

American Institute of Aeronautics and Astronautics

1

A Tool for Model-Based Generation of Scenario-Driven
Electric Power Load Profiles

Matthew L. Rozek1, Kenneth M. Donahue2, Michel D. Ingham3, and Justin D. Kaderka4
Jet Propulsion Laboratory – California Institute of Technology, Pasadena, CA, 91109

Power consumption during all phases of spacecraft flight is of great interest to the
aerospace community. As a result, significant analysis effort is exerted to understand the rates
of electrical energy generation and consumption under many operational scenarios of the
system. Previously, no standard tool existed for creating and maintaining a power equipment
list (PEL) of spacecraft components that consume power, and no standard tool existed for
generating power load profiles based on this PEL information during mission design phases.
This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based
systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw
(No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and
temporal variable constraint set, in Maple language syntax, based on specified operational
scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power
consumption from loads over time). SPLAT creates these load profiles from three modeled
inputs: 1) a list of system components and their respective power modes, 2) a decomposition
hierarchy of the system into these components, and 3) the specification of at least one scenario,
which consists of temporal constraints on component power modes. In order to demonstrate
how this information is represented in a system model, a notional example of a spacecraft
planetary flyby is introduced. This example is also used to explain the overall functionality of
SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review
of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the
tool was used in an actual space hardware design application.

Nomenclature
ADCS = attitude determination and control system
APGEN = Activity Plan GENerator
API = Application Programming Interface
CBE = current best estimate
IMCE = Integrated Model-Centric Engineering
MBSE = model-based systems engineering
MEV = maximum expected value
MMPAT = Multi-Mission Power Analysis Tool
OMG = Object Management Group
PEL = power equipment list
SPLAT = Scenario Power Load Analysis Tool
SysML = Systems Modeling Language

1 Systems Engineer, Flight System Systems Engineering Group, 4800 Oak Grove Drive, Pasadena CA, 91109, M/S
321-560, AIAA Member.
2 Software Systems Engineer, System Architectures and Behaviors Group, 4800 Oak Grove Drive, Pasadena, CA
91109, M/S 321-560. (now at Skybox Imaging, Inc., 1061 Terra Bella Ave, Mountain View, CA 94043)
3 Technical Group Supervisor, System Architectures and Behaviors Group, 4800 Oak Grove Drive, Pasadena, CA
91109, M/S 301-490, AIAA Associate Fellow.
4 Software Systems Engineer, System Architectures and Behaviors Group, 4800 Oak Grove Drive, Pasadena, CA
91109, M/S 321-560, AIAA Member.

American Institute of Aeronautics and Astronautics

2

I. Introduction
LECTRIC power is a concern of great interest to designers of spaceborne systems. Because all electrical energy*
must either be generated out of sources brought from Earth or collected while operating in space, it is usually a

very limited resource. As a result, great analysis effort is exerted by both system and electrical-domain engineers to
understand the rates of energy generation and consumption under many operational scenarios of the system. These
rates are assessed during all phases of a project lifecycle – from initial conceptualization through detailed design,
system integration, and mission operations. However, the fidelity of the analysis changes between lifecycle phases.
Initially, the components of the system are modeled at higher levels of abstraction (e.g. typical spacecraft subsystems
such as thermal, propulsion, power, attitude determination and control system (ADCS), etc.) and scenarios that are
analyzed are rough estimates of system modes of operation, such as mission phases (e.g. launch, commissioning,
cruise, science observations, etc.). As the design progresses, further refinements are made to: 1) the detail of the
components being modeled (e.g. the initial ADCS subsystem becomes an ADCS subsystem that now includes star
trackers), 2) the accuracy of the power consumption characteristics of components (e.g. from estimates to
measurements), and 3) the level of detail captured in scenarios, which are needed in order to generate power load
profiles.

The need to continually update and refine these power estimates has necessitated a large amount of engineering
effort at the systems level, which is partly due to the lack of consistent data representation and the disjointed nature
of the tools in which this data is stored. Traditionally at the Jet Propulsion Laboratory (JPL), this information has
been tracked in an ad-hoc manner that often varies in format and content between projects, and sometimes within
projects themselves. Spreadsheets are a common way for tracking this information at JPL. Typically, a project will
maintain one spreadsheet to track all of the leaf-level† components within the system that consume power. For each
component, a series of power states (based on operational states of the component, such as Off, Initialization, and
Steady-State) are recorded, along with power consumption characteristics for each. This set of information is called
a power equipment list (PEL), and a notional example in a spreadsheet representation is shown in Figure 1.

Figure 1. Simple notional PEL in spreadsheet representation.

 The components in the PEL are usually grouped by some type of abstraction, such as subsystem or hardware
assembly, although these relationships are not directly stored in the information set. Rather, it is only the relative

* All further usages of power and energy in this paper will be in reference to electric power and electrical energy (as
opposed to other forms such as mechanical, thermal, or chemical), unless otherwise specified.
† Leaf-level is a term used throughout this paper to describe components that are on the outermost branches of a system
decomposition. These are the components that are no longer elaborated into more specific components with further
levels of detail. For example, a spacecraft system decomposition may consist of a spacecraft at level 1, the spacecraft
subsystems at level 2, and the constituent components of those systems at level 3. In the case of the propulsion
subsystem at level 2, the level 3 components could be fuel tanks, fuel lines, fill and control valves, and thruster
assemblies. Since these components are not modeled with any more fidelity (e.g. modeling a thruster assembly as
solenoid, solenoid controller, valve, and nozzle), they are considered leaf-level.

E

American Institute of Aeronautics and Astronautics

3

placement or ordering of the spreadsheet entries that define the groups. This makes rolling up the power consumption
for each subsystem or hardware assembly – a trivial problem – into a task with a non-trivial amount of work, due to
the need to define and maintain spreadsheet formulas. Many additional issues arise with the use of spreadsheets, such
as maintaining consistency between spreadsheets and workbooks when component updates are made, accommodating
new components and power states with existing embedded formulas, and reviewing these embedded formulas for
correctness.
 Similarly to the PEL, scenario information at JPL is also traditionally stored in a spreadsheet representation (Figure
2). For the same reasons as before, this information is difficult to manage and make consistent between different
scenarios. Because spreadsheets have these limitations, their usage places a large burden on systems engineers by
focusing their time away from design activities and more towards administrative activities.

Figure 2. Notional scenario definition in spreadsheet representation.

 Given all of the issues with loose linking of information in spreadsheets, we were challenged to find an alternate
method for storing PEL information and associated operational scenarios; one where consistency of information was
more easily maintained and shared across users of that information. We also hoped that we could develop a tool that
would utilize this nicely maintained power information set to automatically generate power load profiles based on
defined scenarios. To make the problem more tractable, we decided to focus only on the power consumption aspect
(as opposed to power generation, which is also sometimes tracked along with scenarios). To implement our solution,
we turned to a paradigm that has been permeating the systems engineering community: model-based systems
engineering (MBSE). MBSE architectures have the advantage of operating from a single source of richly-linked
information (the “model”), and being able to extract this information to perform complex analyses in an efficient
manner. We thought this paradigm would be an ideal structure for tackling the PEL storage and scenario-based power
load profile generation needs. This paper will describe the tool that was developed in support of this effort: the
Scenario Power Load Analysis Tool, or SPLAT.

A. Motivation for MBSE & SysML Solution
Within the past few years, JPL has been moving to implement a model-based systems engineering (MBSE)

process. As part of this implementation, an Integrated Model-Centric Engineering (IMCE) initiative1 was formed to
coordinate development efforts of MBSE-supporting infrastructure capabilities.

American Institute of Aeronautics and Astronautics

4

As part of its charter, the IMCE initiative assessed current modeling practices across JPL, and determined targeted
areas for infusion of MBSE capabilities. As part of this infusion process, the IMCE initiative identified a number of
key systems engineering analyses as initial candidates for integration with system model information. One of these
analyses was the scenario-driven power analysis to determine spacecraft power consumption during mission
operations.

JPL has already developed highly capable tooling for detailed power generation modeling and integrated power
analyses, including predictions of battery state-of-charge, power bus voltages, and thermal effects (in the Multi-
Mission Power Analysis Tool (MMPAT) software2,3), as well for planning spacecraft activities during operations and
predicting the usage of constrained resources, such as electrical energy (in the Activity Plan GENerator (APGEN)
software4). However, no standard tool existed for maintaining the PEL, and no standard tool was used for generating
power load profiles based on this PEL information during mission design phases.
 To start filling this existing need, initial pilot efforts were performed to prototype ontologies and modeling patterns
that would support the storage of power behavior information, along with the scripting necessary for transforming the
resulting models into solvable constraint sets5,6. This early work was founded on even earlier developments in
behavioral modeling approaches7,8, as well as the Timeline representation of time-varying information9. SPLAT was
then the next step – the combining of these earlier capabilities into a single software package (implemented as a Java
plugin in the MagicDraw‡ tool), with the addition of features allowing users to more easily configure and execute the
analysis. SPLAT provides a standard and rigorous pattern for capturing PEL information in a system model, along
with a highly flexible scenario specification and transformation capability allowing both early and late-phase design
analyses to be completed.
 SPLAT was implemented as a plugin to MagicDraw because this was a natural extension of the modeling
environment being developed at JPL. MagicDraw is the institutionally-supported systems modeling tool; so much so
that JPL now develops it own releases of that software with customizations and plugins specifically designed for
supporting modeling according to JPL processes and practices across the broad array of flight and research projects.
MagicDraw implements the Systems Modeling Language specification (SysML v1.3)10, a standard graphical language
maintained by the Object Management Group (OMG)§, and provides an extensive open Application Programming
Interface (API) for plugins to access and manipulate model information. Because SysML does not include strong
calculation semantics, descriptive models in that language need to be paired with mathematical constraint solving
engines to perform complex analyses. We followed this pattern with the development of SPLAT – while any computer
algebra system could have been chosen, we selected Maple** as the symbolic computation engine, also due to its high
level of institutional support.

B. Tool Usage and Guiding Principles
The goal of many system-level power analyses is to determine whether the system can remain in a power-positive

state (i.e. power generation is greater than power consumption) under the most-stressing operational scenarios. If the
system does not remain power positive, then the analyses determine whether the system has sufficient stored energy
reserves, plus margin, to maintain system operation for the duration of the power-negative state. The scenarios
considered can cover both nominal situations, such as launch and deployment, and off-nominal situations, such as loss
of attitude control resulting in spacecraft safe mode. These types of system-level power balance analyses are
performed during all phases of a mission lifecycle, from initial conceptualization to flight operations, usually with
increasing spacecraft model fidelity. During design phases, bounding nominal and off-nominal cases are examined
to understand the limits of a given system architecture. Often, various system architectures (or system components)
are investigated under a common set of scenarios as part of a trade study, and the power margins (derived from
comparison of power load profiles with power generation profiles) associated with each of these scenarios is factored
into the overall score for each trade option. During operational phases, it is common that all planned activities are
combined into scenarios and evaluated to predict a complete time-history of power generation & consumption, as well
as the level of energy reserves remaining in the system. This is to ensure that the system retains enough energy reserve
to continue operating safely under many possible fault cases. Given the many possible analysis contexts in which
power load profiles are used, it was our goal to develop a methodology and tool that was flexible enough to be applied
in all cases.

‡ MagicDraw, Software Package, Version 18.0 SP2, No Magic, Inc., Allen, TX, 2013.
§ “Object Management Group,” (website), Object Management Group, Inc., URL: http://www.omg.org/ [cited 3 August 2015].
** Maple, Software Package, Version 18, Maplesoft, Waterloo, ON, Canada, 2013.

http://www.omg.org/

American Institute of Aeronautics and Astronautics

5

 From the intended usage described above, we were able to specify a series of guiding principles that shaped the
development of SPLAT:

1) Allow for power load profiles to be generated at each level in the system decomposition hierarchy, so the user
has an idea of how power consumption of lower level components affects the big picture at the system level.

2) Allow for straightforward reconfiguration of the scenarios and analysis to support quick execution of trade
studies.

3) Also in support of trade studies, include the ability to parameterize power load and event duration values so
that symbolic representations of the trade space can be generated as a function of the free variables of interest.

4) Allow for modeling to be performed for a wide range of system fidelity / levels of abstraction – this is to allow
the tool to be used across the entire lifecycle of a project.

5) Wherever possible, combine model construction/manipulation details together into single user actions so the
tool feels agile and responsive to the analytic needs of the user (i.e. we don’t want the analytic process of the
user slowed down by the mechanics of building and maintaining models).

C. Explanation of Planetary Flyby Case Study
A case study was developed to help explain the methodology used in creating power load profiles, as well as help

explain how SPLAT was developed to assist in building the model. This case study is a very simple spacecraft (i.e.
one that is in the early-design phase) and has 14 leaf-level components: two payload instruments, three thruster banks,
two telecommunication components, two attitude determination sensors, a flight computer, a power regulation system,
and three heater systems (Figure 3-B). The components are arranged in a system decomposition, being assigned to
either the Spacecraft Bus or Payload, both of which are composed into a single high-level element: the Flight System.
The scenario applied to the case study is a flyby of a solar system body (Figure 3-A). Coming from interplaneray
space, the initial conditions of the scenario have everything powered “Off” except the flight computer and power
regulator, which are in a quiescent steady-state mode. As the flyby proceeds, various activities occur that change the
power state of one or more spacecraft components. First the payload instruments and thruster banks are warmed up,
followed by instrument initialization. The attitude control sensors are then initialized and switched to active control,
which uses the thrusters for pointing during the flyby. Near closest approach, the payload instruments take data, and
finally, on the outbound trajectory, the science data is transmitted to Earth. For the entirety of the scenario to this
point, the states of the power regulator and flight computer are also updated to reflect increases in usage due to the
other system activities. Ending the scenario, everything except the power regulator, flight computer, and heaters are
turned off. While this spacecraft and scenario are simple in nature, the case study will help demonstrate how power
load profiles are generated, and how SPLAT helps users accomplish this goal.

Figure 3. Example planetary flyby case study, with scenario
definition (A) and spacecraft component list (B).

American Institute of Aeronautics and Astronautics

6

II. Model Information and Patterns
In order to extract information to automatically generate power load profiles, information about the system must

be captured and stored in a semantically meaningful manner. The three sets of information that must be captured are:
1) a list of components and their power states, 2) a system decomposition hierarchy, and 3) the specification of at least
one scenario that involves the components.

This section will describe how this information is captured within SysML, while the following section (§III.
SPLAT Functionality) describes the tool that was created to help capture this information and how it is transformed
and processed to generate power load profiles.

A. Components and Their Power Attributes
The component list captures components that are at the leaf-level of the system decomposition, which refers to

hardware components that have only one power state per operational mode. For example, the payload of a spacecraft
might be composed of a camera and an infrared instrument, which are both considered leaf-level components if they
have power states and are not further decomposed. Each component in the example spacecraft (Figure 3-B) is a leaf-
level component. For each component, this list also specifies its operational power states (e.g. “On”, “Off”,
“Standby”) and the average power consumption and contingency (or margin) for each state.

Using the leaf-level component, its power states, and the average power and contingency for each state, a power
behavior is created in the system model for the component. An example of information that is created and how it is
linked is shown in Figure 2, which shows a thruster bank (reference designator AC01_TB1) that has two power states
(OFF and ACTIVE_CNTRL). A general power characterization template, which has current best estimate (CBE) of
power, the power CBE contingency, and power CBE plus contingency [this value is calculated upon analysis execution
and results in the maximum expected value (MEV)] properties, is used to describe power consumption associated with
each of the component’s states. In addition, a state machine, which is owned by the component, is created to describe
how the power states transition from one state to another using signals. A full combinatorial state machine is always
created for components with more than one power state.

Figure 4. SysML embedding of power information related to a thruster bank component
(AC01_TB1). A power characterization is applied to each of the component’s power states,
and a state machine with transition signals is defined for the component.

American Institute of Aeronautics and Astronautics

7

B. System Decomposition
The system decomposition hierarchy describes how the components are logically arranged within the system, and

also describes the hierarchy of systems and sub-systems. For example, a thruster bank component might belong to
the Attitude Control sub-system, which itself belongs to the Spacecraft Bus sub-system. Figure 5 shows the system
decomposition for the spacecraft example. This hierarchical knowledge is necessary for SPLAT to perform roll-ups
of power loads. Since SPLAT points to only a single decomposition, different decompositions can be created of the
same system to support different perspectives or different analyses (e.g., functional sub-systems vs. physical sub-
systems).

Figure 5. A system decomposition of the spacecraft example. Leaf-level components (denoted with the light
orange color) are those that also show a “Full Name” property, while other components represent more abstract
constructs, like subsystems.

American Institute of Aeronautics and Astronautics

8

C. Scenarios
 A scenario is the third set of information that is required to generate power load profiles. A scenario temporally
constrains at least one of the components from the Powered Components List and is composed of durative events and
instantaneous events. Instantaneous events are comprised of the signals to transition between a component’s power
states, as well as other objects, such as initial, final, fork, and join nodes. As the name suggests, these events are
assumed to occur instantaneously. Durative events are objects that have a temporal constraint. Objects that are made
up of both durative and instantaneous events are also classified as durative events. Figure 6 shows the Flyby scenario
of the example spacecraft.

Figure 6. Flyby scenario of the example mission. The “Wait6” durative
event is highlighted to indicate that the duration of this event is
parameterized by the ‘t_wait’ value.

The right column consists of durative events since these blocks have a temporal constraint. The left column
consists of blocks that link sub-events, and, depending on whether that sub-event has any durative events, the blocks
in the left column of Figure 6 can be either instantaneous or durative. Figure 7 shows the sub-event of “activity2” of
Figure 6 and includes events related to two components – the camera and infrared spectrometer. These two
components are represented by swimlanes to denote the component participates in the activities encompassed within
the swimlane. Transition signals are explicitly called out to transition the component to a desired state. This sub-
event (Figure 7) would be considered a durative event since it consists of both instantaneous and durative events.

American Institute of Aeronautics and Astronautics

9

Figure 7 also demonstrates that parallel paths can be defined within a scenario such that many components can
transition between power states at the same time.

Figure 7. Sub-event of “activity2” of Figure 6. Each component used in the
event has its own swimlane. Transition signals (e.g. PL02_IRSPEC * to
INIT) are used to transition the component to a different power state.

1. Initial Conditions
The final element of the scenario is the specification of initial conditions, which specifies the initial power state of

all components in the Powered Component List. The initial conditions are captured in a separate characterization that
has relations to a power state of each of the components. This relationship from the characterization of initial
conditions to a state of the component’s state machine can be seen graphically in Figure 8. By separating the initial
conditions from the scenario, several initial conditions can be defined, and SPLAT will only point to a single intial
condition set when performing the analysis. With the definition of intial conditions and the development of a scenario,
all components are constrained to be in a single power state for all time.

Figure 8. A relationship map that shows the initial configuration characterization (left)
pointing to a power state within each component’s state machine.

American Institute of Aeronautics and Astronautics

10

III. SPLAT Functionality
SPLAT is a tool that can assist the user with two primary functions. First, SPLAT helps with defining the leaf-

level components, their power states power values (e.g. CBE power and power margin), and initial conditions of
components. As discussed in §II. Model Information and Patterns, there are other sets of ancillary information that
are needed to calculate power load profiles (i.e. system decomposition, scenario definition, and analysis
configuration), but the SPLAT plugin does not assist in their creation or maintenance. The second function that
SPLAT helps with is transforming the relevant information (i.e. components and their power states, system
decomposition, scenario, and initial conditions) from SysML into a series of constraint equations in Maple language
syntax, which can be symbolically solved within Maple.

SPLAT functionality is accessible through a contextualized right-click menu (Figure 9). Users can initiate SPLAT
functions by selecting one option from this menu, and for each function, a simple user interface has been developed
that helps automate its core capabilities. From this menu, the user has
the option to import components – including power states and
associated power consumption values – from a spreadsheet, add or
delete components or individual states, define the initial conditions of a
scenario, and execute the analysis.

A. Manipulation of Component Power Information
Many of the SPLAT menu functions relate to editing a component

or power state, which can be made individually or in batch mode.
Operations to edit objects individually include adding or deleting either
a component or a power state. As shown in Figure 4, there are several
characterizations, signals, and relations associated with each
component and its power states, which are not easily visible within the
model to the user. This information is stored along with the component
within a package of the component’s name. Within this package are
several sub-packages that have the various characterizations and signals
along with the SysML component itself. When the user invokes any of
the SPLAT functions to edit a component or state, SPLAT
automatically updates the affected characterizations, signals, relations,
and state machines. In this manner, the user only has to be aware of the
high-level changes without being concerned about the implementation details.

Other SPLAT functionality accessible from the menu allows batch import or export of components and their power
modes, which is useful when constructing a system with many components. Using a standardized spreadsheet
template (Figure 10), users can list components – including their names and acronyms – as well as their power states
and power values for each state. If a model has already been created using a batch import, further refinements to
components or their power states can still be made using the batch import. Each time the spreadsheet is imported, the
model is updated to reflect the information in the spreadsheet, including power states, power values, component name,
and component location. However, the only exception to this synchronization is if a component exists in the model
and not on the spreadsheet, the component is not deleted from the model. This feature preserves any non-power
related components from being inadvertently deleted within the model.

Figure 10. Spreadsheet template used for a batch import of
components and their power states.

Figure 9. User menu for SPLAT,
accessible from within the containment
tree of the MagicDraw application.

American Institute of Aeronautics and Astronautics

11

B. Initial Condition Import / Editing
Aside from component manipulation, the SPLAT menu also allows users to import and edit initial configuration.

Importing initial conditions is performed in similar fashion to the batch import described above. Using a template
spreadsheet, users list all components by their reference designator in one column and the initial power state of the
component in the second column. Splat then imports these initial configurations into a characterization and creates
the relations to power states, which was shown in Figure 8.

If initial conditions already exist that the user wants to edit, SPLAT also provides functionality to edit the initial
conditions within MagicDraw. The main feature of this user interface is a list of components and their associated state
for that initial configuration. Each state is in a dropdown menu that includes all possible states of that component,
and the user can change the initial state of a single component by changing the selection in that dropdown menu.

C. Running Analysis to Generate Power Load Profiles
The main purpose of SPLAT is to take the component power attribute and operational scenarios modeled in SysML

and perform some analysis to transform them into a constraint set that is solved to give power load profiles. This
section will explain that process in greater detail, starting with a description of the parameters that are set to configure
the analysis. It then gives an overview of the analysis methodology, covering some details of the transformations that
take the SysML scenario definition into a Timeline representation, and then into an RDFXML11 serialization and
Maple constraint set. Finally, this section will describe the process that is used to solve the constraint set in Maple
and plot the resultant power load profiles.

1. Definition of Analysis Configuration
In order for SPLAT to be flexible enough for the diverse group of use cases it was intended to support, the tool

supports a number of user-configurable parameters, as shown in Figure 11. These parameters are stored in tags along
with the «timeline-analysis:Scenario» stereotype instance applied to each scenario to be analyzed. The parameters
fall into two categories††: 1) analysis inputs, and 2) keywords used when defining temporal constraints in scenarios.
The analysis inputs are as follows:

• characterizations = template of properties that define which power attributes are solved for
• initialStateConfiguration = the initial state of all leaf-level components involved in the scenario

(higher level components do not need an initial state defined since their state time-history is never
solved as part of the analysis)

• rollupOperationConfiguration = operation that defines how the power attributes of a parent
component are related to those of its children in the decomposition hierarchy (see below for
example)

• rootClass = the top-level node (component) within the system decomposition; SPLAT uses this as
the starting point to determine the scope of the components included in a particular analysis
execution

The keyword parameters are a result of the implementation of a scheme to use key concepts – such as the starting and
ending times of a particular event – instead of hard-coded reserved words, when defining the temporal constraints
used in scenarios. This allows the user to select which keyword string is used to represent each particular concept.
For example, if the user wants to constrain the duration of an event, they might write a constraint like: “t_end = t_start
+ 15.3”, which indicates the the end time will be 15.3 time units after the start time. The user can also write constraints
that involve the time since the start of the scenario (via the specified referenceTimeVariableName parameter), or the
time since the start of a particular event (via the specified relativeTimeVariableName parameter).

†† There are also two parameters that currently used by SPLAT: defaultInitialDependentVariableValue and
initialDependentVariableValueName. They have no effect on the operation of the tool.

American Institute of Aeronautics and Astronautics

12

Figure 11. Analysis configuration block that was
used to set parameters for the Science Flyby example.

Rollup operations are those that take the form:

 Variable[C1] = operation(Variable[i], for i in C1.children) (1)

The “operation” can be anything that is defined in the Maple opertator set, but for the purpose of the power load
profile analysis, we have only ever used “add()”. However, this does not preclude the user from selecting another
operation that is more appropriate for their specific need. As an example from the Science Flyby, this equation
shows how the rollup operation is used to define the power of the Payload based on its child components:

 powerCBE[“Payload”] = add(powerCBE[“PL01_CAM”], powerCBE[“PL02_IRSPEC”]) (2)

2. Overall Analysis Flow / Methodology
When the analysis is executed in MagicDraw, it first transforms the model information into a Timeline9 instance,

as shown in Figure 12. Timeline is a formalized ontology for storing time-dependent information. Each Timeline is
composed of InstantEvents (no temporal duration) and DurativeEvents (with temporal duration). The timing of these
events is specified through the use of TemporalConstraints between the TimeVariables (which are just variables that
represent points in time, e.g. t1 = 10.3 sec) associated with the start and end times for each DurativeEvent, or the single
execution time for each InstantEvent. The Timeline ontology also has notions of DependentVariables, which track
time-dependent variables of components (in this case, power), and DependentVariableConstraints that constrain the
values of DependentVariables for a time period associated with a given DurativeEvent. Instead of using the Timeline
ontology directly, SPLAT uses a port of the concepts to Java class libraries for seamless integration with the rest of
the plugin code. This set of libraries was developed in an earlier Timeline eXchange Infrastructure (TXI) task6.
 The transformation that SPLAT uses to generate the Timeline instance, also developed as part of the TXI task6,
was originally written to deal with any arbitrarily defined DependentVariable. Therefore, it is much more general in
capability than what SPLAT is using it for. When SPLAT runs this transform, it only passes certain specified
DependentVariables in via the analysis configuration (see §III.C.1 Definition of Analysis Configuration), using the
Power Characterization Template. Specifically, these are the DependentVariables that are tracked and operated on in
SPLAT‡‡:

• ‘powerCBE’ = the current best estimate of power consumption for a given component (this is where
the measured power consumption would be captured if available)

‡‡ The generic SysML-to-Timeline transform employed by SPLAT was designed to handle both static (time-invariant)
and dynamic (time-variable) definitions of DependentVariables, but only scenarios with static definitions of power
consumption values have been tested so far using SPLAT. Therefore, we only recommend using static definitions of
powerCBE and powerContingency.

American Institute of Aeronautics and Astronautics

13

• ‘powerContingency’ = the difference between the CBE and MEV of power consumption, resulting
from the amount of uncertainty in the estimate or measurement; this is expressed as a decimal-
converted percentage (in the range [0, 1]) of the ‘powerCBE’ value

• ‘powerCBEPlusContingency’ = MEV of power consumption for a given component; this is a
derived value that is calculated according to the formula: powerCBEPlusContingency =
powerCBE * (1.0 + powerContingency)

This set of variables was choosen during initial prototype development efforts, and was sufficient to show the utility
of the tool. However, as SPLAT is integrated into the workflows of existing projects at JPL, we may find that this set
of variables is not acceptable for tracking all of the power characteristics needed for given analyses. Therefore, we
anticipate future development efforts to allow the tool to handle any number of defined power (and possibly other
domain, such as thermal) variables.§§

When the SysML-to-Timeline transformation runs, it performs the following conceptual actions (although the
ordering may not be exactly as specified here):

• The system decomposition hierarchy is traversed to determine all components (both leaf-level and
higher levels of abstraction) involved in the given analysis execution. Each discovered component
is assigned a Timeline object, which are then composed according to the decomposition graph.

• Each Timeline object for each of the components in the system is given the three
DependentVariables from the Power Characterization Template.

• Additionally, each Timeline object for leaf-level components in the system is given an additional
‘state’ DependentVariable to track the state history of the component (note: state is not composed
upward as part of the SPLAT analysis, and hence the non-leaf-level components are not assigned
this additional variable).

§§ One likely solution is to adapt SPLAT to run against models built use the recently developed Behavior ontology,
which allows any number of state variables to be defined for each component12.

Figure 12. The overall flow of the SPLAT power analysis, from information stored in a MagicDraw SysML
model, to the solved power load profiles in Maple.

American Institute of Aeronautics and Astronautics

14

• The scenario that is specified for the analysis, which can be hierarchical in nature, is traversed
recursively to discover specifications of state transitions for each leaf-level component. This set of
state transitions (InstantEvents) are mapped into a time-history of state for each leaf-level
component, which are stored as DependentVariableConstraints on the ‘state’ variable in a series of
DurativeEvents.

• The durations of the DurativeEvents are also obtained from the scenario specification, and stored as
TemporalConstraints on the TimeVariables (indirectly) associated with the DurativeEvents.

• The state-history information is combined with the power characteristics for each power state of
each leaf-level component to define additional DependentVariableConstraints that result in time-
histories of the ‘powerCBE’, ‘powerContingency’, and ‘powerCBEPlusContingency’ variables for
the leaf-level components.

• The decomposition hierarchy is used to formulate a series of DependentVariableConstraints that
represent the rollup of time-histories of the ‘powerCBE’, ‘powerContingency’, and
‘powerCBEPlusContingency’ variables for each of the components higher up in the decomposition
hierarchy. The time-history of the variable for the parent is equal to the sum of the time-histories
of the same variable for each of its children.

After this transformation is complete, a series of composed Timeline objects is present in Java memory space.

Before it is next processed by SPLAT, it is first serialized to a file on hard disk, with the intention that other analysis
applications could process and use that information. The IMCE effort is in the process of developing tools to validate
and audit OWL213 ontologies serialized in RDFXML, so this same format was choosen for the SPLAT Timeline
serialization. An excerpt from the RDFXML file generated for the Science Flyby scenario is shown in Figure 13. It
can be seen that the Timeline objects are stored as owl:NamedIndividuals – in this segment, there are two
DependentVariableConstraints, one DurativeEvent, one TemporalConstraint, and one TimeVariable, as given by the
< rdf:type > element.

Figure 13. Excerpt from the Timeline RDFXML serialization generated for the Science Flyby
example.

American Institute of Aeronautics and Astronautics

15

Next, SPLAT performs another transformation to take the Timeline objects present in Java memory space and
convert them into a series of Maple expressions (really, an entire program written in the Maple programming language)
that can be solved for the power profiles. This results in a Maple-executable file like the one shown in Figure 14,
which was generated for the Sciece Flyby example. When this file is executed, it results in piecewise expressions for
the DependentVariables in terms of any free TimeVariables or parameterized power attributes.

Figure 14. Maple executable code that is generated by the second SPLAT transform – (A)

DependentVariableConstraints as piecewise expressions in terms of TimeVariables; (B) set of
TemporalConstraints; (C) set of TimeVariables; (D) solving the TemporalConstraints for the values of the
TimeVariables; and (E) solving the DependentVariableConstraints for the values of the DependentVariables
given the now determined values of TimeVariables.

American Institute of Aeronautics and Astronautics

16

3. Solving and Plotting in Maple
Once the constraint set is in Maple language syntax, users can solve the set within Maple. The solved variables

are saved in a “.m” Maple format as well as in an XML format. This latter format was implemented to be used as a
data interchange format with other tools that need to use the power profiles, such as more specialized power analysis
or thermal analysis software.

Solving the notional flyby example using the data from §II. Model Information and Patterns, the power load profile
at the highest level of aggregation – the Flight System – is shown in Figure 15. Both CBE power and the power plus
margin (MEV) are shown. These results align with expectations that there is a large power draw during the flyby
(between 200 and 400 minutes), and there is another large power draw when the spacecraft sends data to Earth (~450
to 550 minutes).

Figure 15. Power load profile for the Flight System using the notional spacecraft and flyby example.

Although Figure 15 shows the power load of only the flight system, power information is available for any
component specified within the system decomposition. Figure 16 is a similar power load plot that again shows the
Flight System, and also shows the two subsystems under Flight System – Payload and Spacecraft Bus (refer to Figure
5 for the system decomposition). Because the Flight System is composed of only the Payload and Spacecraft Bus
subsystems, one can visually confirm that adding the power load profiles of the two subsystems together results in the
Flight System power load profile.

Figure 16. Power load profile for the Flight System and its two subsystems – Payload and Spacecraft Bus.
The summation of the two subsystem’s power load profiles results in the power load profile of the Flight System.

American Institute of Aeronautics and Astronautics

17

Additionally, the power load profile of individual components can be plotted. Figure 18 shows the profile for the
flight computer. This power profile is really a further extension of the solved state for each component. Each state
has an associated power characterization, which is used to construct a piecewise function (constraint) that is solved
for the profile. Figure 18 shows the power states to which the flight computer is assigned during all times of the flyby.
The power values associated with these states are used to create a piecewise function that, once solved, results in the
power load profile.

Figure 17. Power load profile of the flight computer showing CBE power and power plus margin.

Figure 18. Power states the flight computer is assigned to for all time during the flyby scenario.

IV. Example Application – Cold Atom Laboratory Power / Thermal Modeling
Despite being a new tool, SPLAT has been applied to a couple of select spacecraft applications. One such example

is its application to the Cold Atom Laboratory project***, which is an ISS payload to be launched in 2016 and will
experiment with ultra-cold Bose-Einstein Condensates (BECs)14. Currently, there are a number of notional
experimental sequences that the laboratory can execute to generate and study BECs. Engineers wanted to model the
power consumption during each of these experimental sequences to inform their instrument thermal models since the

*** “Cold Atom Laboratory: Mission Overview,” (website), NASA Jet Propulsion Laboratory, California Institute of Technology,
URL: http://coldatomlab.jpl.nasa.gov/mission/ [cited 3 August 2015].

http://coldatomlab.jpl.nasa.gov/mission/

American Institute of Aeronautics and Astronautics

18

some of the consumed power is released as thermal energy. Because thermal generation from power components was
a primary concern, the system was decomposed into a series of heat exchangers (Figure 19), which were then further
decomposed into leaf-level powered components (not shown in Figure 19). A scenario was developed for a single
run of Bose-Einstein Condensate production, which lasted about 60 seconds, and included various experimental
activities. Figure 20 shows the full scenario along with one of its sub-activities. This scenario was time-parameterized,
which means that many of the temporal constraints were captured as parameters. This parameterization resulted in
significant time savings since the model did not have to be recompiled for every instance of a new experiment. Rather,
values could just be varied and the constraints resolved within Maple.

Figure 19. System decomposition of the Cold Atom Laboratory application where heat exchanger
components (shown) were further decomposed into the individual leaf-level components (not shown).

American Institute of Aeronautics and Astronautics

19

Figure 20. Scenario of the Cold Atom Laboratory experiment. Many of the temporal constraints were
parameterized (shown in the blow-up), which allowed users to quickly change parameters without recompiling
the scenario.

Results of the SPLAT’s application and analysis to the Cold Atom Laboratory are shown in Figure 21 (power

values are intentionally obfuscated to preserve sensitive date). A general power load profile along with the power
transferred as heat to heat exchangers is shown in Figure 21-A. Figure 21-B shows the rate of heat flowing to each
heat exchanger during each experimental period. These results were able to replicate the overall power plot for a
single experiment that was achieved using the traditional spreadsheet approach.

Figure 21. Results of the SPLAT application to the Cold Atom Laboratory experiment: A) a power load
profile of the entire experiment, and B) heat rate for each heat exchanger split by experimental period.

American Institute of Aeronautics and Astronautics

20

V. Conclusion

A. Limitations of Current Approach
While SPLAT is a useful tool to help generate power load profiles, there are some limitations in this initial version

of which a user must be aware. Many of these limitations reside with how scenarios are constructed and defined and
how SPLAT interprets this data. SPLAT allows parameterization of power variables and temporal constraints;
however, this parameterization can lead to ambiguity in some circumstances. For instance, two activities occur in
parallel and the same component is used in each activity. If there are different transition signals for that component
in each activity, and the user parameterizes the time before each transition, there exists an ambiguity of which state
the component is in during these activities. The solver will not be able to find a solution in this instance. Another
limitation with the construction of the scenarios is that there is no notion of duty cycle. That is, if you have a sequence
of events within the scenario, the user must specify the sequence in its entirety instead of merely specifying the
repeatable unit and the number of repetitions. Finally, SPLAT’s script that transforms the sets of information in
MagicDraw into constraint equations in Maple language syntax has not been fully optimized. That is, a large number
of components and a high degree of scenario complexity will result in significant computational times. Some possible
reasons for such an issue is that the transformation script currently performs many model searches, and the script
evaluates every transition within a scenario, regardless of whether the component transitions to a different power state
or stays within the same one.

B. Future Work
SPLAT is the first version of a power analysis tool using model-based systems engineering approach, so there are

many areas for future improvement. SPLAT currently assumes that the system model it builds off of is primarily
constructed to house power information. In reality however, system models include information from many
disciplines including thermal, mass properties, data, among others. An improvement of SPLAT will be to modify it
such that the tool can function harmoniously with a system model that includes non-power information.
 Another main area of future work is to create a web-based tool that abstracts away MagicDraw completely, and
lets the general engineer construct components, their behaviors including power information, and scenarios. In such
a tool, the scenario definition will be modified to assert component states instead of asserting state transitions, which
will make it easier for SPLAT’s transformation script to comprehend parallel paths with temporal parameterization.

C. Summary
 SPLAT is a novel power analysis tool that operates within the framework of SysML to generate a power load
profile of a scenario. This power load profile is generated from basic knowledge of components’ power states and
how they change with time. This tool can be applied at any phase of a project, and is particularly useful in the initial
phases when highly detailed information that other analysis suites require might not be available. Moreover, while
SPLAT has been presented solely from the spacecraft domain, it is equally applicable to any domain with system
designs containing powered components.

Acknowledgments
The authors would like to thank JPL’s IMCE initiative, which has funded this work over the past several years.

We would also like to thank colleagues that have provided guidance and direction to this developmental effort, namely:
Steven Jenkins, Daniel Dvorak, David Wagner, Nicolas Rouquette, Matthew B. Bennett, Seung Chung, and John Day.

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

References

1Bayer, T. J., Bennett, M., Delp, C. L., Dvorak, D., Jenkins, J. S., and Mandutianu, S., “Update – Concept of Operations for
Integrated Model-Centric Engineering at JPL,” IEEE Aerospace Conference, Paper AC1122, March 2011. doi:
10.1109/AERO.2011.5747538.

American Institute of Aeronautics and Astronautics

21

2Wood, E. G., “Multi-Mission Power Analysis Tool,” National Aeronautics and Space Administration, IT Symposium 2002,
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Nov. 2002, URI: http://hdl.handle.net/2014/10645
[cited 3 August 2015].

3Wood, E. G., Chang, G. W., and Chen, F. C., “Multi-Mission Power Analysis Tool (MMPAT) Version 3,” National

Aeronautics and Space Administration, Rept. NPO-48152, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
CA, September 2012, URI: http://ntrs.nasa.gov/search.jsp?R=20120014116 [cited 3 August 2015].

4Maldague, P. F., Ko, A. Y., Page, D. N., and Starbird, T. W., “APGEN: A multi-mission semi-automated planning tool,”

First International NASA Workshop on Planning and Scheduling, Oxnard, CA, 1998, pp. 363-365.

5Donahue, K., Chung, S., Rozek, M., Ingham, M., and Day, J., “Behavior Ontology and modeling patterns for spacecraft

power analysis,” (presentation), NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, August 2013,
URI: http://hdl.handle.net/2014/44916 [cited 24 February 2015], (presented at AIAA Infotech@Aerospace Conference, Boston,
Massachusetts, 19-22 August 2013).

6Donahue, K., and Chung, S. H., “Timeline and the Timeline eXchange Infrastructure: A framework for exchanging temporal

information,” IEEE Aerospace Conference 2013, Big Sky, MT, 2-9 March 2013, doi: 10.1109/AERO.2013.6496945.

7Ingham, M. D., et al., “A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems,”

Infotech@Aerospace 2012 Conference, Garden Grove, CA, 19-21 June 2012, AIAA 2012-2533, doi: 10.2514/6.2012-2533.

8Day, J. C., et al., “Modeling Off-Nominal Behavior in SysML,” Infotech@Aerospace 2012 Conference, Garden Grove, CA,

19-21 June 2012, AIAA 2012-2576, doi: 10.2514/6.2012-2576.

9Chung, S. H., and Bindschadler, D. L., “Timeline-based Mission Operations Architecture: An Overview,” AIAA SpaceOps

2012 Conference, Stockholm, Sweden, 11-15 June 2012, doi: 10.2514/6.2012-1269750.

10“Documents Associated with Systems Modeling Language (SysML), Version 1.3,” (web-hosted specifications), Object
Management Group, Inc., Released June 2012, URL: http://www.omg.org/spec/SysML/1.3/ [cited 3 August 2015].

11“RDF/XML Syntax Specification (Revised),” (web-hosted specification), W3C Recommendation, 10 February 2004, World
Wide Web Consortium (W3C), URL: http://www.w3.org/TR/REC-rdf-syntax/ [cited 8 August 2015].

12Castet, J.F., et al, “Ontology and Modeling Patterns for State-Based Behavior Representation,” Infotech@Aerosapce 2014

Conference, Kissimmee, FL, 5-9 January 2015, doi: 10.2514/6.2015-1115.

13“OWL 2 Web Ontology Language Document Overview (Second Edition),” (web-hosted overview), W3C Recommendation,

11 December 2012, World Wide Web Consortium (W3C), URL: http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
[cited 8 August 2015].

14Farkas, D. M., Salim, E. A., and Ramirez-Serrano, J., “Production of Rubidium Bose-Einstein Condensates at a 1 Hz Rate,”

arXiv.org e-Print archive, Atomic Physics (physics.atom-ph), article ID = arXiv:1403.4641v2, Cornell University Library, Ithaca,
NY, last updated 24 December 2014, URL: http://arxiv.org/abs/1403.4641v2 [cited 8 August 2015].

http://hdl.handle.net/2014/10645
http://ntrs.nasa.gov/search.jsp?R=20120014116
http://hdl.handle.net/2014/44916
http://www.omg.org/spec/SysML/1.3/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://arxiv.org/abs/1403.4641v2

	A Tool for Model-Based Generation of Scenario-Driven Electric Power Load Profiles
	Nomenclature
	I. Introduction
	A. Motivation for MBSE & SysML Solution
	B. Tool Usage and Guiding Principles
	C. Explanation of Planetary Flyby Case Study

	II. Model Information and Patterns
	A. Components and Their Power Attributes
	B. System Decomposition
	C. Scenarios
	1. Initial Conditions

	III. SPLAT Functionality
	A. Manipulation of Component Power Information
	B. Initial Condition Import / Editing
	C. Running Analysis to Generate Power Load Profiles
	1. Definition of Analysis Configuration
	2. Overall Analysis Flow / Methodology
	3. Solving and Plotting in Maple

	IV. Example Application – Cold Atom Laboratory Power / Thermal Modeling
	V. Conclusion
	A. Limitations of Current Approach
	B. Future Work
	C. Summary

	Acknowledgments
	References

