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Conveying spacecraft health and status information to mission engineering personnel 
during various mission phases, including mission operations, is a requirement to achieve a 
successful mission. For NASA/JPL spacecraft, that often means displaying hundreds of 
telemetry channels from a variety of sensors and components emitting data at rates varying 
from 1hz-100hz (and faster) in a way that allows the operations team to quickly evaluate the 
health of the vehicle, identify any off-nominal states and resolve any issues.  In this paper we 
will discuss the system design, requirements and use cases of three telemetry processing and 
visualization systems recently developed and deployed by our team for NASA’s Low Density 
Supersonic Decelerator (LDSD) test vehicle, NASA’s Soil Moisture Active/Passive (SMAP) 
orbiter, and JPL’s Sampling Lab Universal Robotic Manipulator (SLURM) test bed. 

Nomenclature 
MSL = NASA’s Mars Science Laboratory rover 
EDL = Entry, Descent and Landing mission phase 
SMAP = NASA’s Soil Moisture Passive Active spacecraft 
LDSD =  NASA’s Low Density Supersonic Decelerator test vehicle 
SLURM = JPL’s Sampling Lab Universal Robotic Manipulator 
DARPA  = Defense Advanced Research Projects Agency 
Qt = Toolkit for building UI applications 
PyQt =  Python wappers for Qt  
PyQwt =  Python wrappers for plotting widgets that extend Qt 
CSV = Comma Separated Values 
UI =  User Interface 
IMU =  Inertia Measurement Unit 

I. Introduction 
onveying spacecraft health and status information to mission engineering personnel during various mission 
phases, including mission operations, is a requirement to achieve a successful mission. For NASA/JPL 

spacecraft, that often means displaying hundreds of telemetry channels within context, from a variety of sensors and 
components emitting data at rates varying from 1hz-100hz (and faster) in a way that allows the operations team to 
quickly evaluate the health of the vehicle, identify possible off-nominal states and resolve any issues detected.  
 
 In this paper we will discuss the system design, requirements and use cases of three telemetry processing and 
visualization systems recently developed and deployed by our team for the first two flights of the Low Density 
Supersonic Decelerator (LDSD) test program, the Soil Moisture Active/Passive (SMAP) orbiter, and the Sampling 
Lab Universal Robotic Manipulator (SLURM) test bed. All deployed systems were developed using Object-
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Oriented design principles, the Python Language1 and the Qt2 UI framework. In addition, all applications share a 
common code-base with a mission specific-layer and were multi-threaded to support multiple tasks, such as the 
concurrent procressing of multiple telemetry data streams, data logging, and distributing data to single or multiple 
visualization platforms. Servers in our deployed systems where either custom Python software based developed by 
our team or open source message passing services. 
 

II. Background 

 Leveraging on the telemetry visualization software that our 
team developed for the live 2012 Mars Science Laboratory 
(MSL) entry, decent and landing (EDL) night event3, the 
simulation-based visualization of the LDSD test vehicle’s 
predicted trajectory and flight performance, and telemetry 
visualization and robot control visualization developed for the 
JPL Robodome robots as shown in Figure 1, our team has 
developed a cost effective architecture and re-usable software 
framework to support the processing, serving and visualization of 
spacecraft telemetry for a variety of data rates, including much 
higher rates (up to 1000hz) than the 4hz rate we encountered 
during the MSL EDL, while presenting important mission 
information to operations personnel in an easy to understand, 
visually compelling, and organized format. Recent past work also 
supported the 2010 MoonRise proposal, telemetry visualization 
and control displays for JPL Maritime R & D tasks as well as visualization for JPL and DARPA robotic vehicle 
simulation efforts. 

III. System Design and Methodology 

Starting with a tool set based on Python, PyQt4 and PyQwt5 we designed and built an underlying processing 
framework and display solution with re-useable Python classes used to instantiate UI elements for scalar, plot and 
mapping widgets, display windows, asyncronous data processing and display using multiple threads of execution, 
and socket-based I/O utilizing TCP/IP and UDP network protocols.  All of the described telemetry visualization 
systems were based on a client-server model where telemetry was either provided directly from the vehicle to our 
local server, with decommutation provided by a dedicated processing unit or via the JPL Ground Data System. 

Taking a cue from past work we performed at JPL, 
and in industry designing display list-based, 3D 
rendering engines for space mission and robotic vehicle 
simulations and mission operations, we developed a 
novel method for associating telemetry channel 
attributes and actual telemetry data received, along with 
the UI widgets used to display the telemetry data, by 
building a display list containing entries representing 
each telemetry item to be displayed. As depicted in 
Figure 2, we use documents provided by our flight 
project customers, typically in CSV format, we extract 
individual channel attributes such as channel name, 
identifier, high and low limits and any scaling factors or 
equations, and then auto-generate Python dictionaries 
containing this channel attribute information, as well as 
references to functions used to scale the channel data 
and also reference to the actual Qt widget that will 
display the continuously changing channel data. The 
associated Qt widgets are either specified explicitly 

 
Figure 1. Past Supported Visualization Efforts 

 

Figure 2. System Flow and Display List Rendering 
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when we use Qt Designer or for large numbers of similar widgets, we have written Python scripts to auto-build UI 
elements.  

At run time and during the display rendering pass, the display code main thread iterates over the entire set of 
dictionary entries (representing the complete set of telemetry channel w/attributes to be displayed) and pulls the 
indicated channel value from the most recent serialized telemetry data received from the spacecraft or robotic 
system.  For each telemetry channel item on our display, we render either scalar or trend values (plots) with color 
indicators to highlight within limits or in alarm.  On a separate thread, telemetry channel data is continuously read 
from our server either to be immediately displayed when in “live” mode or saved in the display list for later recall by 
the user when paging backward and forward over time in “playback”. While we acknowledge that the memory 
usage of an application will continuously grow during system execution, we’ve found that having access to all the 
telemetry data received during a run is important to our customers, especially when the need to characterize system 
performance over time (trends) is desired for data such as bus voltages, thermal sensor values and IMU samples. 
Additionally, because we’re storing all received telemetry in the display memory, we can log the entire telemetry 
data to file for replay at a later time. 

IV. LDSD Flight Operations Displays 

 In support of the LDSD mission, we designed a client-
server system (Figure 3) to process the 200-300hz rate test 
vehicle telemetry data and provide a single-point telemetry 
processing capability that could serve multiple operations 
displays, all located on a closed and secure network. Because 
the LDSD flight tests were conducted at the Pacific Missile 
Range Facility (PMRF) we did not have access to the JPL 
institutional Ground Data System (GDS) typically used to 
serve channelized telemetry data. So, with a single 
workstation-class server computer system doing the heavy 
lifting, we processed the packetized telemetry stream from 
the test vehicle (and decommuted by a commercial 
processing unit), converted that stream to channelized 
telemetry and then served that telemetry in a serialized 
Python dictionary format, via a network swtch, to the 
multiple (six), and relatively light-weight, and inexpensive 
display clients running on Apple Mac Mini computer 

systems. While we’ve described the clients as light-weight, 
they were required to perform operations to render data to 
the screen, log data to file, execute splashdown prediction 
models, graph certain data, maintain telemetry data in 
memory and then recall that data when the user scrolls the 
display back and forth over time all while continually 
reading telemetry data over a TCP/IP and UDP sockets. To 
allow for these simultaneous operations each display client 
is a multi-threaded application with execution threads that 
perform the operations described above. We found that the 
Mac Mini systems, with Intel i5 CPUs and 8 GB of RAM, 
were capable of maintaining display data rates of ~20hz. 

 

 

 For the LDSD Flight Director page (Figure 4) we 
worked closely with the 2014 and 2015 Flight Directors to 

Figure 3. LDSD Telemetry Display System 
Architecture 

 

Figure 4. LDSD Flight Director Page 

Figure 5. LDSD Flight Dynamics Pages 
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best present an overall picture of the test vehicle’s health based on data from a variety of subsystems that included 
Power Bus voltages and currents, IMU, GPS, Balloon connector, cameras and digital video recorder (DVR) states.  
As the test vehicle’s systems were powered up, the Flight Director page would display green values for “not in 
alarm” telemetry items. During the pre-launch checkout, the Flight Director looked for a completely green board, 
which confirmed that the test vehicle was in a proper state for flight. Our LDSD Displays also contained multiple 
pages designed to present collections of data that support the Flight Director, Thermal Engineer, Flight Dynamics 
Engineer and Flight Reconstruction Engineer. The Flight Dynamics pages (Figure 5) contained vehicle performance 
information along with a situational awareness map display of the launch and test flight region in the Pacific. 
Overlayed onto the map and continuously updated during flight, were rendered icons showing test vehicle location 
and attitude, and predicted splashdown ellipses based on vehicle altitude. Integrated into the these pages was the 
ability for the Flight Dynamics engineer to initiate the execution of a splashdown prediction model (provided by the 
LDSD project) to be run typically after parachute deployment, that used vehicle performance data as received int the 
telemetry stream. Upon running the splashdown prediction model, an icon representing the predicted splashdown 
location was rendered onto the map,  Overall the LDSD telemetry displays that we developed processed and 
displayed over 200 individual items, including over 100 plot items from four simultaneous telemetry streams. 

A. Integration and Test 
 During development of the LDSD displays, we quickly realized that the display software could be valuable to 
the spacecraft integration and test team as the display software was developed prior to full integration of the test 
vehicle hardware. During on-going vehicle testing, the LDSD operations team could quickly identify if components 
were were not powered up in sequence, or if, for example, a thermal sensor was not wired in to the system. And 
while we did not have the time or budget, we discussed and did preliminary design work for a future, telemetry-
based 3D contextual display that would display vehicle component telemetry along with the actual correct placement 
of components onto a 3D model representing the LDSD test vehicle. This contextual display could help the 
operations team determine that sequences designed to fire thrusters in a certain order, would actually be firing the 
thrusters mounted at the required locations on the vehicle. 

B. Training 
 Prior to both LDSD test flights, dress rehearsals were conducted with operations personnel at the test flight 
facility and with the complete ground data system.  During these tests, playback and simulation data was piped 
through the ground system and into our LDSD displays, thereby giving operations personnel an opportunity to view 
displays and data very similar to what they would see on flight day.  Again, due to time and budget constraints, we 
discussed, but were not able to build a fault injection system that would have allowed LDSD operations experts to 
design training scenarios with simulated faults injected into the telemetry data, up stream of the LDSD displays. 
When developed, this type of simulated fault system could be used to script training exercises with a combination of 
predictable or randomly injected simulated faults. For a multi-year flight test project like LDSD, this could be a cost 
savings and reliability tool when training up new operations personnel, year over year. 

C. Playback and Reconstruction 
 The display software is capable of logging onto the local display computer which gives LDSD operations 
engineers the ability to playback the actual, logged data from test flights immediately. If desired, it was an easy 
process to copy the log data from the display computer to LDSD engineer’s personal laptop thereby allowing the 
flight reconstruction analysis to begin almost immediately at the conclusion of the test flights. 

 

 

V. SLURM Arm TlmViz 

In support of JPL’s Sampling Lab Universal Robotic Manipulator (SLURM) effort, we were tasked to develop a 
client-server system to access high-rate data from the JPL-developed SLURM arm robotic system targeted for 
deployment on the NASA Mars 2020 rover and graph various telemetry channels for the duration of a test. Project 
engineers requested that the TlmViz system be designed to plot up to ten channels during SLURM Arm test and 
development with tests durations possibly lasting up to a few hours. The high-rate data from the various sensors and 
actuators on the SLURM system range up to approximately 1000 Hz so it was a challenge to serve and display data 
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at those rates. To meet the specified requirements, we developed a client-server system using Python, PyQt4, 
PyQtGraph6 and RabbitMQ7. The RabbitMQ server publishes telemetry data as requested by the user at system start 
up, and the TlmViz application subscribes to the appropriate Topics2.  Because our RabbitMQ server publishes all 
available telemetry items, multiple instances of our TlmViz application can be run on different laptops or 
workstations, with each receiving identical or unique sets of telemetry items as specified by TlmViz configuration 
files loaded by the user at startup time. As we described in section III above, the TlmViz software is multi-threaded 
with the main thread handling operations related to setting up and rendering the multiple telemetry graphs and the 
second thread continuously reads streamed telemetry data from the RabbitMQ server. When topic items are received 
by the application, each is placed in the Python Queue owned by the associated plot. Using Python Queues allows us 
to asynchronously update the plots internal data structures without needing locks or semaphores. As we did on our 
LDSD software, this two thread architecture also allowed us to build in a feature that lets the user switch to 
“playback” mode and then page forward and back over time to view data received minutes or hours earlier. When in 
“playback” mode no data is lost as the telemetry thread continues to acquire data, with plots being updated when the 
user switches back to “live” mode.  

While TlmViz was designed to process and display telemetry at rates at ~1000 Hz, the currently deployed 
version of TlmViz receives data at ~20 Hz rate based on decisions made by the operations team and determining that 
1000 Hz data was not needed. 

Figure 6 shows the high-level data flow for our SLURM/TlmViz system. As described in a new paper submitted for 
publication9, we found this publish/subscribe method to be fast and efficient and moving forward, we’re looking at 
possibly replacing our older LDSD telemetry server with a Kafka8 or similar messaging system. 

Figure 6. SLURM TlmViz Data Flow 
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VI. SMAP Critical Sequence Telemetry Visualization 
 

NASA’s Soil Moisture Active/Passive (SMAP) spacecraft engineering team sought out a telemetry visualization tool 
to support three of their critical mission sequences: reflector boom arm deployment, reflector deployment, and 
reflector spin up. The SMAP team needed a tool to gauge whether spacecraft behavior was nominal or off-nominal 
as well as present deployment or spin up subsystem specific telemetry in a way that mission specialists, management 
and the public could easily understand. 

Leveraging on existing work with the LDSD telemetry display system (section III above), we were able to rapidly 
develop a SMAP-specific application framework and develop a single application for the SMAP operations team 
that was used for each of the three critical sequences as described below. Each version of the application displayed 
specific telemetry channels as requested by the SMAP operations team that indicated spacecraft health and state. In 
addition to the numeric and text fields displayed, a large visualization area was reserved for display of a visual 
representation of the spacecraft subsystem being monitored during the sequence. A soft indicator of progress was 
available in the telemetry stream and that was used to update a progress bar at the bottom of the displays. Estimates 
from the engineering team for events along this progress bar/timeline were included to help viewers better 
understand the sequence progress. 

A. GDS To Display Communication 
 Unlike LDSD, SMAP used the JPL institutional Ground Data System (GDS). GDS contains a suite of command 
line tools designed to access stored and live telemetry. We were able to leverage our LDSD display work and re-use 
existing communication code to allow us to configure the display to receive telemetry data over UDP. By using a 
small custom Python script, we were able to shuttle route telemetry data from live or playback GDS sessions into 
multipleour SMAP displays which allowed us to test and verify our software with the same telemetry plumbing that 
we would see during flight operations. 

B. Boom Deployment 
The first SMAP critical sequence supported was the deployment of 

the boom arm (Figure 7) which extended the reflector outward from the 
spacecraft body from a stowed configuration. The telemetry available 
during the sequence was insufficient to precisely determine the 
kinematic state of the arm, although the approximate state could be 
inferred from the available telemetry (e.g. cable tension, spool 
revolutions, etc.). Because we could not accurately and continuously 
predict the Boom kinematic state, we decided to use image frames from 
a pre-existing engineering simulation of the arm deployment, and 
keyframe those images to a sequence progress indicator. This greatly 
simplified V&V and provided a nearly equivalent visual result while 
reducing development time and cost. 

C. Reflector Deployment 
Reflector deployment was the second critical sequence we 

supported for SMAP. Visualizing the deployment of the 
reflector (Figure 8) was potentially more complicated than 
visualizing the boom arm because of the soft cloth-like 
dynamics. However, utilizing the same approach as the Boom 
Deployment, we were able to keyframe a series of images 
from an existing engineering simulation to telemetry items 
indicating deployment progress for the critical reflector 
deployment sequence. 

Using images from existing simulation work and 
keyframing it to the progress telemetry proved to be an 
excellent design decision. More complex visualizations were 
of course possible but the operations team found the images 
to be understandable and familiar. The motions of the two 

 
Figure 7. SMAP Boom Deployment 

Telemetry Visaualization 

 
Figure 8. SMAP Reflector Deployment 

Telemetry Visualization 
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deployments on the spacecraft were essentially confined to a 2D plane so the lack of a 3D visualization was not 
detrimental and introducing more complexity or fidelity would have had diminishing returns at the cost of expanded 
V&V requirements. 

D. Reflector Spin Up 
With the reflector successfully deployed it needed to go 

from its static state to its nominal science spin rate of 14.6 
RPM. This was done across two days and two critical 
sequences: an initial spin up to about 5 RPM on day one 
and a final spin up to the nominal spin rate on day two. We 
supported both of these sequences with a modified display 
developed under very tight time constraints. 

For this sequence the engineering team was interested 
in not only the speed and state of the reflector but the 
kinematic state of the spacecraft as well, as the reflector 
motor spin up could cause a counter-active torque causing 
the spacecraft bus to tumble. Visualizing this properly was 
important to the SMAP operations team and we 
determined that the developed solution required a 3D 
visualization. 

We developed the 3D solution (figure 9) by leveraging existing Python code developed for the Boom and 
Reflector deployment displays and open source tools. An Education and Public Outreach (EPO) team at JPL had 

already built a 3D model of the SMAP spacecraft. This 
model was built natively in Blender10, a free and open 
source 3D modeling and rendering software package. By 
taking advantage of Blender’s rendering capabilities we 
knew that we could develop a Blender-based offsite 
renderer to support the SMAP spin up operations. This 
remote rendering design had numerous advantages. First, 
very little modification of the existing SMAP display 
visualization was needed because it already supported the 
display of images. Second, the 3D model being used had 
been constructed using Blender so no import, export, or 
model translation work needed to be done. Third, Blender’s 
Python scriptability meant we could manipulate the model 
based on received telemetry and direct Blender to render to 
an image file. Fourth, Blender’s expansive set of rendering 
functionality would be available for us. 

The data flow was modified so that the telemetry 
stream was split in two, with one stream going directly into the SMAP display to update the various scalar values, 
and one stream going to the remote Blender renderer. The Blender renderer ran on a separate workstation-class 
computer that received telemetry via UDP similar to the SMAP display. Images were rendered to image files and 
stored on the workstation local disk. Those image files were then served from the remote workstation to the SMAP 
display software using a simple Python HTTP server. The SMAP display retrieved these rendered images at a 4 Hz 
rate. Figure 10 illustrates this data flow design.  

An interesting and beneficial side effect of this design was the ability to see the visualization stand-alone in a 
browser. With a simple refresh HTML page users were able to view the visualization on their mobile devices or 
computers. 

 
 
 
 
 

 
Figure 9. SMAP Reflector Spin Up 

Telemetry Visualization 

 
Figure 10. SMAP Reflector Spin Up Remote 

Rendering Data Flow 
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VII. Conclusions 

Multi-mission telemetry processing and display has been shown to be a valuable tool during vehicle integration 
and testing to operations and analysis and reconstruction, including the training of operations personnel for nominal 
and off-nominal cases prior to and after launch. We have demonstrated that a software framework consisting of 
Python/Qt can provide extensibily and performance for 2D and 3D display designs and is a cost effective solution, 
given the number of easy to use Python modules that are available for graphing data, managing multi-threaded and 
multi-process applications, OpenGL11 integration, interprocess communication, and image and map display. 

We plan to extend this work in the future to provide accurate contextual spacecraft visualization (from telemetry) 
during flight and spacecraft component visualization to be used by integration and test engineers to confirm that not 
only are the various spacecraft sub-systems are operating as designed, but that components are located correctly on 
the spacecraft chassis. An example would be attitude control system (ACS) thrusters and associated wiring and 
sensors installed in the correct location as well as correct operation of the flight software to control those ACS 
components. 
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