Introduction to Microwave Atomic Clocks

Eric Burt
Jet Propulsion Laboratory, California Institute of Technology

IEEE Frequency Control Symposium 2016

May 9, 2016
Acknowledgments

• Robert Lutwack (DARPA)
• Sam Stein (Microsemi)
• Dave Wineland (NIST)
• Jim Bergquist (NIST)
• Jocelyn Guena (Paris Observatory)
• Sebastien Bize (Paris Observatory)
Tutorial Overview

• What is a clock?
 – How good are they?
• What is an Atomic Clock?
• Stable vs. Accurate
• Commercial vs. Laboratory
• Microwave vs. Optical
• Microwave clock examples in detail
 – Cesium Beam, Maser, Rubidium, Fountain, Trapped Ion
• Applications
 – Navigation/GPS, Time Stamping, Space, Fundamental Physics
What are the fundamental components of a clock?
Clock Schematic

Everything is an Oscillator *(but some things make better clocks)*

(Oscillator + Counter = Clock)

\[Q = \frac{\text{Resonant Frequency}}{\text{linewidth (FWHM)}} = \frac{\text{Ring-down Time}}{\text{Period}} \]
Precision vs. Accuracy

Stable or Precise, but not accurate

Accurate, but not precise

Accurate and precise
How Do We Characterize Clock Performance?

Time domain: Allan deviation

Frequency domain: phase noise (oscillators)

Systematic Sensitivities
- electromagnetic
- thermal
- barometric
How to Interpret the Allan Deviation

“x” = time or phase
“y” = frequency = dx/dt

Allan Deviation, $\sigma_y(\tau)$ is RMS of x at averaging time, τ:

$$\sigma_{adev}(\tau) = \sqrt{\frac{1}{2(M-1)} \sum_{i=1}^{M-1} (y_{i+1} - y_i)^2}$$

$$y_i = \frac{x_{i+1} - x_i}{\tau}$$

Compare to Std Deviation:

$$\sigma_{sdev}(\tau) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \mu)^2}$$
How to Interpret the Allan Deviation

Prototypical ADEV Curve

Allan Deviation, $\sigma_y(\tau)$

Averaging Time, τ [sec]

“Flicker Floor”
Typically noise floor of measurement or Temperature Sensitivity

White (Gaussian) Noise in x, $\propto 1/\tau$
Typically in-band measurement noise

White Random Walk in dx/dt, $\propto \tau^{1/2}$
Typically random physics evolution

Linear Drift of x, $\propto \tau$
Typically Systematic physics evolution

Typically in-band physics noise
How Do We Compare Clocks

Same Lab: 1 Hz offset method

Example:
- 1×10^{-13} change is $\sim 1 \mu$Hz on 10 MHz
- $\Rightarrow 1 \times 10^{-13}$ s change in phase in one cycle
- On 1 Hz beat note, this is integrated for 1 s to give a 1 μs phase change on the 1 Hz beat
- 1×10^{-13} s is very hard to detect, 1 μs is readily detected.
How Do We Compare Clocks

- Remote Comparisons
 - GPS
 - TWSTT
 - Fiber
 - Free space
World Time Standards

“Bureau International des Poids et Mesures” (BIPM)

- UTC
- UTC(x)
 - USNO, NIST, OP, PTB, NPL, etc...
- TAI: Atomic Time
- TT(BIPM): Primary Standards
- Other...
What is an Atomic Clock?
The Physics Package is a very narrow (high-Q) passband filter. For most high performance microwave atomic clocks, Q > 10^{10}
Basic Microwave Atomic Clock Physics

• What is oscillating? Passive vs. Active clocks
• Frequency perturbations
 – Light shift (AC Stark shift)
 – Magnetic (Zeeman) shift, 1^{st} and 2^{nd} order
 – Doppler shift, 1^{st} and 2^{nd} order
Atomic Clock Schematic: Modulation

Modulation Source → Modulator

Signal → RF Frequency

Q = ν₀/γ

“Capture region”

DeModulator → Signal Derivative

Frequency

Depodulated Signal → RF Frequency

© Microsemi

Courtesy of Microsemi
Basic Microwave Atomic Clock Physics: Atomic Interactions

- Hyperfine transitions: 1-40 GHz
- Atomic interactions:
 - **Coulomb** interaction
 - **Fine structure**: electron spin interacts with nuclear electric field (optical)
 - **Hyperfine structure**: nuclear spin interacts with the magnetic field created by the moving electron (microwave)
Basic Microwave Atomic Clock Physics: Simplified Cesium Atomic Level Structure

- **N** = principle quantum number
- **L** = angular momentum quantum number
- **S** = electron spin quantum number
- **I** = nuclear spin quantum number
- **J** = **L**+**S**: total electron angular momentum
- **F** = **I**+**J**: total atomic angular momentum

Integral F => existence of first-order field-insensitive $m_F=0 - m_{F'}=0$ transition

- **Field-Sensitive Zeeman Structure**
- **Fine Structure** $6P_{3/2}$
 - $F'=5$
 - $F'=4$
 - $F'=3$
 - $F'=2$

- **Angular Momentum** $6P (L=1)$
 - $6P_{1/2}$
 - $6S_{1/2}$

- **Coulomb:** $n=6$

- **Hyperfine Structure**
 - **Field-Sensitive Zeeman Structure**

- **Transition** 9.192 GHz

- **852 nm**
Energy Levels: A closer look at Zeeman structure

Energy levels in a magnetic field: The Zeeman Effect

9192 MHz

MAGNETIC FLUX DENSITY
Basic Microwave Atomic Clock Physics:
Atomic Clock Stability

\[Q = \frac{\nu_0}{\gamma} \]

- \(S/N \) is limited by atomic beam flux
- \(\nu_0 \) is resonance frequency – choice of atom
- \(\gamma \) is linewidth – limited by Fourier transform of measurement time, \(gT = \) constant

In an atomic beam, interaction time (and thereby \(\gamma \)) is limited by time-of-flight of atoms through microwave field.

It’s very difficult to construct a stable uniform microwave field longer than a wavelength.

Remember Equation 1:

\[
\sigma(\tau = 1 \text{sec}) = \frac{1}{(S'/N)_{1\text{Hz}} \times Q}
\]
Basic Microwave Atomic Clock Physics
Ramsey Separated Oscillatory Fields

Common RF Source

RF Phase

Atom Phase

"Quantum Beat"

Phase Sync

Measure Phase

©Microsemi

Courtesy of Microsemi
A Brief History of Atomic Clocks

- Stern-Gerlach (1922)
- Nuclear Magnetic Resonance (1938): Rabi, Ramsey
- Separated oscillatory fields (1949) – invention
- Separated oscillatory fields – in laboratory clocks
- First operational clocks (1955) – Essen and Perry
- Masers – Ramsey
- Lasers (1960)
- Celestial time -> atomic time (1967)
- Commercial cesium beam clocks (1964 ->)
- Laser Cooling (1978)
- Ion trapping (1950’s)
- Optical clocks part 1 (1980’s – 1990’s)
- Atomic fountain clocks (1995)
- Ultra stable clocks part 1 (1980’s ->)
- Combs (1999)
- Optical clocks part 2 (1999)
- Ultra stable microwave clocks part 2 (2005)
- Clocks in space
Commercial vs. Laboratory

Goals

- “Robustness”
- Continuous operability
- Fieldability
- Stability
- accuracy
Microwave vs. Optical

• GHz vs. 10^{14}-10^{15} Hz: Q
• Robustness
• Systematic sensitivity
• Lasers
• Combs (See Chris Oats tutorial)
Microwave Atomic Clock Examples:
The Cesium Beam Tube Clock
Cesium Beam: The Stern Gerlach Effect

Vacuum Pump

Window

©Microsemi

Courtesy of Microsemi
Cesium Beam Tube: Magnetic Resonance

\[v = 9192 \text{ MHz} \]

Courtesy of Microsemi
Ramsey: Separated Oscillatory Fields

\[\nu = 9192 \text{ MHz} \]

“A Magnet” “C Field Region” “B Magnet”

Vacuum Pump

Signal

Courtesy of Microsemi
Cesium Beam Tube

Ramsey’s Lab - 1949
Cesium Beam Tube

1955 NPL Cesium Clock

Essen & Perry 1953
Cesium Beam Tube

NBS-6 circa 1975

1975 National Bureau of Standards
U.S. Gov't not subject to copyright

PTB CS1 (1965 - present)
Cesium Beam Tube Construction

Source: U.S. Patent # 3,967,115

Courtesy of Symmetricom
Cesium Beam Tube Spectrum

Linewidth (and Q) limited by time-of-flight of atoms through microwave region

Signal/Noise limited by atomic beam flux: \(\text{Noise} \propto \sqrt{\text{Signal}} \)

\[Q = 2 \times 10^7 \]

\[\frac{(S/N)_{1Hz}}{} = 3000 \]

\[\sigma(1 \text{sec}) = \frac{1}{(S/N)_{1Hz} \times Q} \approx 2 \times 10^{-11} \]
Cesium Beam Tube Instruments

Laboratory/Timekeeping

Telecom

Space/GPS

Courtesy of Microsemi
Cesium Beam Frequency Standard Summary

+ "Primary" frequency standard
 - Absolute accuracy (within known limits)
 - No long-term drift of frequency
 - No environmental sensitivity
 - No retrace (power cycle) error

+ Mature Technology
 - > 10,000 CFS built over 40-year history
 - High reliability

- Relatively large, complex and expensive
 - 3U Rack-mount, ≈50 Watts, $50-75K

• Commercial instrument of choice for absolute accuracy and reliability
 • Laboratory frequency reference for science and calibration
 • Major contributor to international time-keeping (UTC)
 • Top-level telecom synchronization

Courtesy of Microsemi
Commercial Cesium Beam Tube Stability

5071A Cesium Beam Frequency Standard

Overlapping Allan Deviation

Averaging Time

©Microsemi

Specication - Long life Tube
Speciation - High Performance
Typical

Courtesy of Microsemi
Microwave Atomic Clock Examples: The Rubidium Gas Cell Clock
Rubidium

Rb Gas Cell Physics Package

Magnetic Shield

- Lamp Oven
 - Lamp
 - Rb-87
 - Lamp
 - Coil

- Filter Oven
 - Filter
 - Rb-85
 - Cell

- Cavity Oven
 - Absorption
 - Rb-87
 - Cell

- (3) Oven Temperature Sensors and Heaters

- Lamp Exciter

- RF Excitation

- Signal Out

- C-Field Current

- Photo-Detector

©Microsemi

Courtesy of WJ Riley 2002 PTTI Tutorial
State detection by optical scattering

Light Source → Scatter → Detect Fluorescence → Detect Absorption

Courtesy of Microsemi
“Fortuitous” overlap between the optical absorption lines of the two naturally-occurring isotopes, ^{85}Rb and ^{87}Rb.

Carver & Alley 1958

Isotopic Filtering of Rubidium 87 D Lines

©Microsemi

Courtesy of WJ Riley 2002 PTTI Tutorial
RbO atomic resonance linewidth, γ, is limited by decoherence of population inversion due to collisions with walls and other Rb atoms.

Nitrogen “buffer gas” atoms “immobilize” Rb with minimal decoherence:
- Reduces Rb-Rb and Rb-wall collisions
- Eliminates first-order Doppler shift

Dicke 1953
Rubidium RF Spectrum

Linewidth (and Q) limited by decoherence due to collisions between Rb and Rb, buffer gas, and cell walls.

Signal/Noise limited by shot noise of background light:

\[\text{Noise} \propto \sqrt{\text{Intensity}} \]

\[Q = 2 \times 10^7 \]

\[(S/N)_{1\text{Hz}} = 3000 \]

\[\sigma(1\text{sec}) = \frac{1}{(S/N)_{1\text{Hz}} \times Q} \]

\[\approx 2 \times 10^{-11} \]
Factors that impact rubidium clock performance

- Short-term stability
 - Optimize linewidth & S/N
 - Lamp output – gas mix, RF drive, temperature, etc.
 - Filter cell – gas mix, temperature
 - Resonance cell – Microwave phase stability, gas mix, cell temperature

- Medium-term stability
 - Thermal control circuits, thermal isolation
 - Gas mixtures to reduce temperature sensitivity
 - Ambient pressure effects (“oil-canning”)
 - Magnetic shielding

- Long-term stability (drift)
 - Stability of buffer gas mixture
 - Rubidium migration

EG&G RFS-10 Physics
HP 5065A circa 1970

- 33 Watts, 37 lbs
- $\sigma_y(\tau) < 5 \times 10^{-12} \tau^{-1/2}$
- Drift < 2x10^{-11}/month

©Tom van Baak
www.leapsecond.com

Courtesy of Microsemi
Microwave Atomic Clock Examples:
Chip Scale Atomic Clocks
Microwave atomic clock examples: Chip-Scale Atomic Clock (CSAC)

Requires Resonant Cavity

High-Bandwidth VCSEL is Enabling Technology

Laser Power

Detuning [GHz]
CSAC: A 10 mW Physics Package

- Tensioned polyimide suspension
- Microfabricated Silicon vapor cell
- Low-power Vertical-Cavity Surface Emitting Laser (VCSEL)
- Vacuum-packaged to eliminate convection/conduction
- Overall Thermal Resistance 7000°C/W

Courtesy of Microsemi
Commercial CSAC: SA.45s

©Microsemi

Lid
Top Shield
C-Field Coil
Physics Package
PCB
Lower Shield
Baseplate

©Microsemi
SA.45s Short-term Stability

FREQUENCY STABILITY

Overlapping Allan Deviation, $\sigma_y(\tau)$

Averaging Time, τ, Seconds
Microwave Atomic Clock Examples:
The Hydrogen Maser
Active Hydrogen Maser

- Active Device analogous to laser
- Excellent short term stability (10^{-13} at 1 s, 10^{-15} at 1000 s)
- Drifts with cavity/wall properties: 10^{-16} – 10^{-15} /day typical
• Q is very high: $\approx (1.4 \text{ GHz}/1 \text{ Hz}) = 10^9$
• Signal is very small: $\approx -110 \text{ dBm}$
• S/N is dominated by front-end electronic noise
Commercial Hydrogen Maser

Microsemi Model MHM2010

Courtesy of Microsemi
Hydrogen Maser Long-term Stability

FREQUENCY STABILITY
USNO NAV-12 vs. Master Clock

Overlapping Allan Deviation, $\sigma_y(\tau)$

<table>
<thead>
<tr>
<th>Tau</th>
<th>Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.60e+03</td>
<td>2.63e-15</td>
</tr>
<tr>
<td>7.20e+03</td>
<td>2.54e-15</td>
</tr>
<tr>
<td>1.44e+04</td>
<td>2.24e-15</td>
</tr>
<tr>
<td>2.88e+04</td>
<td>1.77e-15</td>
</tr>
<tr>
<td>5.76e+04</td>
<td>1.46e-15</td>
</tr>
<tr>
<td>1.15e+05</td>
<td>1.41e-15</td>
</tr>
<tr>
<td>2.30e+05</td>
<td>1.34e-15</td>
</tr>
<tr>
<td>4.61e+05</td>
<td>1.02e-15</td>
</tr>
<tr>
<td>9.22e+05</td>
<td>8.61e-16</td>
</tr>
<tr>
<td>1.84e+06</td>
<td>9.41e-16</td>
</tr>
<tr>
<td>3.69e+06</td>
<td>1.56e-15</td>
</tr>
<tr>
<td>7.37e+06</td>
<td>2.41e-15</td>
</tr>
</tbody>
</table>

Averaging Time, τ, Seconds

U.S. Gov't not subject to copyright

Courtesy of Microsemi
Active Hydrogen Maser Summary

+ Active oscillator
 • Gain provided by continuous injection of population-inverted atoms
 • Very high Q
+ Good short-term stability
 • Limited by noise in electronic receiver for small signal

- Intrinsic accuracy limited by wall properties, cavity detuning, H density
 • Requires periodic frequency calibration
 • Long-term drift

- Relatively large and expensive device relative to other commercial clocks
 • Floor-standing, 150W, about $200K
 • Typically housed in environmental chamber to minimize perturbations

• Instrument of choice for Ultimate short-term stability
 • Radio astronomy
 • International timekeeping
 • Fundamental science
Active Hydrogen Maser Stability

Overlapping Allan Deviation vs. Averaging Time

- Hydrogen Maser Specification
- Commercial Rubidium Oscillator
- High Performance Cesium

Courtesy of Microsemi
Sidebar: New Techniques
Side bar 1: Laser Cooling

How it works

Atom with Velocity v to "right"

Doppler shift:

$\Delta f = \frac{f_0(v/c)}{c}$

Atom with Velocity v to "left"

No absorption

Absorb "red-detuned" photon directionally with change in momentum:

$\Delta p = -\frac{hc}{f_0 - \Delta f}$

Incident Photon With energy $h(v_0 - \Delta v)$

Emitting Photon With energy $h(v_0)$

Net effect: atom slows down in 1D
Now add “red-detuned” lasers in all three directions

ALL DIRECTIONS SLOWED BY LIGHT:

“OPTICAL MOLASSES”

Sub-Doppler cooling -> ~ 1 uK
Average velocity ~ 1 cm/s
Side bar 1: Laser Cooling

Why it is useful for clocks

Atom confinement for $O(s)$ instead of $O(ms)$

- Enables trapping and in-situ interrogation
 - Eliminate “end-to-end” effects
 - trapping
 - Extends confinement indefinitely:
 - very long interrogation times possible

- Enables moving atom ensembles over macroscopic distances
 - Atomic fountains
Side bar 2: Neutral Atom Trapping

- Combine detuning and Zeeman shift to create a position-dependent restoring force
- Circular polarization drives $\Delta m = 1$ Zeeman transitions
- Strong field away from geometric center shifts transition into resonance with laser
 - \Rightarrow light pressure
- Weak field in center: laser off resonance – little or no interaction with atoms
- Atoms localized (and cooled) in 1D
- Extend to 3D: Magneto Optical Trap (MOT)
Side bar 3: Ion Trapping
The quadrupole Paul Trap
(Hans Dehmelt and Wolfgang Paul, Nobel Prize, 1989*)

Well Depth: \[D = \frac{q_e V_0^2}{4m\Omega r_0^2} \]

Typical: several eV

\[V_0 = \text{rf amplitude (e.g., 300V)} \]
\[m = \text{ion mass (e.g., mercury 3.3x10^{-25} kg)} \]
\[\Omega = \text{rf frequency (e.g., 2\pi x 10 MHz)} \]
\[r_0 = \text{ring inner radius (e.g., 1 mm)} \]

*Normal Ramsey shared this Nobel prize for his invention of the method of separated oscillatory fields
Number of ions scales up linearly

\[N_{lin} = \frac{3}{5} \left(\frac{L}{R_{sph}} \right) N_{sph} \]

Side bar 3: Ion Trapping
The multipole linear ion trap*

Microwave Atomic Clock Examples Part 2: The Cesium Fountain Clock
Atomic fountain clocks: concept

Cryogenic Sapphire Oscillator

μW from laser stabilized comb

J. Guéna et al., IEEE TUFFC 59, 391 (2012)

Ramsey fringes

Atomic quality factor:

\[Q_{at} = \nu_{ef} / \Delta \nu \approx 9.8 \times 10^9 \]

Best frequency stability (Quantum Projection Noise limited): 1.6x10^{-14} @1s

\[\sigma_{\delta P} \approx 2 \times 10^{-4} \text{ in a single measurement} \]

(\sim 1.6 \text{ s})

Best accuracy: (2-3)x10^{-16}

Slide courtesy J. Guéna, SYRTE
Atomic Fountain Clocks: Installations

PRIMARY STANDARDS: Most national metrology labs, including:

• NIST (USA)
• NPL (UK)
• SYRTE (France)
• PTB (Germany)

CONTINUOUSLY RUNNING ENSEMBLES:

• USNO (USA)
• Others soon...
Atomic Fountain Clocks: Early research at USNO circa 1997

Courtesy US Naval Observatory
Atomic Fountain Clock Ensemble at SYRTE

FO1 fountain
$^{133}\text{Cs hfs}$

CSO Macroscopic oscillator

FO2 dual fountain
$^{87}\text{Rb},^{133}\text{Cs hfs}$

FOM transportable fountain
$^{133}\text{Cs hfs}$

H-maser

GPS
TWSTFT

NMIs & BIPM

Slide courtesy J. Guéna, SYRTE
SYRTE fountain uncertainty budgets

<table>
<thead>
<tr>
<th>Unit 10^{-16}</th>
<th>FO1</th>
<th>FO2-Cs</th>
<th>FOM</th>
<th>FO2-Rb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadratic Zeeman Shift</td>
<td>-1274.5 ± 0.4</td>
<td>-1915.9 ± 0.3</td>
<td>-305.6 ± 1.2</td>
<td>-3465.5 ± 0.7</td>
</tr>
<tr>
<td>BlackBody Radiation</td>
<td>172.6 ± 0.6</td>
<td>168.0 ± 0.6</td>
<td>165.6 ± 0.6</td>
<td>122.8 ± 1.3</td>
</tr>
<tr>
<td>Collisions and Cavity Pulling</td>
<td>70.5 ± 1.4</td>
<td>112.0 ± 1.2</td>
<td>28.6 ± 5.0</td>
<td>2.0 ± 2.5</td>
</tr>
<tr>
<td>Distributed Cavity Phase Shift</td>
<td>-1.0 ± 2.7</td>
<td>-0.9 ± 0.9</td>
<td>-0.7 ± 1.6</td>
<td>0.4 ± 1.0</td>
</tr>
<tr>
<td>Spectral Purity and Leakage</td>
<td><1.0</td>
<td><0.5</td>
<td><4.0</td>
<td><0.5</td>
</tr>
<tr>
<td>Ramsey & Rabi pulling</td>
<td><1.0</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Microwave Lensing</td>
<td>-0.7 ± 0.7</td>
<td>-0.7 ± 0.7</td>
<td>-0.9 ± 0.9</td>
<td>-0.7 ± 0.7</td>
</tr>
<tr>
<td>Second-Order Doppler Shift</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Background Collisions</td>
<td><0.3</td>
<td><1.0</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Total without Red Shift</td>
<td>1033.1 ± 3.5</td>
<td>-1637.5 ± 2.1</td>
<td>-113.0 ± 6.9</td>
<td>-3341. ± 3.3</td>
</tr>
<tr>
<td>Red Shift</td>
<td>-69.3 ± 1.0</td>
<td>-65.4 ± 1.0</td>
<td>-68.7 ± 1.0</td>
<td>-65.4 ± 1.0</td>
</tr>
<tr>
<td>Total with Red Shift</td>
<td>-1102.4 ± 3.7</td>
<td>-1702.9 ± 2.3</td>
<td>-181.7 ± 6.9</td>
<td>-3406.4 ± 3.5</td>
</tr>
</tbody>
</table>

References

Contribution of SYRTE fountains to TAI

Data extracted from the BIPM Circular T

- Each month typically 4 to 6 Cs fountains over the world contribute to the accuracy of TAI with a calibration of a H-maser.

- About 40 to 50 % of the calibration were provided by the LNE-SYRTE fountains over the past 8 years

- Since 2012 FO2-Rb contribute as a secondary representation of the second and participate to the steering of TAI starting June 2013.

Slide courtesy J. Guéna, SYRTE
Microwave Atomic Clock Examples Part 2: Trapped Ion Clocks
Trapped Ion Clocks

Two flavors:

1) Laser Cooled
2) Room Temperature
Trapped Ion Clocks: Laser Cooled

NIST laser-cooled trapped mercury ion clock

199Hg Microwave Clock
(inaccuracy = 3.4 parts in 10^13)

Support Rod
(for applying electric field)

Imaging Lens

End Cap

Trap Rod

40.5 GHz Microwave Horn

T = 4 K

photos courtesy Jim Bergquist and Dave Wineland, NIST
Trapped Ion Clocks: Laser Cooled

NIST laser-cooled trapped mercury ion clock

• 10s Ramsey, 8 ions
• Achieved 3×10^{-15} accuracy and $3.3 \times 10^{-13}/\tau^{1/2}$ short-term stability*
• Comparable to laser-cooled fountains at the time
• Atomic line Q as good as 10^{13} using a 100 s Ramsey time (not shown)

Courtesy Jim Bergquist and Dave Wineland, NIST

Trapped Ion Clocks: Room Temperature (JPL)
Room Temperature Mercury Trapped Ion Clocks Overview

• Long life, continuous, high stability operation
 – Ultra-stable timekeeping & autonomy
 – Amenable to small, low power operation.

• Mercury Ion Clock Paths and Applications:

 1. Ultra-Stable Performance\(^1\): UTC timescales
 “Compensated” Multi-pole ion clock technologies:
 • \(10^{-16}\) at 1 to 10 days, drift \(\leq 10^{-17}/\text{day}\).
 • \(10^{-15}\) short term stability (~1 sec) via super LO’s.

 2. Space: DSAC Technology Demonstration Mission\(^2\) (TRL 5-7)
 • Deep Space: 20W and 5 kg goal
 • GNSS: \(1 \times 10^{-13}\) short term, \(10^{-15}\) at 1 to 10 days
 • Science and other apps….

 3. Ultra-small, low power
 • Few cm\(^3\) ion trap\(^3\)
 • Miniature UV light sources\(^4\) and LO’s

\(^2\) R.L. Tjoelker, et al., to be published in IEEE TUFFC
\(^3\) J.D. Prestage, et al., PTTI (2013)
\(^4\) L. Yi, et al., PTTI (2013)
Room Temperature Mercury Trapped Ion Clocks Overview

Key Performance Features:

- 10^6-10^7 199Hg$^+$ trapped ions
 - No wall collisions, high Q microwave line
 - Buffer gas cooled to \sim300K
 - Multi-pole ion trap — low T sensitivity

- **State selection:**
 - Optical Pumping from 202Hg$^+$ lamp
 - 1-2 UV photons per second scattered

- **High Clock Transition:**
 - 40,507,347,996.8 Hz — low B sensitivity

- Adapts to variety of Local Oscillators — flexible

Key Reliability Features: — practical

- No Lasers
- No Cryogenics
- No Microwave cavity
- No Light Shift
- Low Consumables
The Multi-pole Ion Trap – A Comparison

Multi-pole (12) RF Trap

Spherical Quadrupole RF Trap

Linear Quadrupole RF Trap

Field-free region at one point in center of trap

Field-free region on a line

Field-"free" Region in a volume

Mercury Ion Energy Level Diagrams

199Hg+ energy level scheme

- **S_{1/2}**
 - F=1
 - F=0

- **P_{1/2}**
 - F=1
 - F=0

194 nm optical pumping

Clock transition:

199Hg+: 40.5 GHz

201Hg+ energy level scheme

- **S_{1/2}**
 - F=1
 - F=2

- **P_{1/2}**
 - F=1
 - F=2

194 nm optical pumping

Clock transition:

201Hg+: 29.9 GHz

Better 198/201 overlap =>
- possibly more signal
- possibly faster OP

- **199Hg**
- **201Hg**
Mercury Ion Normal Clock Operation

- **Ion Loading, State selection**
- **Microwave interrogation**
- **State readout**

- Detect decaying signal:
 - Lamp off during microwave interrogation avoids light shift
 - Detection gate = OP time: optimal SNR
Mercury Ion Level Structure Revisited: State Preparation Challenges

$^{201}\text{Hg}^+$

$P_{1/2} F=2$

$m_f=+2$

$S_{1/2} F=1$

$m_f=-2$

$m_f=+2$

$m_f=-1$

29 GHz

201Hg^+

$S_{1/2} F=1$

$m_f=+1$

$m_f=0$

$m_f=-1$

194 nm

$S_{1/2} F=2$

$m_f=+2$

$m_f=+1$

$m_f=0$

$m_f=-1$

$m_f=-2$

Compare to $^{199}\text{Hg}^+$:

$S_{1/2} F=0$

$m_f=0$

$m_f=+1$

$m_f=-1$
Mercury Ion Level Structure Revisited: State Preparation Challenges

199Hg⁺ Optical Pumping

P₁/₂F=1

S₁/₂F=1

S₁/₂F=0

194 nm

201Hg⁺ Optical Pumping

P₁/₂F=2

S₁/₂F=1

S₁/₂F=2

194 nm
Mercury Ion Level Structure Revisited: State Preparation Challenges

$^{201}\text{Hg}^+$ Optical/Microwave Pumping scheme

Microwave pump:
- $\Delta m=0 \Rightarrow$ polarization same as clock
- inverted level structure $\Rightarrow \Delta m=0$ levels well resolved
Room Temperature Mercury Ion Clock Performance

Allan Deviation

Time (sec)

DSAC Technology Demonstration Mission (TDM) will operate with a quartz based USO.
Room Temperature Mercury Ion Clock Frequency
40.5 GHz Sensitivities impacting long term stability
(Secondary sensitivities enter through these)

1. Magnetic Shifts
 - Shield external fluctuations
 - Stable bias field
 \[\nu = \nu_o + C_B B^2 \quad C_B \propto \frac{1}{\nu_o} \quad \frac{1}{\nu_o} \frac{\partial \nu}{\partial B} \propto \frac{B}{\nu_o^2} \]

2. Second-order Doppler Shifts
 - Ion number/space charge & temperature variations
 - Low sensitivity due to multi-pole ion trap design.
 \[\frac{\Delta f}{f} = -\frac{3k_B T}{2mc^2} (1 + \frac{2}{3} N_d^k) \quad N_d^k = \frac{1}{k-1} \]

3. Pressure/collision Shifts
 - Use low shifter for buffer gas (Neon).
 - Reduce all other gases via ultra high vacuum practices.
 - Minimize time variability of trace gasses.

Achievable long term stability depends on the specific implementation.
Achieving Ultra-Stability in Room Temperature Ion Clocks: Magnetic Compensation

Second order Doppler shift

\[
\left(\frac{df}{f} \right)_{TSOD} = - \frac{3k_BT}{2mc^2} \left(1 + \frac{2/3}{k-1} \right)
\]
Ultra-Stability using Magnetic Compensation

Second order Zeeman shift (Briet-Rabi)

\[
\left(\frac{df}{f}\right)_{soz} = -\frac{A}{2} \sqrt{1 + \left(\frac{2\mu_B B}{hA}\right)^2}
\]

Compensated number shift

Second order Doppler shift

\[
\left(\frac{df}{f}\right)_{TSOD} = -\frac{3k_B T}{2mc^2} \left(1 + \frac{2/3}{k - 1}\right)
\]
Long-Term Performance of LITS-9: Magnetic Compensation

![Graph showing frequency offset vs. ion number, with various lines and markers indicating different pole configurations.]

Sensitivity to ion number $< 5 \times 10^{-17}$

1% change: $< 1 \times 10^{-18}$
Long-Term Performance of LITS-9: Magnetic Compensation

\[\Delta f = -950(26) \mu \text{Hz} = 2.3 \times 10^{-14} \]

\[\Delta f = -64(19) \mu \text{Hz} = 1.6 \times 10^{-15} \]

Compensation gives 15x reduction in sensitivity

Ion number reduced by 20%
LITS-9: Record Q

New lamp operational method:
- record line Q for LITS: 4.7×10^{12}
- second highest Q ever recorded for a microwave standard

$T_r = 65$ s!

$(\Delta f = 8.6$ mHz$)$
Stability Evaluation: what determines small residual instability?

<table>
<thead>
<tr>
<th>Effect</th>
<th>Sensitivity</th>
<th>Units</th>
<th>Change</th>
<th>$\Delta f/f$ (x10^{-17}/day)</th>
<th>Uncertainty (x10^{-17}/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature-dependent second-order Doppler shift</td>
<td>+1.1(2.2)x10^{-8}</td>
<td>torr^{-1}</td>
<td>-3.6(0.9)x10^{-7} torr</td>
<td>-1.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Collision shift due to neon buffer gas</td>
<td>+8.5(1.7)x10^{-9}</td>
<td>torr^{-1}</td>
<td>-3.6(0.9)x10^{-7} torr</td>
<td>-1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Collision shift due to other background gas (CH₄ dominates)</td>
<td>-3.6x10^{-5}</td>
<td>torr^{-1}</td>
<td>\leq +7.1x10^{-11} torr</td>
<td>--</td>
<td>0.94</td>
</tr>
<tr>
<td>Number-dependent second-order Doppler shift</td>
<td>+7.1(0.8)x10^{-15}</td>
<td>$(\Delta N/N)^{-1}$</td>
<td>-0.32(0.05)</td>
<td>-0.84</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Improve Vacuum

L10 Design

DC electronics (behind)
Optics
Magnetic shields
C-field solenoid (red)
Quadrupole trap
Multi-pole trap
Microwave delivery

~1 meter
Quadrupole to Multi-pole Transfer Efficiency

Trapped Hg+ Quadrupole Trap Multi-pole Trap

electron beam

Graph showing amplitude over time.
Short Term Clock Performance

Clock Transition Spectroscopy:

Here:
• Peak SNR ~70
• SNR*Q < 4x10^{-14}/sqrt(tau)

Initial short term stability

• 4.5x10^{-14}/sqrt(tau)
• T=40s
Initial FSTL1 Long-Term Performance: comparison to UTC(USNO)

- GPS CP Time transfer
- Sealed vacuum
- No observed drift at 2.4×10^{-16}/day level
Microwave Atomic Clock Applications
Microwave Atomic Clock Applications

- GPS
- Deep Space Navigation
- Chip-scale clocks
- Fundamental Physics
Microwave Atomic Clock Applications: GPS
Microwave atomic clock applications: Deep space navigation

Enables Multiple Space Craft Per Aperture Tracking at Mars

Today’s 2-Way Radio Navigation

Tomorrow’s 1-Way Radio Navigation

= DSAC on-board
Microwave atomic clock applications:
Deep space navigation

NASA’s DSAC Technology Demonstration Mission

Develop advanced prototype (‘Demo Unit’) mercury-ion atomic clock for navigation/science in deep space and Earth

- Perform year-long demonstration in space beginning mid-2016 – advancing the technology to TRL 7
- Focus on maturing the new technology – ion trap and optical systems – other system components (i.e. payload controllers, USO, GPS) size, weight, power (SWaP) dependent on resources/schedule
- Identify pathways to ‘spin’ the design of a future operational unit (TRL 7 → 9) to be smaller, more power efficient – facilitated by a detailed report written for the next DSAC manager/engineers
DSAC Demonstration Summary & Future

10X further ion clock stability already demonstrated on ground if needed in space applications
Fundamental Physics with Rb/Cs fountains (SYRTE)

- 16 years of 87Rb ground state hyperfine frequency measurements against Cs: FO2-Rb against FO1 or FOM, and since 2009 against FO2-Cs operated simultaneously.

- Feb. to Aug. 2012 measurement

$$6 \, 834 \, 682 \, 610.904 \, 312 \, (3) \, \text{Hz} \, (\pm 4.4 \times 10^{-16})$$

\Rightarrow recommended value of Rb hf frequency

Graph:

- **Title:** FO2Cs – FO2Rb long term comparison (Dec. 2009 – Feb. 2016)
- **Data:**
 - Average difference: 1.1×10^{-16}
 - Statistical unc. down to 4.8×10^{-17}

Slide courtesy J. Guéna, SYRTE
Rb/Cs: search for time variation in fundamental constants

Weighted least-squares fit to a line

\[
\frac{d}{dt} \ln\left(\frac{v_{Rb}}{v_{Cs}} \right) = (-10.7 \pm 4.9) \times 10^{-17} \text{ yr}^{-1}
\]

⇒ limit on a potential variation of fundamental constants:

\[
\frac{d}{dt} \ln\left(\frac{g_{Rb}}{g_{Cs}} \alpha^{-0.49} \right) = (-10.7 \pm 4.9) \times 10^{-17} \text{ yr}^{-1}
\]

With QCD calculations: T.H. Dinh, et al., PRA79 (2009)

\[
\frac{d}{dt} \ln[\alpha^{-0.49} (m_q / \Lambda_{QCD})^{-0.021}] = (-10.7 \pm 4.9) \times 10^{-17} \text{ yr}^{-1}
\]

Slide courtesy J. Guéna, SYRTE
Rb/Cs: search for annual variations

- **Differential redshift test**
 \[\frac{d\nu}{\nu} = (1 + \beta) \frac{dU}{c^2} \]
 \[\beta^{(87)Rb} - \beta^{(133)Cs} = (-4.7 \pm 5.3) \times 10^{-7} \]

- **Variation of constants with gravity**
 \[c^2 \frac{d}{dU} \ln \left(\frac{g_{Rb}}{g_{Cs}} \alpha^{-0.49} \right) = (-4.7 \pm 5.3) \times 10^{-7} \]
 \[\frac{d}{dt} \ln \left(\alpha^{-0.49} \left(\frac{m_q}{\Lambda_{QCD}} \right)^{-0.021} \right) = (-4.7 \pm 5.3) \times 10^{-17} \text{ yr}^{-1} \]
Fundamental Physics with Ion Clocks:
\(^{201}\text{Hg}^+/^{199}\text{Hg}^+\) Dual Isotope Clock

- HF clocks: depend on \(\alpha, \mu\) via
 \[A \propto (m_e e^4/\hbar^2) [\alpha^2 F_{\text{rel}}(Z\alpha)] (\mu m_e/m_p) \]
- some ambiguity
- Direct optical clock comparisons depend only on \(\alpha\)
- \(\mu \propto m_q/\Lambda_{\text{QCD}}^*\)
- \(B_{201} \approx -B_{199}^{**}\)

\[\frac{\partial}{\partial \alpha} \ln \frac{f_{201}}{f_{199}} = \left[B_{201} - B_{199} \right] \frac{\partial}{\partial \ln \left(\frac{m_q}{\Lambda_{\text{QCD}}} \right)} \]

- \(B_{201} - B_{199} \approx 0.2\) - BIG!
- Would provide a stand-alone independent limit on \(m_q/\Lambda_{\text{QCD}}\) variation

Dual isotope clock will reduce systematic sensitivity in difference measurement

Fundamental Physics with Ion Clocks: Hyperfine Anomaly (Bohr-Weisskopf Effect*)

$^{201}\text{Hg}^+$ HF clock: 29.9543658213(17) GHz
(E.A. Burt, et al., PRA 79, 062506 (2009))

$^{199}\text{Hg}^+$ HF clock: 40.50734799684159(41) GHz
(D.J. Berkeland, et al., PRL 80, 2089 (1998))

Point nucleus:

$$\frac{\Delta f_1}{\Delta f_2} = \left(\frac{\mu_{I_1}/I_1}{\mu_{I_2}/I_2}\right) \frac{F_1}{F_2}$$

Finite nucleus:

$$\frac{\Delta f_1}{\Delta f_2} = (1 + \Delta) \left(\frac{\mu_{I_1}/I_1}{\mu_{I_2}/I_2}\right) \frac{F_1}{F_2}$$

HF anomaly

*A. Bohr and V.F. Weisskopf, PR 77, 94 (1950)
Hyperfine Anomaly

$^{201}\text{Hg}^+$ HF clock:
29.9543658213(17) GHz

$^{199}\text{Hg}^+$ HF clock:
40.50734799684159(41) GHz
(D.J. Berkeland, et al., PRL 80, 2089 (1998))

$\frac{\Delta f_1}{\Delta f_2} = (1 + \Delta) \left(\frac{\mu_{I_1}/I_1}{\mu_{I_2}/I_2} \right) \frac{F_1}{F_2}$
$f_{201} = -0.739479805577(3)$

$\Delta \left(S_{1/2}, ^{199}\text{Hg}^+, ^{201}\text{Hg}^+ \right) = -0.0016257(5)$
E.A. Burt, et al., PRA 79, 062506 (2009)

Previous values
Hg: -0.001627(19), (Reimann and McDermott, PRC 7, 2065 (1973))
Hg$^+$: -.0034 to +0.0056 (Grandinetti, et al., (1986))

- Value now limited by knowledge of μ_I
- Agrees with neutral value: valence screening has minimal effect
Microwave Clock Applications: Fundamental Physics and ACES

ISS

ACES ground terminal

FSTL1 reference:

- Timing Accuracy in Space
- Improved Gravitation Red Shift Measurement
Microwave Clock Applications: Magnetometry Doppler-Free Field-Sensitive Spectroscopy

F=1, m_F=-1 to F=2, m_F=-1
\[\Delta m_F = 0 \]

Lamb-Dicke Confinement:
\[\lambda = 1 \text{ cm} \]
\[r_0 < 1 \text{ mm} \]

uWave Horn

29.954... GHz

C-field
Doppler-Free Field-Sensitive Spectroscopy

$F=1, m_F=-1$ to $F=2, m_F=-1$

$\Delta m_F = 0$

$f_{-1,-1} = 29\ 954\ 561\ 137(30)$ Hz

$B_0 = 139.341(42)$ mG

$\Delta f = +195$ kHz

Residual broadening due to C-field current source instability

- space applications
- 201Hg$^+$ magnetometer for 199Hg$^+$

E.A. Burt, et al., PRA 79, 062506 (2009)

29.954... GHz

uWave Horn

C-field
Do fundamental constants (and clocks) vary with time?

- Prestage PRL [1]
- Cosmology vs. clocks: different things to say [2]
- Early microwave measurements [3]
- Optical clocks take over alpha-dot [4]
- Microwave clocks play a role in variation of nuclear constants [5]
Textbook References
(see specific slides for journal references)

- Woodgate
- Foote
- Metcalf
- Vanier and Audoin
- Vanier and Tomescu
- Yariv
- Nagourney