
(uncertainty propagation).

I But uncertainty is more than variance alone.

I The uncertainty in X̂ as an estimate of X is fully described by the joint
probability distribution of X̂ and X .

I Summarize the relationship between X̂ and X with bias and variance.

11
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Quantifying retrieval uncertainty

X

X̂

X

X̂

x0

P(X̂ ,X ) P(X̂ |X )P(X )

I Bias: is the mean of the distribution P(X̂ |X = x0) equal to x0 for all
possible x0?

I Variance: what is the variance of P(X̂ |X = x0) for all possible x0?

I Quantify bias and variance by averaging over possible values of X .

12

Quantifying retrieval uncertainty

Once we have the joint distribution of the true state and its estimate, P(X̂ ,X )
(or a summary of it in the form of bias and variance of the estimator), we can
make statements like

P(kX̂ �Xk  c) = 0.95,

or at least give bounds.

Our approach: simulate P(X̂ ,X ) with a Monte Carlo experiment– an Observing
System Uncertainty Experiment (OSUE).

13
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OSUE

Observing System Uncertainty Experiment (OSUE):

1. Obtain an ensemble of plausible values of X , X 1, . . . ,X N .

2. Simulate corresponding radiances.

3. Process through retrieval algorithm to obtain X̂ 1, . . . , X̂ N .

4. Empirical ensemble {X̂ ,X}N
n=1 is a proxy for P(X̂ ,X ).

Analyze the empirical ensemble to quantify bias and variance representing
different geophysical or processing conditions.

14

OSUE

X 1 F0(·,B0) Y1 + ✏1 Y1 R X̂ 1

X 2 F0(·,B0) Y2 + ✏2 Y2 R X̂ 2

...
...

...
...

...
...

X N F0(·,B0) YN + ✏N YN R X̂ N

I {X n}N
n=1 are drawn from an ensemble of plausible realizations of the true

state.

I F0(·,B0) is a forward function and its parameters, playing the role of
nature.

I R is the retrieval function. It’s a “black box" in this experiment.

15
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OSUE

X 1 F0(·,B0) Y1 + ✏1 Y1 R X̂ 1

X 2 F0(·,B0) Y2 + ✏2 Y2 R X̂ 2

...
...

...
...

...
...

X N F0(·,B0) YN + ✏N YN R X̂ N

I For MLE retrievals, straightforward analysis of {X̂ n,X n}N
n=1.

I For OE retrievals, X̂ is an estimate of the posterior mean and posterior
(co)variance (matrix) of the state (vector).

I For OE, the empirical ensemble {X n,Yn}N
n=1 approximates P(X ,Y), from

which the “true" posterior moments can be deduced.

16

OCO-2 example

XCO21 X 1 F0(·,B0) Y1 + ✏1 Y1 R
X̂1, Ŝ1 \XCO21, Ŝ1

XCO22 X 2 F0(·,B0) Y2 + ✏2 Y2 R
X̂2, Ŝ2 \XCO22, Ŝ2

...
...

...
...

...
...

...
...

XCO2N X N F0(·,B0) YN + ✏N YN R
X̂N , ŜN \XCO2N , ŜN

P(X ,Y) / P(X |Y) )
�
µX |Y,⌃X |Y

�
)

�
µXCO2|Y,�

2
XCO2|Y

�
.

I Ensemble {X n}N
n=1 drawn from a Gaussian mixture model fit to set of

representative state vectors.

I Compare distribution of {\XCO2n}N
n=1 to target value of µXCO2|Y, and the

distribution of {Ŝn}N
n=1 to its target value of �2

XCO2|Y.

17
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OCO-2 example
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I About 9448 retrievals in Region 16 (south-central Pacific ocean), July 5-11,
2015. State vectors are 45-dimensional. Color scale = retrieved XCO2.

I Sample 2000 times from distribution fit to these data, and use as synthetic
truth.

I Upper right panel: two-dimensional projection of the probability density
contours of the modeled P(X ,Y).
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OCO-2 example

Region 16, 2015−07−05

hatX (bias=−0.0355, se=1.085)
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I Realistic retrieval experiment (almost): all retrieval parameters set to
operational values. Forward function = forward model*.

I Left panel: distribution of \XCO2 relative to µXCO2|Y.

I Right panel: distribution of
p

Ŝ relative to �XCO2|Y.

*It is unrealistic to expect this to be true. We are working on adding a compensating error term.

19
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Discussion

I For this to work for Mission X, Mission X must have:

I a well-defined state vector that is itself the QoI, or of which the QoI is
a known function

I a realistic forward simulator

I known measurement error characteristics on the radiances

I a retrieval algorithm that can ingest synthetic radiances and produce
synthetic retrievals fast enough to permit the Monte Carlo simulation

I information sufficient to create a set of representative states likely to
be encountered by the instrument– could be from a physical model,
another data source, or even expert judgement

20

FAQ

1. How can this be done with out knowing the true forward function F and its
parameters, B?

2. How do you know your ensemble of plausible values covers the space of
possible inputs to the retrieval?

3. What if your retrieval algorithm is too slow to process a large ensemble of
radiance vectors?

4. How do you use the results to put uncertainties on individual retrievals
produced by the operational algorithm?

21
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FAQ

5. We are already doing validation- why should we bother with this?

6. Isn’t UQ just uncertainty propagation? Why do you care about bias and
variance?

7. What if there aren’t enough examples of “plausible values"?

8. Doesn’t “optimal estimation" already take care of UQ?

22
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