

American Institute of Aeronautics and Astronautics

1

Analyzing Cyber Security Threats on Cyber-Physical
Systems using Model-Based Systems Engineering

Aleksandr Kerzhner, Marc Pomerantz, Kymie Tan, Brian Campuzano, Kevin Dinkel,
Jeremy Pecharich, Viet Nguyen, Robert Steele, and Bryan Johnson

Jet Propulsion Laboratory Califomia Institute of Technology, Pasadena, CA 91109

Nomenclature
CPS = Cyber-physical system
MBSE = Model-Based Systems Engineering
SysML = Object Management Group’s Systems Modeling Language
SME = Subject Matter Expert
CVSS = Common Vulnerability Scoring System
NVD = National Vulnerability Database
SA = System Administrator

Abstract
The spectre of cyber attacks on aerospace systems can can no longer be ignored given that many of the components
and vulnerabilities that have been successfully exploited by the adversary on other infrastructures are the same as
those deployed and used within the aerospace environment. An important consideration with respect to the
mission/safety critical infrastructure supporting space operations is that an appropriate defensive response to an
attack invariably involves the need for high precision and accuracy, because an incorrect response can trigger
unacceptable losses involving lives and/or significant financial damage. A highly precise defensive response,
considering the typical complexity of aerospace environments, requires a detailed and well-founded understanding
of the underlying system where the goal of the defensive response is to preserve critical mission objectives in the
presence of adversarial activity. In this paper, a structured approach for modeling aerospace systems is described.
The approach includes physical elements, network topology, software applications, system functions, and usage
scenarios. We leverage Model-Based Systems Engineering methodology by utilizing the Object Management
Group’s Systems Modeling Language to represent the system being analyzed and also utilize model transformations
to change relevant aspects of the model into specialized analyses. A novel visualization approach is utilized to
visualize the entire model as a three-dimensional graph, allowing easier interaction with subject matter experts. The
model provides a unifying structure for analyzing the impact of a particular attack or a particular type of attack. Two
different example analysis types are demonstrated in this paper: a graph-based propagation analysis based on edge
labels, and a graph-based propagation analysis based on node labels.

I. Introduction
The desire for systems and operations to be resilient during a cyber attack is gaining prominence in the cyber
security industry. The increasing frequency, sophistication, and success of adversarial incursions has shown that
traditional preventive approaches, e.g. perimeter defenses and firewalls, are extremely insufficient in reducing the
impact of an attack. Consequently, the defense toolbox must include an approach that supports resilience. The
defense must tolerate the presence of the adversary while minimizing their impact on critical mission operations; for
example, mission critical operations could be protected by containing the threat to less critical systems. Resilience is
particularly important during difficult attacks, such as the zero-day and supply chain incursions, where prevention
by traditional means is nearly impossible.

At the core of the resilience paradigm is the ability for the defense to perform an impact analysis. By doing this, they
can reason through the various consequences of adversarial activities so that an appropriate response can be
composed and mission objectives can be preserved. In mission/safety critical environments such as those deployed
to support space operations, the appropriate response invariably involves the need for high precision and accuracy,
because an incorrect response can trigger unacceptable losses involving lives and/or significant financial damage.

American Institute of Aeronautics and Astronautics

2

Given the complexity of the systems that are typically deployed in mission/safety critical environments, impact
analysis is often very difficult to accomplish for a number of reasons. Such systems tend to operate in “siloes” where
the vertical focus is to obscure lateral dependencies on other siloes and underlying interconnectivities. The
supporting infrastructure for an enterprise (its processes, IT components, communication patterns, and so forth) tend
to evolve in pockets where the changes can be ineffectively documented and fragmented in time (e.g., upgrades that
are phased in over time). These factors not only make it difficult to analyze the impact of adversarial activities, but
they also make it problematic to quantify system resilience against attacks. The previously mentioned artifacts also
inhibit effective security design and implementation decisions in context with other system attributes. One of the
goals of the approach describes in this paper is to more easily visualize this information so enable enhanced
stakeholder and subject matter expert engagement.

This paper describes a model-based approach aimed at enabling the defense analyze the various potential
consequences of adversarial activities on mission objectives and compose an appropriate response. Although there
have been a number of approaches for modeling the kinds of cyber physical systems typically deployed within space
operations, these approaches either focus on a particular type of attack, utilize manual analysis to evaluate the
system, or attempt to prove characteristics of oversimplified versions of the real system. A key deficiency with
these past approaches is a lack of flexibility and adaptability to support evolving systems and emerging threats. Past
approaches also lack quantifiable results that can be used to support decision making about the system.

This paper reports the results of an ongoing task that focuses on a structured approach for modeling the cyber

physical system to enable impact assessment. The models encapsulate physical elements, network topology,
software applications, system functions, and usage scenarios. We leverage Model-Based Systems Engineering
(MBSE) methodology by utilizing the Object Management Group’s Systems Modeling Language (SysML) to
represent the system being analyzed and also by utilizing model transformations to change relevant aspects of the
model into specialized analyses [SYSML].

This work can leverage other related MBSE initiatives to analyze additional aspects of the system, further

supporting decision making about the system in context.

II. Approach
The model provides a unifying structure for analyzing the impact of a particular attack or type of attack. By

representing aspects of the system in an integrated model, connections between aspects can be explicitly captured.
These connections facilitate analysis of the interdependence between elements in the system, which allows for
coordination between elements to support system functions. The integrated analyses show the results of a cyber or
physical attack. The unified model also allows changing the abstraction level at which the system is analyzed; the
analysis of some cyber attacks may require high-level knowledge about the entire system while others may require
detailed knowledge about specific elements (e.g. the version of particular software, the rules utilized by a particular
firewall). Although some detailed information is not captured in the model, it provides an integrating framework
between different domain-specific models and databases. The overall architecture of the modeling approach is
shown in Figure 1. Information about the system is captured using No Magic’s SysML editor MagicDraw (discussed
durther in the next section). Model data is then exchanged between the “modeling tool”, MagicDraw, and the
visualization and analysis tools. The analyses are run on the appropriate subsets of the data, such as network
connectivity information combined with identified vulnerabilities. The model approach is further described in
Section III-A, the capture of cyber security information and analysis is described in Section III-B, and the
visualization approach is described in section IV.

American Institute of Aeronautics and Astronautics

3

Figure 1: Architecture diagram of the modeling approach

A. Modeling the System
The modeling approach relies on the use of the SysML to capture the model information in NoMagic’s MagicDraw
modeling tool. This allows at least partial re-use of existing SysML models developed at JPL that capture the
processes, information, and software utilized by system engineers responsible for the mission operations system.
Instead of focusing on only the cyber-security related aspects of the system, we took a holistic approach where
information is captured at varying abstraction levels. This approach was taken to identify risk and characterize
potential impacts. The current model abstraction levels include:

• Objective
• Workflows
• Software
• Hardware

Modeling the interactions between abstraction layers permits tracing between high-level objectives and the
underlying hardware and software, and also identifies which high-level workflows would be impacted if a piece of
hardware or software was compromised.

The goal of the model is to communicate with SMEs familiar with the operational system and with a different set of
SMEs more familiar with cyber-security details. This provides SMEs familiar with cyber-security details an avenue
to understand the overall system. Currently, when cyber-security SMEs attempt to evaluate a system, they need to
perform customer interviews and digest a number of disparate design documents to understand the system. This is
time consuming and involves conflicting information which increases the cost of engagement with cyber security
experts. An advantage of developing the model is it forces reconciliation of the various information sources. One
difficulty in MBSE is constructing and maintaining the model so that the information captured remains a valid
abstraction of the system being modeled.

Another difficulty with MBSE efforts is enabling aSME interaction with the model. Most SysML-based approaches
rely on communicating the information captured in the model using static views (often referred to as Diagrams).
More advanced methods rely on developing custom code or queries to present information about the system in
tabular forms or even in interactive graphics [IMCE]. Usually, the custom code or queries are used to generate views
for a specific purpose (traditionally described as views that respond to some stakeholder viewpoint). A difficulty
encountered at JPL with this type of approach is that often “model” experts are needed to create the viewpoints and
SMEs are not able to navigate the model effectively without the support of these intermediaries. Although this can
be effective for projects where the time scale needed to retrieve information is sufficient, there is a need in the cyber
domain to navigate between the different layers of the model more quickly.

Instead, as will be described in Section IV on visualization, we visualize the entire graph (as a directed labeled
graph) and then integrate analysis and navigation capability directly into the tool. To simplify the visualization and
analysis process the SysML model is exported to a simplified XML representation which has nodes, edges, and
properties about these entities. Each node and edge is typed. Nodes are labeled with a type representation
(Hardware, Software, Information, Workflow, Data Storage, etc.). The edges are also labeled to allow appropriate

American Institute of Aeronautics and Astronautics

4

traversal through the graph. This transformation is done by taking advantage of the underying nature of the SysML
model and performing a model transformation to produce the directed graph.

A simplified version of the meta-model is illustrated in Figure 2. (A meta-model in this case describes the possible
concepts and relationships that could be present in the current model). The classes in the diagram are possible types
for the nodes and the associations are possible types for the edges. For instance, a Process may rely on a particular
piece of Software through the depends on relationship illustrated between “WorkflowProcess” and “Software”.
There are there cyber-related areas that are being considered for the model, protocols used for communication,
access control rules, and the vulnerabilities associated with particular hardware and software elements. The
vulnerabilities are taken from a common vulnerability database as described in section III-B.

American Institute of Aeronautics and Astronautics

5

The information captured in the model evolves at varying scales. For instance, workflows may change but the
vulnerability of the underlying hardware and software may change rapidly depending on security patches, details of
the firewall, router, and software configuration. To address this issue, information in the model is tagged with
information that characterizes the source of the information. Also, as will be discussed further in the future work
section V, we are considering how to capture the time providence of the information. One avenue of possible future
work is ingesting information about the underlying hardware and software configurations from COTs network
analysis tools . As a simple example, to ensure that particular hardware is still available on the network, the
currently developed tool can ping the modeled hardware to ensure it is still available. Simply pinging the hardware
is a very simple approach, with several drawbacks, but it demonstrates the idea of incorporating real-time
information with the analyses to provide evidence for the accuracy of the model and resulting analyses. Trying to
gather information in real time about the system is difficult, but in some cases this information is already being
gathered. Ingesting it into the model provides a context to analyze the information. Many other modeling approaches
only a capture a part of the system; for example if a model only captures the underlying network connectivity
between physical and/or virtual hardware, it can be difficult to understand how compromising a particular piece of
hardware will impact the overall mission objectives. Therefore it is difficult to assess the criticality of that hardware
or the impact of an attack on hardware or the risk that the overall function of the system is compromised.

B. Capturing and Analyzing Cyber-Security Information
The cyber infrastructure of an aerospace mission network consists of many different components such as servers,
firewalls, routers, and communication facilities, each with a different level of importance to the active mission. The

Figure 2: Screenshot of MagicDraw showing the meta-model structure

American Institute of Aeronautics and Astronautics

6

infrastructure is constantly changing to fit the goals of each stage of the mission. Thus the need for a dynamic cyber
security analysis is highly desirable.

There has been much research in analyzing the vulnerabilities of an individual host and now standard techniques
such as the Common Vulnerability Scoring System (CVSS) have been developed [CVSS] based on information
from the National Vulnerability Database (NVD) [NVD]. The CVSS has now been incorporated into many different
works to evaluate the security of a network [AY, FW, FWSJ, Jak, XLOLL]. Hence we will root our analysis using
the NVD to make it transferable to additional networks. However, the individual vulnerabilities on a system may not
seem critical, but an attacker can bring the network into an undesired state using a combination of unrelated
vulnerabilities. From a defenders point of view it is important to foresee possible routes available to an attacker and
identify critical routes. The vulnerabilities captures in these databases are correlated with the Hardware and
Software present in the model. We then utilize an algorithm to traverse the model Below we outline a simple
algorithm to identify a possible path that an attacker can take. We also propose a simple metric that can be used by a
system administrator (SA) to focus their cyber security efforts.

As noted earlier the underlying infrastructure of the network captured in the model can be viewed as graph where
the vertices can be servers, firewalls, routers, software, files, etc., and the edges represent the physical connectedness
of the vertices or dependency in the network. Using this framework the analysis that we use is essentially a rule-
based graph.

Since our analysis uses the NVD and CVSS in an essential way we explain a few more details about the CVSS.
Underlying the CVSS is a vulnerability that has been associated to a piece of software and seven attributes that can
be determined for a vulnerability:

1. Access Vector: Local, Adjacent Network, Network
2. Access Complexity: High, Medium, Low
3. Authentication: Multiple, Single, None
4. Confidentiality: None, Partial, Complete
5. Integrity: None, Partial, Complete
6. Availability: None, Partial, Complete
7. Gain Access: None, User, Admin.

The first three attributes deal with the exploitability of the vulnerability, while the last three attributes concern the
impact on the data contained on the system. A score from 0 to 10 is assigned based on the first six attributes,
commonly known as the CVSS Base Score v2. However, by definition of the Base Score it is independent of the
Gain Access attribute. For example, the vulnerability CVE-2014-2653 against openssh version 6.4, where the seven
attributes are (Network, Medium, None, Partial, Partial, None, None), has a Base Score of 5.8. See [CVSS] for a
detailed explanation of the formula.

While the CVSS Base Score is a good indication of the vulnerability of a program, the main problem for network
security is that it is data centric. For example, the vulnerability CVE-2011-4109 on openssl has a Base Score of 9.3,
with Confidentiality, Integrity and Availability of data being Complete, but does not give the attacker escalated
privileges. While CVE-2003-0131 has a Base Score of 7.5 but can escalate the privilege of attacker to User on the
system. From the network viewpoint the latter vulnerability could be seen as more critical even though it has a lower
Base Score. The reason this could be seen as more critical is that an attacker will seek to get a toehold into the
network from which they can pivot to different parts of the network. Thus our algorithm does not consider the Base
Score, but instead considers just the Access Vector, Access Complexity, and Gain Access.

The attack algorithm takes as inputs a starting node and a goal of the attacker, and outputs if the attacker will be
successful along with a path and CVEs at each vertex that an attacker can deploy. We do not assume the attacker
will deploy a particular attack, but instead an attack they can exploit from vulnerabilities on the system. The first
step is to find all the servers that contain the goal, for example the attacker could be seeking a file contained on
multiple servers. Since the graph could potentially be very large we exclude all servers that do not contain
vulnerabilities where the attacker can escalate privilege from the Network. We then find a shortest path from the
start to a server contained in the goal_server. If such a path exists we return the path with the CVEs the attacker uses

American Institute of Aeronautics and Astronautics

7

and the privilege gained at each step, or if such a path does not exist we return False. A short pseudo-code for the
algorithm is the following:

 procedure ATTACK(start,goal)
 for goal
 find goal_servers
 end for
 for each server in Network do
 if ∄ CVE with AV=Network, AC=Low, GA=User or Admin
 delete server
 end for
 if start is deleted
 return False
 else
 path=shortest_path(start to goal_servers)
 if path is not None
 return path, CVE_path
 else
 return False

The novelty in this approach is that it incorporates privilege escalation and the attack vector as opposed to
relying on just the Base Score. We believe this method to be more accurate from an attacker’s perspective for
the reasons noted in the previous paragraph.

To incorporate privilege escalation into a metric that is easily interpretable we use the following score called the
Network Criticality:

𝑁𝑁𝑁𝑁 =
3

10
(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) + 7𝜒𝜒(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + 4𝜒𝜒(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)𝑁𝑁𝑁𝑁 =

3
10

(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) + 7𝜒𝜒(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + 4𝜒𝜒(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)
where 𝜒𝜒(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)𝜒𝜒(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) is 1 if the vulnerability gives the attacker Admin level privileges and 0 otherwise,
and a similar definition applies to 𝜒𝜒(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)𝜒𝜒(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈). By definition the Network Criticality of vulnerability is
again a score from 0 to 10, where 10 represents if the Base Score is 10 and admin level privilege is gained, e.g.,
CVE-2007-6529. A similar score has been proposed in [AY]. Notice that if a score is strictly greater than 3 then
some sort of privilege has been gained. An SA could easily use this score by patching all software with a
vulnerability such that

𝑁𝑁𝑁𝑁(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) ≥ 𝜇𝜇(𝑁𝑁𝑁𝑁) + 2𝜎𝜎(𝑁𝑁𝑁𝑁),𝑁𝑁𝑁𝑁(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) ≥ 𝜇𝜇(𝑁𝑁𝑁𝑁) + 2𝜎𝜎(𝑁𝑁𝑁𝑁)
i.e., the mean plus two standard deviations. There are many variants that one could use, but this would identify
the software that is most vulnerable from the viewpoint of privilege escalation. Another simple metric for an SA
could be to patch server where the sum of the Network Criticality of all the software is the greatest.

III. Visualization System

The characterization of SME knowledge results in a model
that is large and beyond the ability of a single user, SME or
otherwise, to fit into working memory and explore
naturally. It was understood early in the effort that being
able to visualize, understand, and analyze the model in an
interactive way would be an essential component of the on-
going network modeling and analysis effort. The
visualization system has been developed in conjunction
with cyber security and MBSE experts and leverages the
simulation and real time telemetry visualization [MIP1]
and user interface design and development [MIP2]
expertise in the JPL Robotics section.

Though still in beta, the visualization system is capable of:

Figure 3: Visualization system showing the node
and edge selection from an analysis.

American Institute of Aeronautics and Astronautics

8

• Visualizing the model as a directed graph
• Utilizing different graph layout algorithms from force directed to deterministic
• Extensibility for custom layout algorithms
• Displaying entity (node and/or edge) properties stored in the model
• Enabling various entity selection mechanisms based on graph topology or model semantics
• Querying entities based on model attributes
• Running custom analyses on the model
• Extensibility for custom analysis modules
• Visualization of analysis results directly on the graph

These features, developed with input from SME analysts and users, enable an exploratory workflow for users to
examine attributes of the network model and perform analyses.. SME analysts can use the system to tackle the
resiliency question by exploring paths of vulnerabilities; Identify hardware or software that impacts high level
processes; Determine potential defensive options, etc. More importantly it allows users to explore the model in
context and with local understanding. With these features an expert can start an exploit exploration from any point in
the system, covering internal and external exposures. Step by step they can explore different paths to take based on
the information stored in the model and the exploits tied to the model. They can also use the system as a launching
point for automated vulnerability analysis and exploration.

A. Navigation and Tools

At startup, the system visualizes the graph model in 3D space using a force directed layout algorithm. Visualizing in
3D increases the space available for separation of graph elements by the layout algorithm, making it easier to
visualize a dense and complex network.

Navigation through the graph is supported by
manipulation of a 3D camera using common mouse
control paradigms such as dragging to spin a view, using
a modifier and a mouse drag to zoom, using another
modifier and a mouse drag to pan, etc. The camera can
be moved to different entities with a simple double-
click. Multiple views of a graph can be created and open
to maintain different, potentially useful perspectives on
the the model.

A list of entities and their properties are displayed
conveniently to the left, following a standard and
familiar interface paradigm used in many 3D and CAD
software.

Layouts in 2D are also supported and utilized depending
on context. More importantly, custom layouts are
supported. Normally the layout algorithms available will
respect graph topology but not graph semantics as
encoded by the model. One of our goals is to develop layout algorithms that respect the modeling semantics to
improve user understanding. Figure 4 shows a preliminary custom layout that places nodes on different abstraction
layers depending on the node types encoded in the model. The ability to write these custom layouts and align
semantic metrics to different spatial axes should greatly improve understanding.

B. Technical Implementation

Figure 4: Visualization system showing a custom
layered layout that utilizes model semantics

American Institute of Aeronautics and Astronautics

9

The visualization system is built entirely in Python 3.4 [PYTHON]. Python 3.4 is used for rapid development, cross
platform capability, an excellent standard library, an expansive collection of third party libraries, automatic
dependency management using Python setup tools, and for its ability to act as a glue amongst various software
components.

Based off of existing visualization and interface expertise, Qt 4.8 is used as the interface framework with PyQt4 as
the Python binding. We use the igraph [IGRAPH] library for graph represention, topology based graph traversal,
basic network analysis algorithm, and graph layout algorithms. Components of the system were modularized into
separate Python packages whose dependencies could be handled cleanly by Python setup tools, the Python package
installer (pip), and Python virtual environments. This set up also simplifies deployment by allowing automated tools
to handle resolving package dependencies.

Currently the visualization system deploys on Mac OS X 10.7 or higher and Ubuntu 15. Windows support is
planned but not within the current scope. For each of the different platforms, the end user will only be required to
install the software for their platform. Any of the required input files will be cross platform, requiring no special
handling.

C. Interfaces and Extensibility

A tight feedback loop between tool developers and tool customers meant an understanding that capabilities and
requirements could rapidly change as development progressed. The novelty of the work meant a clear understanding
of the requirements from the beginning was not feasible. Instead the requirements of the visualization system
evolved with its capabilities. This development environment required the establishment of data and behavior
interfaces which promote separation of concerns and future extensibility.

For visualization system input, the modeling team
transforms the MBSE model into an XML format that
captures the models details. This custom XML format is
parsed by the visualization tool into an internal data
structure capable of algorithmic search. Information about
security vulnerabilities is to be stored separately from the
model itself in a secure format and loaded separately from
the model as well. Relationships between the
vulnerabilities and the model are tied together at run time.

MBSE and cyber security SME developers write analysis
scripts to be performed on the model. To enable these
developers to run analyses on the model interactively an
interface between the system and analyses was developed
allowing analysis writers to specify expected inputs, signal
completion to the program, store results directly into the
graph, and specify how it wants the results to be visualized.
The system automatically populates an analysis toolbox
based on scripts that implement the agreed upon interface.

This allows analysis writers to not only develop the analyses separately from the tool but also utilize the tool’s
functionality, such as the properties viewer, to debug their work. It also enables the system to run the analyses
concurrently in separate threads and even separate processes.

IV. Future Work

There are three main areas of research in the future that we plan to incorporate into the model.

Automated attack tree exploration is needed. An attack tree is a diagram that breaks down the steps that an attacker
could take to obtain a goal [Sch]. A Subject Matter Expert (SME) usually constructs these based on their knowledge
of the field and historical attacks. Since attack trees are based on already seen attacks it would be beneficial to see

Figure 5: Visualization system showing results of an
analysis being visualized on the graph.

American Institute of Aeronautics and Astronautics

10

how resilient the infrastructure of a network would be against that attack. Attack trees can be very generic in
relationship to a given network and the number of different attack trees could be immense with far too much
information to be explored manually.

Many mission critical systems are time critical. For example, a cyber attack that takes Mission Control offline for
even a short time during the entry, descent, and landing stage of Curiosity, aka The Seven Minutes of Terror, could
be devastating to the mission, while a cyber attack of the same duration during the cruise stage may not have any
impact. In light of this time criticality, the duration of a cyber attack needs to be incorporated into the model. Some
approaches have already been proposed [Jak, MTTFP].

As important as the NVD is for the model, it is equally important to understand the vulnerabilities contained in the
software developed in-house for a particular mission. We plan to generate reports using source code scans of
mission critical software and incorporate them into the model in a similar way that was done using the NVD.

Beyond these research areas, development of the visualization system will continue in tight conjunction with the
analysis team to ensure that the system evolves in a direction that is useful for network resilience exploration and
testing. Improved visualization look, feel and performance, and layout methods for faster network graph
understanding are key goals. Usability improvements and new semantically aware tools will make exploratory
analysis faster and more efficient. Finally, we will investigate the possibility to use the visualization system in a
real-time, telemetry display mode, where data from the actual, modeled network is displayed, possibly in
combination with the predicted output from the analyses, giving SME and modeling engineers insight into model
correctness and analysis performance.

Acknowledgments
The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. The authors would like to
thank Bob Vargo, Sami Saydjari, and Frank Kuykendall for support and discussion of the work.

References
[AY] B. Argauer, and S. Yang: VTAC: Virtual Terrain Assisted Impact Assessment for Cyber Attacks. SPIE Defense
and Security Symposium. International Society for Optics and Photonics, 2008.
[CVSS] Common Vulnerability Scoring System, https://www.first.org/cvss. August 2015.
[FW] M. Frigault, and L. Wang: Measuring Network Security Using Bayesian Network-Based Attack Graphs. IEEE,
2008.
[FWSJ] M. Frigault, L. Wang, A. Singhal, and S. Jajodia: Measuring Network Security Using Dynamic Bayesian
Network. Proceedings of the 4th ACM workshop on Quality of protection. ACM, 2008.
[Jak] G. Jakobson: Mission Cyber Security Situation Assessment Using Impact Dependency Graphs. Information
Fusion (FUSION), 2011 Proceedings of the 14th International Conference on. IEEE, 2011.
[MTTFP] S. Musman, A. Temin, M. Tanner, D. Fox, and B. Pridemore: Evaluating the Impact of Cyber Attacks on
Missions. Proceedings of the 5th International Conference on Information Warefare and Security. 2010.
[NVD] National Vulnerability Database, http://nvd.nist.gov. August 2015.
[Sch] B. Schneier: Attack Trees. Dr. Dobb's journal 24.12 (1999): 21-29.
[XLOLL] P. Xie, J. Li, X. Ou, P. Liu, and R. Levy: Using Bayesian Networks for Cyber Security Analysis.
Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International on. IEEE, 2010.
[PYTHON] Python Software Foundation. Python Language Reference, version 2.7. Available at
http://www.python.org
[IGRAPH] Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal, Complex
Systems 1695. 2006. http://igraph.org
[SYSML] Friedenthal, S., Moore, A., and Steiner, R., A Practical Guide to SysML: The Systems Modeling
Language, Morgan Kaufmann Publishers / OMG Press, 2008.
[IMCE] Bayer, T., Cooney, L., Delp, C., Dutenhoffer, C., Gostelow, R., Ingham, M., Jenkins, J.S., and Smith, B.,
“An Operations Concept for Integrated Model-Centric Engineering at JPL”, Proceedings of the IEEE Aerospace
Conference 2010, Big Sky, MT, March 2010, IEEEAC Paper #1120.

http://www.python.org/
http://igraph.org/

American Institute of Aeronautics and Astronautics

11

	Analyzing Cyber Security Threats on Cyber-Physical Systems using Model-Based Systems Engineering
	Nomenclature
	Abstract
	I. Introduction
	II. Approach
	A. Modeling the System
	B. Capturing and Analyzing Cyber-Security Information

	III. Visualization System
	A. Navigation and Tools
	B. Technical Implementation
	C. Interfaces and Extensibility

	IV. Future Work
	Acknowledgments
	References

