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EXPERIMENTS WITH JULIA FOR ASTRODYNAMICS
APPLICATIONS

Nitin Arora⇤, and Anastassios Petropoulos†

Julia’s potential for solving complex astrodynamics problems is studied. Julia is
a high-level, new, dynamic programming language with performance approaching
C/Fortran and has features like inbuilt parallelism, variable accuracy, integrated
numerical libraries and direct C and Fortran interfaces. Two astrodynamics prob-
lems are solved in Julia: 1) Lambert’s problem, using the vercosine formulation
and 2) trajectory integration. Implemented algorithms are compared with C and
Fortran based counterparts on key performance parameters (speed, development
effort, etc). Using Julia for fast and reliable astrodynamics software development
is also discussed.

INTRODUCTION

With the advent of modern computing, complex algorithms (serial or parallel) are increasingly
being adopted for solving a variety astrodynamics problems like multiple-gravity-assist impulsive
trajectory search, tour design, space situation awareness, parallel high-fidelity trajectory propaga-
tion, multi-body low-thrust trajectory design and optimization etc. Dynamically typed languages
like MATLAB, Octave, Python (with SciPy and Numpy) provide the programmer with a high-level,
interactive, dynamic environment for algorithm development and are increasingly being preferred
for rapidly implementing some of these complex algorithms in astrodynamics. One the other hand,
statically typed languages like C and Fortran still remain as the prime choice for implementing
computationally intensive algorithms in various scientific disciplines, including astrodynamics.

A common strategy to achieve high computational efficiency while still enjoying the benefits of a
high-level dynamic programming language, is the two-language approach (a result of Ousterhout’s
dichotomy1). In this approach, a high-level dynamic language (e.g Python) acts as a front end with
compute-intensive parts of the algorithm compiled in C or Fortran into functions or libraries which
are then glued together using a wrapper layer. Even though this leads to better runtime performance
than just using a dynamic language, there is an inherit compromise associated with this approach.
Extra computational and personnel resources are required to program and maintain the glue layer
(consisting of complex wrappers) between the two languages. This added complexity also results
in compatibility issues, hard to detect errors, poor code readability, limited parallelism, complex
debugging procedures, and performance degradation due to the wrapper layer itself. Furthermore, as
modern astrodynamics algorithms have increased in complexity, it is becoming increasingly difficult
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to divide them into compute-intensive and non-compute-intensive parts. It is often easier to write
more efficient and maintainable software without forcing such a distinction.

To solve the above stated problems, new programming languages, challenging the Ousterhout’s
dichotomy, have been proposed (like Julia,2 Google’s GO,3 Apple’s Swift,4 PyPy5 etc.) and are
under rapid development. The most relevant of new programming languages, targeted specifically
for numerical and scientific computing, is Julia.2, 6 Julia is a open source, high-level dynamic pro-
gramming language capable of performance (execution speed) approaching that of compiled C or
Fortran code. It has syntax similar to other technical computing environments like MATLAB and
enjoys attractive features like inbuilt parallelism capabilities, variable numerical accuracy, easy plot-
ting capabilities, inbuilt numerical libraries (like BLAS, LAPACK etc.) and tightly integrated high
performance solvers/optimization packages (JuMP,7 Sundials,8 Ipopt,9 KNITRO10 etc.). Another
major attractive feature is Julia’s ability to call Python, C and Fortran functions without any wrap-
per or glue code. This makes it possible to easily leverage optimized implementations of existing
astrodynamics function and libraries written in C or Fortran. More details can be found on the Julia
programming language website.11

Recognizing that the astrodynamics community stands to benefit from this new development, we
evaluate Julia’s performance, both from a user and a programmer perspective, on two key astro-
dynamics algorithms and problems. The first problem which is selected is the Lambert’s problem
which is solved using the recently proposed universal vercosine formulation.12 We also evaluate the
performance of a custom Julia integrator on an example two-body problem with varying eccentric-
ity. Algorithms implemented in Julia are compared to the Fortran based counterparts. A discussion
on using Julia for programming fast, reliable astrodynamics software is also given.

BRIEF OVERVIEW OF LANGUAGE FEATUERS

Figure 1 gives relative performance of various languages (including Julia v 0.3 and Fortran)
relative to C. Even though this benchmark is somewhat old, the fact that Julia is able to come
close to C and Fortran is quite remarkable. Figure 1 has been taken from the 2014 Julia language
reference article.2 This high performance is even more remarkable considering the fact the Julia is
dynamically typed like Python and syntactically math-friendly like MATLAB.

Julia achieves high computational performance by using the concept of type stability and lever-
aging the just-in-time (JIT) LLVM compiler.13 A program written in Julia with no variable type
information can be as slow as MATLAB or Python, but addition of few type keywords, results in
orders-of-magnitude faster execution times.

Julia also provides; a large base library which is mostly written in Julia itself, open source C
and Fortran libraries for linear algebra, random-number generation, signal processing, and string
processing. Julia’s developer community on Git hub is very active and is contributing a variety of
numerical packages thanks to the language’s built-in package manager. Similar to Ipython,14 there
also exists a web browser based version of Julia known as Ijulia (not tested for this work).

Relevant language features

Table 1 gives a list of language features relevant to astrodynamics along with a brief discretion
and possible applications. Some of the planned features in the upcoming Julia v-0.4 release are also
mentioned.
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Figure 1. Benchmark times relative to C (smaller is better, C performance = 1.0); plot from article2

Table 1. Partial list of Julia features
Feature Description Benefits Application
Fast execution times via type stability and JIT compiled code execution speed (⇠0.5X Fortran) all algorithms
Multiple dispatch function behavior based on argument types code size, performance complicated algorithms
Math based syntax syntax similar to Python / MATLAB code development, performance scripting, optimization, driver layer
Packages inbuilt package manager code development, ease of use all algorithms
C/Fortran interface direct access to C/Fortran functions code development, ease of use reuse of existing astrodynamics software
Parallel programming part of the language performance parallel trajectory integration, broad search etc.
Large numerical library inbuilt linear algebra/optimization packages performance, ease of use trajectory optimization, mission design
Rational/Infinite arithmetic inbuilt rational, infinite precision arithmetic numerical studies, code debugging algorithmic comparisons, trajectory integration
Meta programming ability to auto generate problem specific code ease of use, code generalization large mission design tools
Interactive shell interactive shell like Python, MATLAB development, code profiling and debugging All algorithms
Code compilation (in v0.4) compile binaries code distribution, ease of use All algorithms
Unicode support support characters variables (�,⇡ etc.) ease of use All algorithms
Open source MIT open source license free to use All algorithms

Julia’s intuitive syntax

This section is intended as a brief introduction to some aspects of Julia’s syntax to give a flavor
of how easy it is to get started with Julia. There is much greater depth that is left for the interested
reader to explore using Julia’s on-line documentation and other on-line resources developed by the
vibrant, numerical-programming-minded user community.

Julia was born out of a desire to make easier the numerical programming so often used in the
scientific and engineering disciplines. With this pedigree in mind, Julia’s fundamental data types
include of course integers and real numbers of various ilks (signed, unsigned, 32-bit, 64-bit, etc).
User-defined data types, which can be thought of as structures, can also be used, for example to han-
dle quaternions, or to over-ride Julia’s default handling of complex numbers. Julia’s syntax makes it
very easy to use not only scalar variables, but especially numerical arrays and parts thereof. Arrays
and their subparts can be operated upon and referenced with a very concise and intuitive syntax,
without sacrificing execution speed. For astrodynamics this is crucial, since our bread and butter
are vectors (position, velocity, thrust, etc) and matrices (rotation matrices, state transition matrices,
etc). Furthermore, Julia uses the concept of multiple dispatch (similar to function overloading),
which makes it easy and efficient to have functions or operators that can act on a variety of data
types. For example, one can easily list the datatypes and methods associated with the “+” operator,
and can then add to them or modify them. User-defined functions can be easily created, both at the
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Julia command line and within scripts; specifically, there is no need to keep the functions in a sepa-
rate file, which is handy for functions that aren’t generic enough to warrant creating a package (i.e.
library) to contain them. Type declarations are optional for variables; if they are implicitly typed,
their type is determined based on what they are assigned. Type declarations are currently possible
only in functions, not at the command line (or REPL) since Julia does not yet have constant-type
globals. Type “assertions” are, however, possible at the command line and inside the functions; they
serve as type checks since an exception is thrown if the expression does not evaluate to the asserted
type.

Here we develop a simplistic, short, toy exercise to demonstrate some of the above aspects using
the vis viva equation for an Earth-orbiting spacecraft.

One can type the following at the Julia command line directly after starting an interactive Julia
session. (Alternatively, it can be typed into a file, named say jscript.jl, and the file invoked
at the command line by typing include("jscript.jl").) The semi-colon character prevents
the value from being echoed to the screen.

µ = 368600.5; # µ= gm, default: 64-bit float: Float64
a = 7e3; # period used as decimal point
r = 6.9e3;

vvv(µ,a,r) = sqrt( 2*µ ./r - µ ./a ); # vis viva velocity function
# () used for function arguments
# , used to separate arguments
vvv(µ,a,r)
# 7.360944936077629 is printed to the screen

# Let’s say we have some uncertainty in the range, r, and represent
# it by taking 100 random samples and storing them in an array:

runc = r + (rand(100)-0.5)*10;
# array created, named ‘‘runc’’
# Note: Intelligent element-wise operations:
# 100 random numbers (‘‘zero-mean’’), each multiplied by
# 10 and each product added to r

# Compute velocity for the 3 smallest and 3 largest values in runc
runc_s = sort(runc);
vvv(µ, a, runc_s[ [1:3 ; end-2:end] ])’

### the following is printed to the screen:
1x6 Array{Float64,2}:
7.36613 7.36603 7.36603 7.35591 7.35585 7.35583
###
# Note: function vvv accepts array input since all functions and
# operators used in the definition accept array arguments
# e.g. ./ means element-wise division.
# ’ means transpose (would otherwise have a column vector)
# [] used to dereference array elements
# array indices start at 1, ‘‘end’’ denotes last array index
# : is the range operator (includes upper limit, if possible)
# 1:3 is a column vector with the digits 1,2,3
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# (generally, eg 1:2:6 means from 1, by 2 to no more than 6)
# ; means vertical concatenation
# innermost [] creates the array of indices into runc_s

A word now on Julia’s multiple dispatch features. Julia’s official on-line documentation15 has
this to say:

Although it seems a simple concept, multiple dispatch on the types of values is
perhaps the single most powerful and central feature of the Julia language. Core
operations typically have dozens of methods:
. . .
Multiple dispatch together with the flexible parametric type system give Julia its
ability to abstractly express high-level algorithms decoupled from implementation
details, yet generate efficient, specialized code to handle each case at run time.

One should add that out of the box, this specifically applies to numerical algorithms and scientific
computing. One can easily extend these capabilities to be tuned to other domains in computing, if
desired, but, happily for engineers in the astrodynamics field, the numerical features are largely
ready-to-use in a coherent framework. For example, in the above code, the function vvv() auto-
matically handles numerical arrays in the expected way (e.g. the syntax 2*r means multiply each
element of the vector r by 2).

Multiple dispatch can be demonstrated in our vis viva example in the following admittedly
frivolous way. Let us add a method to the vvv() function, a method which is used only when the
third argument is of type Int64; this method does not replace the previous method, but is added to
the list of available methods for the function. The following is typed directly at the command line:

function vvv(µ,a,r::Int64) # vis viva alternative with a silly twist
µ = int(µ); # round to nearest integer (not truncation)
a = int(a); # round to nearest integer (not truncation)
v = sqrt(2*µ./r-µ ./a); # Int64 promoted to Float64 for operations
result = itrunc(v); # truncate to integer (remove decimal part)
end
methods(vvv)
# the following is printed to the screen:
# 2 methods for generic function "vvv":
vvv(µ,a,r::Int64) at none:2
vvv(µ,a,r) at none:1
#

vvv(µ,a,r)
# the following is printed to the screen:
7
#

vvv(µ,a,int(runc_s[1:3]))’
# the following is printed to the screen:
1x3 Array{Float64,2}:
7.36621 7.36621 7.36621
#
# this is because

5



# we have not defined a method for vvv(µ,a,r::Array{Int64})
# so the function call falls through to the generic method.

Formatted printing to a file or to the screen is another commonly needed task. There are a va-
riety of functions and built-in macros (denoted by @) that can be used for printing, such as show(),
print(), println(), print with color(), @printf(), @sprintf(). The fol-
lowing screen output provides a brief example of using the @printf() macro, including C-style
print format specifications, automatic string conversions, unicode characters, and the special nature
of built-in constants.

julia> @printf("Printing pi %lf\n",pi)
Printing pi ERROR: ‘decompose‘ has no...
...method matching decompose(::MathConst{:?})
in isfinite at float.jl:214

julia> @printf("Printing pi, %s\n",pi)
Printing pi, ⇡= 3.1415926535897...

julia> @printf("Printing pi, %s\n",pi*1)
Printing pi, 3.141592653589793

julia> @printf("Printing pi, %lf\n",pi*1)
Printing pi, 3.141593

julia> @printf("Printing pi, %f\n",pi*1)
Printing pi, 3.141593

julia> @printf("Printing e, %.5lf\n",e*1)
Printing e, 2.71828

julia> print("Another ", "printing of pi ", 1*pi)
Another printing of pi, 3.141592653589793

julia> str=sprint(print,"Another ", "printing of pi, ", 1*pi);
julia> str
"Another printing of pi, 3.141592653589793"

julia> print("Yet another ", "printing of $pi")
# using Julia’s variable substitution capability
Yet another printing of ⇡ = 3.1415926535897...

We have provided only the simplest of overviews of some of Julia’s syntax. Just with the func-
tions, for example, we omitted any description of multiple return values, variable number of argu-
ments, optional and keyword arguments, anonymous functions. Sometimes, however, these sim-
ple things are the hardest to find in the documentation. Perusing the documentation shows the
language’s breadth as well as the fastidious concern that the authors of Julia have for numerical
performance and ease of use.

Numerical packages in Julia

Even though Julia is new, it already enjoys a large number of quality optimization and numeri-
cal algorithm packages. The first place to start is the JuliaOPT organization which brings together
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various optimization related packages in Julia. Packages for Ipopt,9NLopt,16, 17 KNITRO,10 Sundi-
als8 and other highly respected numerical optimization software are already available. Download,
installation and update of these packages is controlled by the inbuilt package manager, thereby elim-
inating the need for manual installation (which is not always a smooth process). Furthermore, Julia
also has mathematical modeling packages for a limited set of optimization problems (e.g JuMP,
MathProgBase). Finally, packages for symbolic computation (similar to Maple) and automatic
differentiation are available or under rapid development. Julia also has a number of numerical in-
tegration packages available with MATLAB like interface. A subset of them is tested in this paper
against our own implementation.

Calling other programming languages

A useful feature in Julia is its ability to directly interface with compiled C and Fortran func-
tions and libraries. This feature is especially useful to the astrodynamics community due to a large
number of C/Fortran optimized legacy software.

We briefly touch on calling from Julia functions or procedures that are defined in shared object
libraries (or, dynamically linked libraries, in Window’s parlance), for example in Fortran. The
specific name to be used for the procedure will depend on the Fortran compiler, since compilers are
free to mangle or adorn names as they see fit in compiling the source code. For example, suppose we
have a Fortran library which contains the function angv and which has been compiled into a shared
object library named libmymath.so, wherein the function name has been mangled to angv by
the compiler. Then, this function, which returns the angle between two vectors of length n may be
called as follows from Julia (v 0.3.9):

julia> angle = ccall(
(:angv_, ‘‘path/to/libmymath.so’’), Cdouble,
(Ptr{Cint}, Ptr{Cdouble}, Ptr{Cdouble}),
&n,Vec1, Vec2
)

Note that simpler versions of the function “ccall” also exist in the language. Function pointers
to “C” function, can also be obtained using the “cfunction” in Julia.

Furthermore, the calls to the compiled C and Fortran are inlined by the LLVM compiler (during
JIT compilation) and have almost no runtime overhead. The user should be aware of difference, in
the syntax when switching from Julia-0.3 to Julia-0.4.

Julia also has the ability to directly call Python and MALTAB functions and scripts. Given the
heavy use of MATLAB in the astrodynamics community, having a direct interface in Julia is very
useful. The “MATLAB.jl” package18 provides just that. The authors have successfully used the
package for various problems and the interface seems to work fine.

Plotting in Julia

Given that Julia is a modern, dynamic language, it supports inline plotting capabilities in similar
ways to MATLAB and Python. There are currently three plotting packages available in Julia:

• Gadlfy

• PyPlot (Matplotlib)

• Winston
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Out the three, Gadfly is the most popular due to its ability to follow the “Grammar of Graphics”,19

resulting in beautiful, clean-looking plots. The only draw back to Gadfly is that it is still under
development and some critical features like 3D plotting are missing. One the other hand, “PyPlot”
which is basically a Julia interface to the widely used Python “Matplotlib” graphics library, has a
large number of features and has syntax similar to that of MATLAB. The third package, Winston,
is a 2D plotting package for Julia with a minimal interface (simpler than MATLAB in some cases).
All plots in this paper are made using Gadfly.

APPLICATION TO ASTRODYNAMICS

In this section we briefly compare performance between Fortran and Julia implementations of
solutions to two astrodynamics problems. All algorithms are tested on an Intel Xeon E5-2630 CPU
running the GFortran 4.8.3 compiler. The latest [underdevelopment, quasi-stable] version (0.4,
August/01/2015) of Julia is used for performance comparisons.

Lambert’s Problem

The first problem which is solved in Julia is the zero-revolution Lambert problem. We implement
the recently proposed vercosine algorithm in Julia and compare it to the highly optimized Fortran.12

The vercosine Lambert algorithm takes advantage of geometry-based parameters to simplify the
universal formulation of the Lambert time-of-flight equation. This equation, defined as a function
of the universal variable, requires only a single transcendental function evaluation and enjoys 40%
to 200% reduction in runtime over the popular Gooding’s method.12 Both Julia and Fortran Lambert
algorithm implementations are set to a dimensionless tolerance of 1E-13.

Figure 2. Lambert solver; performance relative to optimized Fortran version
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The Fortran version of the algorithm takes ⇠1400 lines, one the other hand the Julia version only
takes ⇠400 (liberally) lines of code. The code development time for the Julia version consisted
of: few hours to write the code and a day to test and optimize the implementation. In contrast, the
Fortran version was developed over many weeks and is optimized for high performance.

Figure 2 shows the ratio of the CPU time take by the Julia version as compared to the Fortran
version for different values of transfer orbit eccentricities. There are in total 1000 points shown
in Fig. 2 and each point corresponds to 3000 Lambert transfers, resulting in a total of 3 million
Lambert transfers. The Julia version of the vercosine Lambert algorithm is on average 2.5 times
slower than its Fortran counterpart. The difference in speed between the hyperbolic and elliptical
case is explained by the difference in the underlying algorithm for the two transfer types. The
vercosine algorithm relies on an inverse cosine (arccos) function for the elliptical case which is
currently more easily optimized in a statically compiled language like Fortran. For the hyperbolic
case the algorithm relies on sqrt and log functions, which enjoy highly optimized implementation
in Julia.

It should be noted that only a few hours were spent towards improving the Julia version. Further
optimization of the Julia code is likely to improve code performance.

Simple orbit propagation in Julia

The next problem solved is that of a simple two- sbody orbit propagation. The focus here is on
the integrators themselves.

Figure 3. CPU time ratios relative to Dopri 8(5,3) (Fortran version)

We implement a custom integrator in Julia based on the Dopri8(5,3) algorithm developed by
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Hairer, Norsett and Wanner.20 The method is based on a modification of the original Dormand-
Prince, Dopri8(7) method21 (8th-order integration with 7th-order corrections). Instead of a 7th-
order correction Dopri8(5,3), uses a 5th-order error estimate and does a 3rd-order correction. This
update improves algorithm stability and makes it possible to use with discontinuities. The updated
method uses 13 stages and uses in total 12 unique function evaluations per step.

Figure 4. # of steps relative to Dopri 8(5,3) (Fortran version)

We compare our implementation in Julia (Dopri8[5,3]) to its equivalent Fortran version, available
via the package “Dopri.jl”. The package provides a simplified interface in Julia to an optimized
Fortran implementation of the Dopri8(5,3) and Dopri5 (an explicit Runge-Kutta method of order
5[4] (using Dormand-Prince coefficients) algorithms.22 Both algorithms have been developed by
are available from Hairer and Wanner.23

Finally, we also evaluate the Runge-Kutta7(8) (called ODE78) integrator available from the
“ODE.jl” package written entirely in Julia. Note, that this package is still under development and
integrator is not yet optimized for performance.

Figures 3 and 4 shows performance of these integrators on a two-body orbit propagation problem
with varying eccentricity. The CPU time numbers are plotted relative to the Dopri8(5,3) Fortran
version, which is expectedly the fastest. Our optimized implementation of the Dopr8(5,3) algorithm
is found to be ⇠1.7 times slower that the optimized Fortran version and it outperforms the Dopri5
(Fortran) and ODE78 implementations. Another thing to note is that even though ODE78 (Julia)
takes fewer steps than Dopri5 (Fortran), it requires more function evaluations per step and is also
not optimized for performance.
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CONCLUSION

Application of Julia, a new, dynamic, high-performance, just-in-time-compiled programming
language for solving astrodynamics problems is investigated. Some of the salient features of the
language are listed and briefly discussed. Julia-based implementations of the vercosine Lambert’s
algorithm and the Dopri8(5,3) numerical integrator are developed and compared to their optimized,
Fortran-based counterparts. After only a few hours of development time, the Julia-based Lambert
solver is found to be approximately 2.5 times slower compared to an optimized Fortran version.
The Julia-based Dopri8(5,3) numerical integrator, when compared to its equivalent Fortran version,
is found to be ⇠1.7 slower. It also shown to outperform a 5th-order Dopri integrator implemented
in Fortran.

The relatively high performance of Julia in terms of computation time for a scripting language,
coupled with Julia’s mathematical-programming pedigree, ease-of-use, flexibility and breadth, make
Julia an attractive option for solving the numerical problems encountered in astrodynamics.
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