

American Institute of Aeronautics and Astronautics

1

A Principled Approach to the Specification of System
Architectures for Space Missions

Mark L. McKelvin, Jr.1, Robert Castillo2, Kevin Bonanne3, Michael Bonnici4, Brian Cox5, Corrina Gibson6, Juan P.
Leon7, Jose Gomez-Mustafa8, Alejandro Jimenez9

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

Azad Madni10
University of Southern California, Los Angeles, CA, 90089

Modern space systems are increasing in complexity and scale at an unprecedented pace.
Consequently, innovative methods, processes, and tools are needed to cope with the
increasing complexity of architecting these systems. A key systems challenge in practice is
the ability to scale processes, methods, and tools used to architect complex space systems.
Traditionally, the process for specifying space system architectures has largely relied on
capturing the system architecture in informal descriptions that are often embedded within
loosely coupled design documents and domain expertise. Such informal descriptions often
lead to misunderstandings between design teams, ambiguous specifications, difficulty in
maintaining consistency as the architecture evolves throughout the system development life
cycle, and costly design iterations. Therefore, traditional methods are becoming increasingly
inefficient to cope with ever-increasing system complexity. We apply the principles of
component-based design and platform-based design to the development of the system
architecture for a practical space system to demonstrate feasibility of our approach using
SysML. Our results show that we are able to apply a systematic design method to manage
system complexity, thus enabling effective data management, semantic coherence and
traceability across different levels of abstraction in the design chain. Just as important, our
approach enables interoperability among heterogeneous tools in a concurrent engineering
model based design environment.

I. Introduction
odern space system platforms demand greater functionality than previous generations to satisfy needs and
capabilities of current and future space missions. As stated in the most recent National Aeronautics and Space

Administration (NASA) Technology Roadmap[REF] , future robotic missions will involve greater complexity and
reactivity, which will require increased reliance on autonomy, adaptability, efficiency, functionality, reliability,
safety, and related quality attributes. For example, deep-space missions that target active, dynamic, or time-varying
phenomena will need robotic systems that robustly handle uncertainty and adapt to changing circumstances and
uncertainty by adjusting their configurations and behavior. Robotic missions to Near-Earth Asteroids (NEAs) will
require more autonomous decision-making and monitoring processes on-board the space vehicle as opposed to
ground control. The demand for greater capabilities under technical performance, cost, and programmatic

1 Software Systems Engineer, System Architecture and Behaviors, M/S 301-490.
2 Systems Engineer, Electrical System Engineering, M/S 301-490.
3 Software Systems Engineer, Mission Control System Engineering and S/W Architecture, M/S 301-480.
4 Systems Engineer, System Verification and Validation Engineering, M/S 301-490.
5 Systems Engineer, Electrical System Engineering, M/S 301-490.
6 Systems Engineer, System Verification and Validation Engineering, M/S 301-490.
7 Systems Engineer, Electrical System Engineering, M/S 301-490.
8 Systems Engineer, Electrical System Engineering, M/S 301-490.
9 Technical Group Supervisor, Electrical System Engineering, M/S 301-490.
10 Director of System Architecting and Engineering Program, Daniel J. Epstein Department of Industrial & Systems
Engineering, 3715 McClintock Avenue, GER 240, Los Angeles, CA 90089, AIAA Fellow.

M

American Institute of Aeronautics and Astronautics

2

constraints is driving the trend towards tighter coupling between computational elements, such as software and
electronics, and physical processes of a space vehicle, such as electrical, mechanical, and thermal processes. The
ability to interact with and expand the capabilities of the physical processes through computation, communication,
and control is a key enabler for current and future technology developments. However, these trends lead to an
exponential growth in complexity of space systems.

 Developing space systems to meet stakeholder needs is a multidisciplinary endeavor that involves
multidisciplinary groups of engineers and the integration of different types of subsystems into a product. Space
systems are typically developed by engineering teams comprising multiple engineers who tend to be experts in
their own discipline. Hence, system development involves the integration of multiple disciplines, such as electrical
engineering, electronics, computer science, control and communications, that interact continuously with physical
processes. Space system platforms are normally composed of tightly coupled subsystems where each subsystem
performs a set of distinct tasks. The dynamics of all the elements in the system are critical to performance of the
overall system. This is a key concern in that spacecraft subsystems often have very different length and time scales.
Despite technical differences that arise, it is critical to maintain a holistic view of the system. This leads to the
cooperative development and management of control and computation, communication, and physical processes. The
dynamic nature of system interactions, coupled with their inherent uncertainty, drive system behavior that is often
difficult to predict during conceptual and preliminary design stages. This results in emergent behavior, that is,
behavior that is unintended, yet it is not realized until validation and verification during integration of the system
components. It is the ability, or rather the inability for a multidisciplinary group of engineers to integrate various
subsystems into a product and to understand the resulting system interactions as a whole that characterizes the
complexity of modern space systems. Emergent properties of modern space systems drive technical complexity.

The complexity of large scale space projects has continuously contributed to unexpected cost overruns and
schedule delays. According to a study by the Congressional Budget Office for 72 NASA projects between 1977 and
2000 revealed a 61% increase of initial project budgets [REF] . Moreover, since 2009, the Government
Accountability Office (GAO) has consistently reported cost growth and schedule delays in the Agency’s large scale
projects [REF2012, REF2014, REF_GAO_2015] . A common practice to reduce development cost and risk is to use
heritage components in new system development. Despite this practice, a study performed by the NASA Discovery
and New Frontiers Program Office (D&NF) found that current practices do not identify critical issues early enough
in the design cycle to ensure project schedules and estimated costs address the inherent risks to mission
success[REF_LESSONS] . Development costs are poorly estimated as a result of underestimating technical
complexity. In the study, several factors were cited as the cause to the inability to meet cost and schedule goals.
Major causes include, inadequate understanding of the heritage system’s behavior within the proposed spacecraft
design and mission environment and inadequate scoping of the system-wide impacts necessary to implement an
advanced technology for space systems. Using heritage has been used to decrease cost and risk but inability to
understand its behavior in context of whole system is problematic.

Designing modern space systems requires effective management, of engineering and system integration-related
information throughout the system development process to reduce the magnitude and unpredictability of
development cost. Although more recent projects have experienced less cost growth and schedule delays than in the
past , the GAO found that projects are more likely to succeed in terms of cost, schedule, and performance if design
stability is established early in the development cycle[REF GAO 2015]. A stable design allows projects to “freeze”
the design and minimize changes prior to manufacturing and fabrication of hardware, after which time, design
changes due to re-engineering efforts can be costly to the project in terms of both time and funds. For example, the
GAO reports in the same study that the ICESat-2 spacecraft was rebaselined as a result of cost and schedule
overruns stemming from underestimating the complexity of the optics design associated with its instrument. As a
result of the rebaseline, project lifecycle costs have increased by $203.2 million and the the project’s committed
launch date has been delayed by 13 months. Thus, managing and minimizing the complexity of modern space
system development offers the ability to reduce both the magnitude and unpredictability of development cost.

To meet the challenges of developing modern space systems in a cost-effective and predictable manner requires
a more rigorous approach to systems engineering. Methods and tools based on formal models have the potential to
keep technical information consistent and enable system-wide, holistic analyses for understanding the impact of
design changes. Yet, the use of rigorous foundations in systems engineering is still lacking in addressing issues in
the overall design flow and providing more formal analysis and tools for system-level design of modern space
systems. As a consequence, traditional engineering practice relies on heuristic approaches based on “rule-of-thumb,”
experience, and the use of heritage designs. There has been little in advancing systems engineering science in
practice. Advances in new system architectures and technologies that enable required system capabilities have not
been accompanied by corresponding advances and adoption of design processes and tools that are needed to develop

American Institute of Aeronautics and Astronautics

3

modern space systems. The use of more formal methods and tools are the primary mechanisms for managing
system development, and in particular, the development of the system architecture.

In this paper, we propose an approach to the specification of space system architectures based on the principles
of component-based and platform-based design. System architecture is the conceptual organization of a system that
facilitates understanding of the system and provides the specification for the system design. Component-based
design is an approach to whereby designs are obtained by assembling strongly encapsulated design entities called
components. Components interact through well-defined interfaces. It is a natural paradigm in practice since
components are self-contained and reusable. Platform-based design is a “meet-in-the-middle” design process by
which successive refinements of component specifications meet abstractions of potential implementations. It
provides a systematic method for design reuse at all levels of abstraction and for identifying critical hand-off points
in the design chain. Our goal is to utilize these principles to acquire system knowledge earlier in system
development to better identify the scale, impact, and behavior of system interactions. This capability, in turn, will
enable better management of system complexity by ensuring superior understanding of the system as a whole
before key design decisions and development investments are made; hence, establishing design stability earlier in
the development process.

II. Background
Systems engineering is a multidisciplinary field of engineering that focuses on translating a diverse set of

stakeholder needs into a balanced, technical solution with a focus on how projects should be designed and managed.
Systems engineering focuses on the system as a whole, and as such, it provides a holistic view of the system and
how it needs to interact with other systems. Furthermore,, systems engineering aids in the conceptual design phase
of a system and specifically in developing the system’s architecture. The system architecture is a description of
the system organization that guides the subsequent system design. System architecting is a decision process that
transforms stakeholder needs into a system architecture[REF_MADNI] . Many important design decision are made
during system architecting. In systems architecting, a decision can be thought of as a partitioning and selection
operation in the architectural candidate space. When a decision is made, the system architect chooses a part of the
solution space that will remain under consideration, and a part that will be eliminated. In practical terms, the
architect reduces the set of alternative acceptable implementations..

In practice, the design approach for space systems is a sequential flow of information that is divided along
functional boundaries of domain-specific teams, where loosely coupled documents serve as the medium of
information sharing. The most commonly used representation of the system development lifecyle for space systems
is the “V” Lifecycle Process[REF_VFOOZ, REF_VINCOSE] . This process has two key limitations. One, the
process is inherently sequential. While there are iterations within and between stages, as time progress in the process
as indicated by Figure X , proof that the system works as designed occurs only when the physical system is
integrated and tested. Second, current tools do not lend themselves to collaborative development that is needed to
enable collective decision making among multidisciplinary teams and discipline-specific design data. The lack of
collaborative development inevitably leads to isolated component development, that dramatically increases the
likelihood of design inconsistencies.

During this process, design information is managed by a collection of documents as the space system design
progresses through the lifecycle. The design information often overlaps and is maintained by separate custodians
without explicit reference to a central data repository. For example, some specifications of the electrical system
requirements are generally captured as a set of high-level block diagrams that are used to capture the
interconnectivity between subsystems at different points in the design process. These diagrams may be used to
capture the interconnectivity and types of energy flows between spacecraft subsystems. Each diagram is created
independently with no explicit traceability and correspondence to each other. Moreover, it is difficult to assess the
completeness and consistency of the system because information is spread across various documents.

From our experience, the challenges of system design for modern space systems are rooted in the following
problems: development processes that are sequential as opposed to concurrent, processes that are driven by static
and loosely coupled documents; and multidisciplinary system development that is performed in isolation as opposed
to in collaborative settings. The consequences of these problems, which are found much later in the system
development process, invariably have adverse impacts on cost and schedule.

Given the limitations of current design process, the complexity of system management has influenced the use of
models as a way to manage the sysem engineering process[REF1, REF2] . In general, a model is an abstract
representation of a physical phenomenon. The model-based approach to systems engineering, also referred to as
Model-Based Systems Engineering (MBSE) [REF_4] , uses models as the common basis for capturing, representing,

American Institute of Aeronautics and Astronautics

4

and analyzing systems. The model is essential to the design and understanding of the system as well as managing the
system as it evolves over the development lifecycle. Modeling languages, such as UML[REF_UML],
SysML[REF_SysML], and AADL[REF_AADL] constitute the basis for standardizing the formal descriptions of
systems. In MBSE, design information is formally stored in the form of models. Computer-based tools aid system
engineers to efficiently create, store, and analyze system models.

III. Related Work
While recent advances in the application of models in systems engineering have begun to capture the system

architecture in models, the methods that are employed to support the decision process during architecture
development is lacking. Current work includes the development of architecture frameworks, such as
DODAF[REF_DODAF], TOGAF[REF_TOGAF], and ISO/IEC 42010[REF ISO] provide ways to organize views
and models that are used to describe system architectures. However, given that systems architecting is a decision
process, these frameworks do not make the relationship between architecture capture and architectural decisions
explicit. In addition, these frameworks cannot be modified to add new views and models. In our work, we construct
a coherent system model that is the composition of multiple platforms, where each platform is intended to capture a
design problem. From the coherent model, views may be created. Thus, allowing for the creation of new views.

SysML has been used to model different aspects of systems in a variety of application domains including
electrical systems, and dynamic modeling of aircraft power systems[REF8] . However, our work focuses primarily
on structural models that may be used for electrical system specification. In Slomka et. al. [REF_10] , the authors
focus on constructing models that combine the computational and physical aspects of an electrical system using a
layered design approach that is based on a systematic refinement process. In Shah et. al. [REF11] , the authors
develop an approach to maintaining traceability between multiple data sets. The authors also introduce an approach
to the integration of SysML and a commercial electronic automation design tool through the use of formal modeling
and transformation techniques.

IV. Approach
Modern space systems are designed and implemented as interacting entities, or components at different levels of

granularity. Given that modern space systems are often distributed and require the interaction of multiple entities,
including stakeholders, architecting the system is concerned with partitioning the system into interacting
components and identifying rules for interaction to ensure that functional and quality requirements are met. System
architecting is not typically concerned with defining the internal details or implementation of components since
design details are defined later in the design process by the engineers as a result of a given architecture.

In architectural development, components are treated as “black-boxes”, where the details of how input is
transformed into output are abstracted away. In practice, by first decomposing the system into components using
functional requirements to guide the decomposition. This process is repeated recursively until each physical device
or software component can be designed or constructed from off-the-shelf elements. Once the elementary
components of a system are defined, the detailed interfaces for each component can be defined and the engineer can
proceed with detaled design, implementation, and test of the element. In principle, constructing the system is
accomplished by composing components at the lowest-level for the corresponding level of abstraction. Therefore,
the composition of components is a key aspect of system engineering. The use of this bottom-up integration is made
possible with a sound technique for top-down spcecification of design and a robust system architecture. This divide-
and-conquer approach allows engineers to build large, distributed systems in such a way as to uncover possible
defects and address them before commitments are made in the system design.

Our approach to supporting these characteristics in system design is constructed on the principles of abstraction,
component-based design, and platform-based design. Decomposing systems into layers, or abstractions, addresses
complexity by hiding information. Abstractions of systems are usually captured in models. Abstractions can be
categorized into vertical abstraction and horizontal abstraction. Vertical abstraction hides information at different
levels of detail, wheras horizontal abstraction abstracts information at the same level of abstraction [REF_JACKS].
The combined approach allows for sharing design information more easily to help understand the relations between
subsystems and interdependencies between system components. Moreover, the approaches establish a holistic view
of an multidiscinplined system across different domains. The following sections provide a summary of these
principles.

A. Abstraction

American Institute of Aeronautics and Astronautics

5

Abstraction is technique for managing complexity and increasing design productivity. Abstraction hides
unnecessary details by removing characteristics from something in order to reduce it to a set of fundamental
characteristics[REF_ISO2010] that are relevant to a particular purpose. In engineering, the use of abstraction is to
simplify as a way to ease analysis of a system and make decisions more tractable. Abstraction can be applied
effectively to system architecting by allowing system engineers to focus on bounding problems whose solutions
remain agnostic to the greater problem as a whole [REF_ERL2012]. Finding balance between using abstraction to
focus on specific concerns while ensuring we continue to consider the problem as a whole is at the center of a
systems approach to system architecting and engineering.

Raising the level of abstraction is recognized in the software community and electronic system design
community as a technique to address complexity [REF_SW, REF_VLSI, REF_SOC]. However, the essence of
abstraction in system design is choosing the appropriate level of abstraction to address a problem. The appropriate
level of abstraction varies for different situations. Similar to using different tools for different situations in other
engineering domains, abstraction in system design requires choosing the right level of abstraction to address a
problem. Along with choosing the level of abstraction is choosing and using tools and languages that support work
at that level of abstraction[ASV_OTHORCONCERNS]. Gvien that system architecting is a decision process, the
challenge in system design is choosing the right level of abstractions to effectively architect the system.

B. Component-Based Design
Component-based design is an approach to design where strongly encapsulated design entities, or components,

are annotated with rigourous interface specifications to enable reuse and modularity [REFS]. It can be categorized as
a type of abstraction that is concerned with the composition of modular components. Whereas decomposition splits
the design into multiple layers, component-based approaches reduce complexity “horizontally.” Since the behavior
of a system is derived from its parts and interactions between parts, the use of component-based design in system
design is important. For one, it allows addressing complexity by separating computation from communication and it
allows for modular design, where components may be replaced with other components. In a component-based
paradigm, the behavior of a component may be described by inputs and outputs at its interfaces with other
components. It enables the use of type systems for checking compatibility between component interfaces and for
detecting mismatch at component interfaces[REF_LEE]. In system design, this is an important aspect of a systems
approach to maximize reuse and to provide a mechanism for correct-by-construction composition of system
architecture.

C. Platform-Based Design
Platform-based design (PBD) is a “meet-in-the-middle” approach to design by which successive refinements of

specifications meet abstractions of potential implementations[REF_ASV]. The PBD approach is an intellectual
framework where a design flow that implements a specification, proceeds through a sequence of refinement steps.
An essential aspect of this framework is the separation of concerns. This separation enables effective trade studies,
capturing requriements and their decomposition, and enables exploration of cost and performance for a given
application. PBD provides a systematic method for design reuse at all levels of abstraction and for identifying
critical hand-off points in the design chain. For example, a key aspect is separating functionality from architecture
platform, where functionality is a description of what the designer intends to implement, whereas the architecture
platform expresses how the designer realizes the functionality.

In PBD, a platform is a library of components that can be assembled to generate a design at that level of
abstraction. A platform instance is a valid composition of library elements that are characterized by their cost and
performance metrics. Each refinement step consists of selecting a platform instance that correctly implements a
specification for a specific level of abstraction. Thus, a design step in the system design process can be formulated
as design problem whose solution is an instantiation of a platform instance that satisfies the specification. The
method enables a systematic approach for manual, semi-automatic or automatic mapping between successive
abstraction layers. This view of the design process is a generalization of a process that designers have used
implicitly for years. For example, in the digital logic synthesis process Boolean logic functions represent the
functionality and the platform includes a library of technology specific logic gates.

PBD addresses complexity by introducing appropriate levels of abstraction into system architecting for effective
decision making while bringing forward implementation constraints into the design early, thus enabling early
verification and ensuring traceability throughout the system development process. The challenge in using PBD is
deciding appropriate levels of abstraction. Defining appropriate levels of abstraction for space system and space
applications is a key aspect to controlling complexity and producing an effective and scalable architecture
development process. Ideally, at each level of abstraction in the process, an exploration of design parameters is used

American Institute of Aeronautics and Astronautics

7

Thus, the first step in this design flow is to define the operational concept for the system. This step will involve
numerous trades that will ultimately define the capabilities of the system and ideally the mechanical structure, or
system envelope. Once defined, requirements are derived and allocated to the spacecraft bus and payload systems.
The capabilities and performance required to fulfill the system’s operational intent drive the control system design
of the spacecraft subsystems. A spacecraft is composed of multiple control systems that are integrated and share
multiple hardware resources. The control system design defines the functional architecture, or functions that the
system will perform. Once performance parameters are designed and set, the functions are assigned and allocated to
software or hardware devices of the physical platform. The goal of this design step is to find the optimal allocation
of resources to fulfill the functions of the system. For example, control of the thermal processes may require
updating temperature sensor values at a certain desired frequency as a result of functional analysis. The goal is to
select or design a set of hardware devices (or software if autonous control is desired or needed) that can fulfill the
timing requirement of the thermal control process. Then, once functions are assigned to a selected set of devices,
the network topology design seeks to determine a configuration of interfaces and their connections given constraints
on mass, device performance, and heritage, among a few of many parameters. Finally, the communication network
and power distribution networks can be instantiated in terms of nets to form a system-wide netlist (i.e. a circuit
netlist). The netlist can then be implemented and manufactured as a set of wires and cables. This flow will then
provide the necessary schematics for implementation of the system.

In the PBD methodology, at each of the aforementioned design steps, a library of components are used to provide
performance estimations of the lower levels. It is this aspect about PBD that makes it attractive to system design
because the performance estimations would provide the needed cost and performance parameters that will either
form the basis of lower level requirements to guide the implementation or selection of capable resources. The result
of the typical design flow annotated with performance estimations and cost at each design step, or design
articulation point, will provide an implementation that is potentially more cost effecting since the entire system is
obtained by matching the requirements with the available resources. Moreover, taking into account the restrictions
imposed by the available hardware early in the design process avoids design error that are typically discovered in the
final implementation.

B. Space System Platforms
The proposed design flow allows for multiple platforms to be constructed based on key architectural decisions.

For the purpose of this paper, we will assume that the design of the system operational capabilities is captured in the
specification in the form of a model or in the form of a textual document. For example, an operational concept
document is commonly used in practice as a way to capture stakeholder mission needs
[REF_NASA_HANDBOOK]. Other methods include simulation models, such as Clasp [REF_CLASP], and
declarative models [REF_MBSE_CONOPS]. Each platform in our flow is represented by a set of models. A model
for the specification, which captures the “what”, and a model of the resources that may be selected and configured
to describe the “how”. The resources are chosen from a library of objects whose performance and cost parameters
are set. The library and parameters of the objects in the library allows for performance estimations to occur despite
having a final implementation of the system. It also allows for characteristics of off-the-shelf components to be used
as estimations. This separation will allows multiple teams to work on a design problem independently. However, the
mapping process, as shown in Figure ZY, allows for the teams to integrate the models and verify that the
refinements satisfy constraints of the specifications. Figure PLATFORMS provides an illustration of the platforms
in our approach.

American Institute of Aeronautics and Astronautics

13

to engineers, we developed a set of graphical user interface tools that allows a user to interact through MagicDraw to
create and modify block diagrams and netlists. This gave the end-user the ability to use notation and diagram format
that they are more accustomed to using, and the views of the diagrams can be tailored to the user by defining
appropriate mappings using our back-end tools. Our tools on the back-end automatically update, in real-time, the
design information as it is being modified and captured by the user. Figure A illustrates the user interface tools. The
software is implemented using a model, view, controller architecture. The model is the core system architecture
model that the user does not have to interact with directly. Instead, the user interacts through the diagram or netlist
view model. The controller in the model-view-controller architecture is the set of back-end scripts that we developed
which creates the bidirectional link between the user views and the core system architecture model. and netlists.
These reports are critical to demonstrating design stability throughout the development process for a flight system.

VII. Conclusion
In this work, we have shown that we can improve traceability of the architecture design and ensure consistency

of design and architecture information between data products using a core system architecture model that captures
various levels of abstractions. The abstractions are decided based on key design decisions that commonly occur in
spacecraft architecture design. This has enabled the ability analyze consistency between gate products and the
design, and it provides a mechanism by which the system design can be traced back to the operational concept and
thus key stakeholder requirements. In addition, the system architecture model captures the structure of the design
decision problems. Therefore, not only are different views of the system are captured in documents, tables, and
diagrams, but we trace the views back to the architectural decisions that are made throughout the design on key
aspects of the system architecture.

We have developed and discussed software-based tool infrastructure, in which models from different domains
can be integrated at each stage of the design lifecycle. The tools we constructured allows system integration issues to
be identified and addressed earlier in the process. It also allows stakeholders to bring forward verification steps by
applying tools that model requirements and by incorporating functions into the design. A productive model-based
systems engineering development process incorporates models, tools, and other capabilities that facilitate
uncovering critical problems early in the development cycle, well before system integration begins. By augmenting
current tools to enable communication, incrementally automating current processes to improve and track activities,
and using standards to maximize consistent scalability, such an effective and efficient result can be realized.

Model-based engineering is more than just a good idea. It provides a rigorous structure for managing complexity
while, at each design stage, making it possible to directly link design functionality back to the program’s original
requirements and functional specifications. A productive model-based engineering environment enables team
members to collaborate more effectively across disciplines, develop concurrently, ask questions and get answers
earlier, and work within a design-data-driven process. Introducing models that are able to increase engineers and
stakeholder understanding of the system and lead system design from one stage of the design flow to another helps
bridge productivity gaps, improve the consistency of design information, and enable traceability throughout the
system architecture.

Acknowledgments
This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract

with the National Aeronautics and Space Administration.

References
1. Madni, A.M. and Sievers, M. “Model Based Systems Engineering: Motivation, Current Status and Needed Advances,”

accepted for publication in Systems Engineering, 2015.
2. Madni, A.M. “Expanding Stakeholder Participation in Upfront System Engineering Through Storytelling in Virtual

Worlds,” Systems Engineering, Vol. 18, No. 1, pp. 16-27, January 2015.
3. Madni, A.M. and Sievers, M. “System of Systems Integration: Key Considerations and Challenges,” Systems

Engineering, Vol. 17, No. 3, pp. 330-347, Autumn (Fall) 2014.
4. Madni, A.M. and Sievers, M. “Systems Integration: Key Perspectives, Experiences, and Challenges,” Systems

Engineering, Vol. 17, No. 1, p. 37-51, Spring 2014.
5. Madni, A.M. “Generating Novel Options During Systems Architecting: Psychological Principles, Systems Thinking, and

Computer-Based Aiding,” Systems Engineering, Volume 16, Number 4 2013.
6. Neches, R. and Madni, A.M. “Towards Affordably Adaptable and Effective Systems,” Systems Engineering, Vol. 16,

No. 2, pp. 224-234, Summer 2013.

	A Principled Approach to the Specification of System Architectures for Space Missions
	I. Introduction
	II. Background
	III. Related Work
	IV. Approach
	A. Abstraction
	B. Component-Based Design
	C. Platform-Based Design

	V. Modeling Space System Architecture Platforms
	A. Proposed Design Flow for Space System Architectures
	B. Space System Platforms
	1. Control System Functional Design
	2. Communication and Power Distribution Topology Design
	3. Interface Design
	4. Netlist Design

	VI. Architecture Systems Analysis: Design Information and Products
	A. Views and Viewpoints
	B. Semantic Analysis and Tool Interoperability
	C. Automated Reporting Capabilities
	D. Graphical User Interface Tools

	VII. Conclusion
	Acknowledgments
	References

