

American Institute of Aeronautics and Astronautics

1

Cyber-Attack Methods, Why They Work On Us, and What
To Do

DJ Byrne1
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Basic cyber-attack methods are well documented, and even automated with user-friendly
GUIs (Graphical User Interfaces). Entire suites of attack tools are legal, conveniently
packaged, and freely downloadable to anyone; more polished versions are sold with vendor
support. Our team ran some of these against a selected set of projects within our
organization to understand what the attacks do so that we can design and validate defenses
against them. Some existing defenses were effective against the attacks, some less so. On
average, every machine had twelve easily identifiable vulnerabilities, two of them "critical".
Roughly 5% of passwords in use were easily crack-able. We identified a clear set of
recommendations for each project, and some common patterns that emerged among them
all.

Nomenclature
APT = Advanced Persistent Threats
DNS = Domain Name System
IP = Internet Protocol
VPN = Virtual Private Network

I. Introduction
e are in an arms race with cyber-attackers. How well do our defenses match up with our adversaries'

tactics? What methods are productive from an attacker's perspective? Do our cyber-defenses hinder attackers
as much as they inconvenience legitimate users? How wide a front are we trying to stretch our defenses to cover?
What considerations must be taken into account in the application of customary defenses to space systems?

Our previous work demonstrated the utility of independent review to verify, and validate, our defenses[cser2014]
and to evaluate whether they are effective, or mere theater. Our approach assumes an environment under attack by
APTs, or Advanced Persistent Threats. We characterize APTs as highly motivated, not simply giving up after a few
hours failure, and expecting to spend significant time achieving a goal. We posit them as having a clear vision of
what success looks like, with roadmaps of how to succeed. Such roadmaps would lay out multiple paths to success,
pivoting from one system to the next, with workarounds for failed pathways. The larger the "attack surface" that our
systems present to the world, the more beachheads and pathways attackers have to reach any given goal.

Common attacker goals assumed by our group include:
• "Get a copy of the blueprints of that product / robot."
• "Get the play book for their side of the negotiation."
• "Learn the techniques used to accomplish what no one else has done."

However, we also presume that APTs have multiple targets, and finite time and money. Our first priority is to
replace defenses that are cheap to overcome with alternates that cost attackers more effort. "Software Engineering"
is a contradiction in terms if it does not include the concept of "strength of materials."2

Our Cyber defense research group recruited several diverse internal projects and performed assessments of them
from an attacker's perspective (a.k.a. "penetration testing"). This is a case-study of some common methods as we
applied them ourselves, to ourselves, noting what worked and how well.

1 Software Systems Engineer, JPL, 4800 Oak Grove Drive, Pasadena, CA 91109, AIAA Professional Member
2 Quoted from William Murray, SANS Newsbites Volume XVI - Issue #91, November 14, 2014, URL:
https://www.sans.org/newsletters/newsbites/xvi/91

W

American Institute of Aeronautics and Astronautics

2

II. Reconnaissance and Vulnerability scans

A. Internet Addresses and Domain Names
Note: this paper restricts its scope to IP (Internet Protocol) version 4 as that is most commonly used by our

projects. The main points apply to IP version 6 as well, but not the details.
How does a cyber-attacker find a victim to exploit? The most basic method of detecting an Internet-facing device

is simply to try talking to every possible IP address and port. IP addresses are 32 bits long, so there are 232 or just
over 4 billion possible addresses; port numbers are 16 bits, so there are just over 65,000 ports per address. Blocks of
IP addresses are assigned[iana] to particular organizations. The DNS (Domain Name System) optionally maps IP
addresses to names[icann] like "www.MyVictim.com" and vice-versa.

Sending a packet to a single port on each IP address - for the entire public Internet - can be done in less than an
hour[ZMAP]. Several organizations publish their interesting research results of doing exactly this3, demonstrating that
common service discovery is straight-forward.

But let's consider more targeted approaches. An attacker targeting MyVictim.com could lookup the range of IP
addresses assigned to that organization and scan just those. Or, one could prioritize the addresses registered to names
in DNS, as often the name itself is a powerful clue, like "blueprints.MyVictim.com".

We found a machine responding on one of a project's "unused" addresses that turned out to have been
"temporarily borrowed" by another group and then forgotten. This created a potential attack beachhead to the
project's other addresses (more on this later, under "firewalls").

Why does it work?
In part because of a hope or belief that there is an adequate defense deployed against the attack. We encountered

ineffective defenses including:
• "We don't register our IP addresses in DNS. That way no one will know those addresses are in use."
• "We'll use a non-descriptive name and attackers will ignore that address."
• "We have disabled ICMP (Internet Control Message Protocol) pings on all our machines, so no one can

see them." An ICMP "ping" is a simple request/response mechanism used to identify IP addresses in
use. It has historically been in place on most devices, extremely useful for troubleshooting, but like
DNS names is merely an optional service.

It's true that using a provocative name can increase attack frequency on an address, but that fact by itself does
nothing to protect other addresses. Attackers don't need to know anything beforehand to try all addresses, so these
examples of "security through obscurity" are irrelevant.

Likewise, some attackers do rely on pinging for the first round of discovery and will not further examine an
address that does not reply. Disabling ICMP "pings" is therefore a helpful but thin security layer; it doesn't stop
attackers from getting responses from other services. E.g., an adversary with a newly discovered web exploit may
only seek out responses to requests sent directly to port 80 or 443 which has no dependency on ICMP queries or
responses.

What to do about it?
Adopt an attitude that each of your addresses will one day likely be probed by an attacker. Go ahead with giving

them names that are meaningful to you. Managing your addresses well pays off by bringing unusual activity to your
attention.

Keep a list outside of DNS of all the addresses and names you think you're using, and every few months:
• Verify that list against DNS by looking up each name, and also looking up each address (reverse

lookup). Do they still map to each other as expected? Have any names disappeared? Have any shown
up you don't know about?

• Look for traffic on your network to or from addresses that should be unused.
• Try to contact each of your unused addresses. Do any respond?
• Use firewalls on each address that can have one, i.e. on each machine. Not just one firewall for an

entire subnet (more on this later).

3 https://sonar.labs.rapid7.com/

American Institute of Aeronautics and Astronautics

3

B. Firewalls, Beachheads, and Pivoting
Let's look at these ideas:

• "We are behind a firewall, so no one can reach us."
• "We use a private subnet, so our machines can only talk to each other."
• "We use a VPN (Virtual Private Network), so we are only reachable through our authenticated

gateway."
These are excellent, recommended defensive layers. They limit an attacker's visibility of and access to victim

addresses. But how well they provide protection depends on the granularity of their configuration, and most
importantly on the security of each link in the chain of access.

In our testing, we identified a handful of typical firewall/VPN configuration granularities relevant to our
projects:

• Public Internet - allow access only to hardened services. These are somewhat filtered by the enterprise
firewall, to the extent it is configured to do.

• My company's intranet - allow access to most services. The company's collection of subnets are
addresses within the enterprise border, inside of the enterprise firewall and therefore not protected by it.
Commonly these are one or a few "class B" subnets with ~65,000 addresses each.

• My project's dedicated subnet - allow access to everything. That is, topologically adjacent machines that
have direct communication with each other without hopping through any intermediate routers. Often
this is a small set of addresses within a contiguous range of perhaps ~256 (a "class C" subnet like
10.2.3.0/24 would include 10.2.3.1, 10.2.3.2, and so on through10.2.3.255).

Why does it work?
Methods of getting past a firewall , and why they work, include:

• Compromising the firewall itself. Firewalls run software like any other application, with bugs and holes
that get discovered over time.

• Exploiting intended holes in firewall configurations. Perhaps the firewall only allows inbound http
traffic to one web server, but that server had a flaw, like an exposed admin page or buggy application.
The flaw can allow it to be "owned" by an attacker who can run arbitrary code on it, not just web
services.

• Discovering unintended holes in firewall configurations. By simple "doorknob rattling", an attacker can
find, say, that http traffic is allowed through to a machine that should not be accessible. This commonly
happens when a machine is decommissioned but no one updates the firewall rule afterwards, and the IP
address gets reused by a new machine.

• Pivoting from a previously compromised "trusted" machine. Since you can login through VPN from
your laptop at home, say, an attacker who has control of your laptop can use that same connection, at
least while you have it open. This multi-hop process worms between defensive layers, getting an
attacker successively closer to the target. The road to blueprints.MyVictim.com may pivot through
several stops of unrelated but nearby machines.

• Attacking via a legitimate outbound connection from behind your firewall. E.g., if a user on a protected
server surfs the web and unknowingly encounters a website with malware loaded, or if a user succumbs
to a phishing attack by clicking on a malevolent link in email.

• Using the initial access gained by one of the above methods to install further malware. That is, the only
goal of the initial attack is to establish a more permanent beachhead, perhaps a "beacon" that calls out
to some command-and-control server elsewhere. The beachheads exist because the machine owners
were not fully cognizant of all the software installed and running on their platforms. When installing a
printer, you're only thinking about printing, not learning to use its command line, setting a good
password for it, etc.

American Institute of Aeronautics and Astronautics

4

What to do about it?
In a nutshell: "endpoint security". Individual projects often do not have insight into the enterprise firewall, so

should not assume that it specifically does anything. Rather than ascribe magical efficacies to an unknown device,
duplicate what you think its functions are in your own firewalls on each machine. Deny all inbound traffic by
default, then individually enable only the precise incoming ports/services you intend to be visible. If you only expect
a machine to see traffic from a finite set of other addresses, restrict it to only talk to those. Deny all outbound traffic
by default, and allow only the communication appropriate to achieve your objectives.

Most importantly, have someone else scan your subnets and tell you what they were actually able to see. Have
this done from several "topological distances", e.g. from the public Internet, from within the enterprise, and then
from within your own subnet. Check system logs regularly for unusual activity or access times like 2am.

C. Scanning for Service Vulnerabilities
Given some ability to reach your machines, an attacker can "fingerprint" the services visible there. E.g., one can

simply ask a web server what version of software it runs, and compare that to a database of known
vulnerabilities[NVD]. There are several competing products in the commercial and public domains that scan IP
addresses and ports, identifying known vulnerabilities4,5. At least one6 even automates exploiting over 1000
published vulnerabilities, executing pre-packaged payloads on the target.

We tried several of these tools on sets of real-world project machines, and chose one to become more familiar
with. Our focus is designing and validating defenses, after all, and we only need enough expertise as attackers to do
reasonable testing. We selected one that requires only that we input the IP addresses or ranges to target, and select or
tailor a template of parameters such as how safely or aggressively the scan should run.

Thus simulating the role of an attacker, in a single 4-hour session on project "Proj1a" we found 516 potential
vulnerabilities across 40 machines. We verified multiple convenient beachheads, including printers with unprotected
logins, aging workgroup servers, misconfigured servers granting too many privileges, and one machine the project
did not own and was not aware existed on their subnet. We did not collect measures on false-positives.

The project took the report and began improving their defenses, largely by decommissioning obsolete services
and machines and patching software. Two months later we repeated the scan as "Proj1b". There were 75% fewer
findings this time.

4 https://www.rapid7.com/products/nexpose/
5 http://www.coresecurity.com/
6 https://www.metasploit.com/

American Institute of Aeronautics and Astronautics

5

We have run scans for six projects, plus the "Proj1b" re-scan. These figures summarize the results, showing a
fairly consistent spread of vulnerabilities. We have not tried analyzing the results further, e.g. by operating system
type, as the number of machines is quite small.

The report categorizes each finding as one of three types 4:
1) Critical vulnerabilities require

immediate attention. They are
relatively easy for attackers to
exploit and may provide them
with full control of the affected
systems.

2) Severe vulnerabilities are often
harder to exploit and may not
provide the same access to
affected systems.

3) Moderate vulnerabilities often
provide information to attackers
that may assist them in mounting
subsequent attacks on your
network

Unlike an attacker would do, our scans
were the equivalent of a gorilla in an orange
jumpsuit. We made no attempt at stealth, yet
only one project had an alert to automatically
notify the project of unusual activity.

Why does it work?

Our findings included software running that had been "temporarily" installed and then forgotten. Left unpatched

and unmanaged, it provided an opening even a novice attacker could exploit. (The project removed the software as
soon as we reported it.) This illustrates that systems are managed to keep required services running, not to prevent or
even notice unintended services, or unintended uses of legitimate services.

We also commonly saw open services that the projects knew nothing about, typically harmless default services
that came with the operating system. Because the project did not intend to run these services, they did not put
protections around them.

Operational ground systems for space-flight like ours present a few special challenges. A mistake that prevents
communication to the spacecraft can end the entire mission, so any changes to the system are labor-intensive and
time-consuming to test; "if it ain't broke don't fix it" is an excellent policy that conflicts with continuous patching.
That is to say, the risk of a change is greater than or equal to the risk of what an attacker might do. When our

 Number of Vulnerabilities Found
Across All Machines

Average Number of
Vulnerabilities Per Machine

Project Number of
machines

All Critical Severe Moderate All Critical Severe Moderate

Proj1a 40 516 72 343 101 12.9 1.8 8.6 2.5
Proj2 13 74 11 41 22 5.7 0.8 3.2 1.7
Proj3 6 135 15 103 17 22.5 2.5 17.2 2.8
Proj4 5 81 18 45 18 16.2 3.6 9.0 3.6
Proj5 4 52 23 25 4 13.0 5.8 6.3 1.0
Proj6 3 56 8 34 14 18.7 2.7 11.3 4.7
Overall 71 914 147 591 176 12.9 2.1 8.3 2.5
Proj1b 34 136 40 67 29 4.0 1.2 2.0 0.9

Figure 1. Vulnerabilities Across Multiple Projects. Note that Proj1 was scanned twice, 2 months apart.
The second scan is treated separately, to distinguish initial results from the effect of responding to findings.

Figure 2. Average Number of Vulnerabilities Per Machine.
Over a set of projects. "Proj1b" is a re-scan of "Proj1a" after fixes.

American Institute of Aeronautics and Astronautics

6

missions, like Voyager or Opportunity, get extended for additional years, the budgets have not included funding for
"new development"; they are expected to continue with the original hardware, operating system, and software long
past the vendors end-of-life dates, or even after the vendors go out of business.

New vulnerabilities continue to be published even in decades-old, stable software. A repeated scan will report
more findings over weeks and months, even if all the previous findings have been addressed.

What to do about it?
Notice that "Proj1b" had the lowest number of vulnerabilities per machine of all the scans. Have your machines

periodically scanned by an independent group that goes in without expectations of what they will find.
Turn off, disable, remove unused services to reduce the attack surface. Use firewalls to restrict network traffic to

only what you intend to use.
Consider that you should have a defense in place, an intrusion detection system, that notices the scan and alerts

you. If it is too risky to patch the systems themselves, layer on continuous monitoring that watches them for
anomalous behavior. Schedule a process to review information in log files and chase down the unexpected.

III. Password Cracking
Stealing or cracking passwords is an intermediate goal, a means to an end. We obtained, with permission,

hundreds of hashes for operational passwords, which were compliant with strength rules, from our projects to see
how long it would take an attacker to crack them.

What are the attacker methods
underlying all that advice we are
bombarded with on choosing "good"
passwords, and avoiding bad ones?
Starting simply, if an attacker wants to
use your password, what are the very
first ones they will try and how long will
it take?

We tested password strengths of
three projects and found we could crack
about 5% of passwords with little effort.
This is not to say we could choose to
crack a particular password easily. Each
success grants an attacker more access
and pivot points.

A. Using a Search Engine
Yes, it sometimes works to Google for "MyVictim.com password".

Why does it work?
People write passwords down in the darndest places. In our case it was installation instructions for the support

desk personnel that ended up on an external site where they did not belong.

What to do about it?
Periodically search for your name, company, service, etc. and "password" and if something turns up, contact the

search engine companies to stop returning that result, and contact the web site publishing the information to take it
down.

Project Number of
Hashes

(Cipher-text)

Number
Cracked in
Less Than 1

Hour

% Cracked in
Less Than 1

Hour

ProjA 555 32 6
ProjB 165 8 5
ProjC 46 2 4

Figure 3. Cracked Passwords Across Multiple Projects. Using John
the Ripper[JtR] with a wordlist and default rules.

American Institute of Aeronautics and Astronautics

7

B. Using Wordlists
With billions of users and passwords world-wide, the particular password you use has probably been used before

by someone else. Knowing nothing else, an attacker could start by guessing passwords like these7:
123456 123456789 1234567 mustang superman
password 1234 monkey access 696969
12345 baseball letmein shadow 123123
12345678 dragon abc123 master batman
qwerty football 111111 michael trustno1

Within a few seconds (barring defenses - we'll get to that) the attacker will be trying these:
winniethepooh
butterfly1
methylenedioxyamphetamine
Auf Ihre Gesundheit!
weltwirtschaftsgipfe2l

A wordlist, as you can see, is more than just a dictionary. For comparison, we have been using a wordlist of
about 95 million words; whereas there are about one-half million words in a common-usage dictionary (e.g.
/usr/share/dict/words as shipped with many linux distributions). We compiled ours from various public hacker tools,
chiefly "John the Ripper" [JtR] and others packed as part of kali-linux[kali]. We then added words from organization
and project acronym lists and similar documents, but those turned out not to help.

These wordlists originate from the billions (including duplicates) of actual passwords stolen and cracked over the
years. A sampling of stolen passwords includes Sony8, Adobe9, eBay10, Cupid11, and a conglomeration of email
accounts12. In each of those cases, tens of millions of user account passwords were stolen from the servers
themselves, not from the users. The passwords were usually encrypted and couldn't be used until cracked, but once
cracked would be added to the wordlists. And of course that new word would then be tried for all other accounts to
see how often it was chosen.

Why does it work?
Because people think alike, and especially because people reuse the same password on multiple services. After

the Adobe breach, lists of username/passwords started circulating. Facebook took the active step of trying those
same username/password combinations on their own accounts, and whenever one worked they sent a message to the
user to change their password13. They declined to say how many they found.

What to do about it (for system administrators)?
Configure your service to limit the number of guesses that can be made per minute. Lock out an accounts' access

and send an alert after some number of failures. E.g. after five failures, lock the account for ten minutes, which
prevents an attacker from trying very many words, while allowing a user to notice what is going on (or that the caps-
lock key is active). Require new passwords, say, every 90 days so that a slow, patient attacker gets sent back to
square-1. Check service logs for authentication failure messages; e.g., by default ssh logs unsuccessful attempts
along with the offending client IP address in /var/log/auth.log which gives you the opportunity to block the offender
from future access.

What to do about it (for users)?
Follow rules for strong passwords (see the next section on mangling) even when not required to. Assume that

some service you use will one day lose your password, and that your username, email address, or other identifying
information will be with it. Therefore, use a unique password for each service you care about.

7 https://splashdata.com/press/worst-passwords-of-2014.htm
8 http://www.wired.com/2014/12/sony-hack-what-we-know/
9 http://krebsonsecurity.com/2013/10/adobe-breach-impacted-at-least-38-million-users/
10 http://krebsonsecurity.com/2014/05/ebay-urges-password-changes-after-breach/
11 http://krebsonsecurity.com/2013/11/cupid-media-hack-exposed-42m-passwords/
12 http://krebsonsecurity.com/2014/08/qa-on-the-reported-theft-of-1-2b-email-accounts/
13 http://krebsonsecurity.com/2013/11/facebook-warns-users-after-adobe-breach/

American Institute of Aeronautics and Astronautics

8

C. Using Mangling
Mangling a word means to modify it according to rules of commonly-observed patterns found across wordlists to

generate more words. If any letter is capitalized, it is most likely the first letter. If there is a punctuation mark at all,
it is most likely an '!' as the last character. If the word is not in the dictionary, perhaps it is merely spelled
backwards. To illustrate, here is an example showing the default mangling rules built into John the Ripper[JtR]:

% echo "password" > simple_wordlist
% john --wordlist=simple_wordlist --stdout --rules
password password3 psswrd Password5 9password
Password password7 drowssaP Password7 5password
passwords password9 Drowssap Password4 6password
password1 password5 passworD Password6 8password
Password1 password4 2password Password8 Passwords
drowssap password8 4password Password. passworded
1password password6 Password2 Password? passwording
PASSWORD password0 Password! Password0 Passworded
password2 password. Password3 3password Passwording
password! password? Password9 7password

Why does it work?
Because users are instructed to "use a number and a non-alphabetic character" and so of course we all choose the

first ('1' and '!' are the same key) that spring to mind and append them.

What to do about it?
As above for "Wordlists", and... Do the unexpected - misspell your word, capitalize the second letter, put the

punctuation in the middle, etc.

D. Using Brute Force
Brute force essentially means trying every possible keyboard combination. But even with brute force, an attacker

can use patterns from the wordlists to form heuristics of what combinations to try sooner. Rules of language and
character incidence probabilities feed into it like the game "hangman". E.g. passwords turn out to be more likely to
use an 'e' than a 'q'; a 'q' is more likely followed by 'u' or 'w' than any other character, etc.

Why does it work?
Again, the lesson here is that humans follow predictable patterns. We saw an asymptotic falloff in the success

rate with brute force cracking, with longer and longer times between correct guesses. For ProjA, after cracking about
5% with wordlists in the first hour, brute force found another 5% in two weeks, and another 10% over two months.

What to do about it?
As above for "Mangling", and... It takes more time to try all of the longer combinations, so the longer your

password is, the longer it will take for a brute-force attack to find it. Use uncommon characters and combinations
(compared to your neighbors).

E. Cracking Hashes Offline
Typically, machines do not store passwords. Instead, they store crypto-graphic hashes, which are generated from

the password. Hashing a password means to chop and mix it up into an unrecognizable but unique and repeatable
mess (called the hash). It is usually not feasible, or even possible, to reverse the process; it's like trying to un-mix
paint. When you log into such a machine, you type your password into an application that runs it through the
algorithm; if the resulting output matches the stored hash exactly, the input must have matched as well. The idea is
that if an attacker sees the stored hash, they cannot "unmix" it to learn your password.

 Attackers who compromise the data store can gain access to the hashes, and download them from the victim
network. On their own machines now, APTs compare rapid-fire password guesses against the hashes, neatly side-
stepping any defenses the victim system may have in place. The previous sections on wordlists, mangling, and brute
force illustrate the words that will be tried first.

An organized attacker will use a lookup table or set of rainbow tables to save time at the expense of some
storage space. That is, store the words together with their hashes. When the attacker gets hold of a hash in the future,
it is much faster to look it up in the table than to re-compute all the words.

American Institute of Aeronautics and Astronautics

9

There are many well-know, published hash algorithms of varying complexities. Some that we saw in our projects
were:

• DES (Data Encryption Standard) [des]
• MD5 (Message-Digest 5) [md5]
• SHA-2 (Secure Hash Algorithm 2) [sha-2] in several variants including SHA-256 and SHA-512 (256 and

512 bits of output, respectively)

This figure illustrates some of the differences between them. Note how widely varying the time is for each to
calculate a hash on the same input. All of the algorithms shown also use a salt, which is an extra few characters that
get appended to the password before running. Salts are a defense against lookup tables, since now every user could
have the string "password" but with different salts the hashes would all be different. Attackers can still create lookup
tables using all possible salts, but that is much more work than without them.

There is really no good reason to still be using DES, which is from the late 1970's; it persists simply because of
its long history, installed base, and concerns about backwards-compatibility. For instance, a common client-server
architecture is for the client and server to exchange lists of algorithms they know, and select one that is known to
both. Exhausting a wordlist using DES takes an attacker just enough time to get a cup of tea; not very daunting.

Why does it work?
Hashes are data like any other, and can be stolen. They are supposed to be heavily protected but they are also

high-value targets. An attacker with even a brief toehold on a system will grab the hashes as quickly as possible;
detecting the intrusion "within minutes" is just too late.

What to do about it?
As above for "Brute Force", and... Configure machines to use slow-to-compute algorithms that use salts. This

means active disabling / removing fallback algorithms. Require that passwords be changed periodically so that if
hashes are stolen, either there is not enough time to crack them before the change, or else even a cracked password is
useless after the change. That limits the time-window for the attacker to progress to the next step.

F. Summary of Defenses
There is a trade-off between security and convenience. We do not advocate long strings on uncommon, nonsense

characters. Passwords that are hard to remember or difficult to type hinder the users more than they inconvenience
attackers. A combination of four random words is better than eleven random characters14. Toss a number (not '1'),
punctuation mark (not '!'), and capitalization in the middle and an attacker will need to spend a lot more money on
hardware to exhaustively crack it.

Change passwords periodically to limit the time-window when an attacker can use a stolen password.
Follow the "Principle of Least Privilege"; any one password should only grant limited access to the resources

needed by that account. That is, use separate accounts (and passwords!) when acting as a user, admin, or system-
admin.

14https://security.stackexchange.com/questions/6095/xkcd-936-short-complex-password-or-long-dictionary-
passphrase

Algorithm Number of hashes
per second on

commodity laptop

Example

Clear-text N/A password
DES 10,000,000 xLf43jk6eLpF2
MD5 125,000 1saltsalt$qjXMvbEw8oaL.CzflDtaK/
SHA-256 1,500 5saltsalt$gOjOtoMpVhru2uyjeJSEc/JaLQWOXMNmlOnj6T4AtC.
SHA-512 1,500 6saltsalt$qFmFH.bQmmtXzyBY0s9v7Oicd2z4XSIecDzlB5KiA2/j

ctKu9YterLp8wwnSq.qc.eoxqOmSuNp2xS0ktL3nh/

Figure 4. Hash Algorithms. These are all representations of the string "password". The same input can take
orders of magnitude longer to compute, and results in very different output.

American Institute of Aeronautics and Astronautics

10

Use multi-factor authentication so that a password alone is not enough to grant access; it would have to be
combined with some additional token, smartcard, or method.

IV. Conclusion
Perfect security is not generally attainable. Understanding attacker methods and the ease or difficulty of

employing them allows you to deploy defenses that raise security to a level where the cost to the attacker is
unattractive. Vulnerabilities and weak passwords persist despite policies and procedures intended to prevent them.

We spent a little time trying to improve on the public and commercial tools to identify inadequate defenses, but
there was no need. Our time is well-spent testing systems using the attacker's own methods.

Every system we have looked at had some exposures that were easily spotted yet easily fixed, including printers
with unprotected logins, unused services, etc. About 5% of password hashes cracked within a few minutes.

An organization should use many layers of defenses - "Defense in Depth" - that are affordable, reliable, and
well-understood. While many layers of firewalls are good to have, the most important one is closest to the
application itself. Close the highest-priority holes first15,16 to raise the bar before doing a more thorough but time-
consuming audit of comprehensive controls[nist SP800-53].

Adversaries can get better maps of our cyber-landscape than we have, by looking at the state of the system as it
is, whereas we tend to believe the system was built as intended and stopped changing. Thus our understanding drifts
from reality over time if we are not vigilant. This underscores the need for independent testing by a group with no
expectations of what services an IP address *should* be providing, so they can clearly see the services it actually
does offer the world.

Acknowledgments
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a

contract with the National Aeronautics and Space Administration.
Thanks to Bryan Johnson, Kymie Tan, Frank Kuykendall, and Ed Silber for their contributions to the ideas,

laboratory facilities, and techniques used in this paper.

References
[cser2014]Byrne, DJ; Morgan, D.; Tan, K.; Johnson, B.; and Dorros, C., "Cyber Defense of Space-based Assets: Verifying and

Validating Defensive Designs and Implementations," Conference on Systems Engineering Research (CSER 2014), Procedia
Computer Science 28, 2014-03-19, pp. 523-530, URL: http://www.sciencedirect.com/science/article/pii/S1877050914001276

[iana] Internet Assigned Numbers Authority. URL: https://www.iana.org/
[icann] Internet Corporation for Assigned Names and Numbers. URL: https://www.icann.org/
[ZMAP] Durumeric, Zakir; Wustrow, Eric; and Halderman, J. Alex "ZMap: Fast Internet-Wide Scanning and its Security

Applications", Proceedings of the 22nd USENIX Security Symposium, August 2013 URL: https://zmap.io/paper.html
[NVD] National Vulnerability Database, National Institute of Standards and Technology,
URL: https://web.nvd.nist.gov/view/vuln/search
[JtR] John the Ripper Password Cracker, URL: http://openwall.com/john/
[kali] Kali Linux Penetration Testing Distribution, URL: https://www.kali.org/
[des] Federal Information Processing Standards Publication 46-3, October 25, 1999, U.S. Department of Commerce / National

Institute of Standards and Technology, URL: http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
[md5] Rivest, R., "The MD5 Message-Digest Algorithm", Internet Engineering Task Force Request for Comments #1321,

April, 1992, URL: https://tools.ietf.org/html/rfc1321
[sha-2] Federal Information Processing Standards Publication 180-4, "Secure Hash Standard", August, 2015, U.S. Department

of Commerce / National Institute of Standards and Technology,
URL: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
 [nist SP800-53] Special Publication 800-53, "Security and Privacy Controls for Federal Information Systems and Organizations",

January 22, 2015, National Institute of Standards and Technology,
URL: http://www.nist.gov/manuscript-publication-search.cfm?pub_id=917904

15 SANS Top 20 Critical Controls for Effective Cyber Defense, http://www.sans.org/critical-security-controls/
16 Australian Department of Defense, "Top 35 Mitigation Strategies",
http://www.dsd.gov.au/infosec/top35mitigationstrategies.htm

	Cyber-Attack Methods, Why They Work On Us, and What To Do
	Nomenclature
	I. Introduction
	II. Reconnaissance and Vulnerability scans
	A. Internet Addresses and Domain Names

	Why does it work?
	What to do about it?
	B. Firewalls, Beachheads, and Pivoting

	Why does it work?
	What to do about it?
	C. Scanning for Service Vulnerabilities

	Why does it work?
	What to do about it?
	III. Password Cracking
	A. Using a Search Engine

	Why does it work?
	What to do about it?
	B. Using Wordlists

	Why does it work?
	What to do about it (for system administrators)?
	What to do about it (for users)?
	C. Using Mangling

	Why does it work?
	What to do about it?
	D. Using Brute Force

	Why does it work?
	What to do about it?
	E. Cracking Hashes Offline

	Why does it work?
	What to do about it?
	F. Summary of Defenses

	IV. Conclusion
	Acknowledgments
	References

