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Rule-Based Flight Software Cost Estimation 

Sherry A. Stukes1 and Dr. John N. Spagnuolo, Jr.2 
Jet Propulsion Laboratory, California Institute of Technology 

This paper discusses the fundamental process for the computation of Flight Software (FSW) cost estimates. This 
process has been incorporated in a rule-based expert system [1] that can be used for Independent Cost Estimates 
(ICEs), Proposals, and for the validation of Cost Analysis Data Requirements (CADRe) submissions.  A high-level 
directed graph (referred to here as a decision graph) illustrates the steps taken in the production of these estimated 
costs and serves as a basis of design for the expert system described in this paper.  Detailed discussions are 
subsequently given elaborating upon the methodology, tools, charts, and caveats related to the various nodes of the 
graph. 

We present general principles for the estimation of FSW using SEER-SEM as an illustration of these principles when 
appropriate. Since Source Lines of Code (SLOC) is a major cost driver, a discussion of various SLOC data sources for 
the preparation of the estimates is given together with an explanation of how contractor SLOC estimates compare 
with the SLOC estimates used by JPL. Obtaining consistency in code counting will be presented as well as factors 
used in reconciling SLOC estimates from different code counters.  When sufficient data is obtained, a mapping into 
the JPL Work Breakdown Structure (WBS) from the SEER-SEM output is illustrated. For across the board FSW 
estimates, as was done for the NASA Discovery Mission proposal estimates performed at JPL, a comparative high-
level summary sheet for all missions with the SLOC, data description, brief mission description and the most relevant 
SEER-SEM parameter values is given to illustrate an encapsulation of the used and calculated data involved in the 
estimates. 

The rule-based expert system described provides the user with inputs useful or sufficient to run generic cost 
estimation programs. This system’s incarnation is achieved via the C Language Integrated Production System 
(CLIPS) and will be addressed at the end of this paper. 
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Nomenclature 
ATLO = Assembly, Test, Launch Operations 
BOE = Basis of Estimate 
CADRe = Cost Analysis Data Requirement 
C&DH = Command and Data Handling 
CEH = Cost Estimating Handbook 
CER = Cost Estimating Relationship 
CLIPS = C Language Integrated Production System 
EM = Engineering Model 
EOM = End of Mission 
ESLOC = Equivalent (new) Source Lines of Code 
FFRDC = Federally Funded Research and Development Center 
FSW = Flight Software 
FY = Fiscal Year 
GN&C = Guidance, Navigation and Control 
GSW = Ground Software 
ICE = Independent Cost Estimate 
I&T = Integration and Test 
ITAR = International Traffic in Arms Regulations 
JPL = Jet Propulsion Laboratory 
KB = Knowledge Base 
LCC = Life Cycle Cost 
Mgmt = Management 
NPR = NASA Procedural Requirement 
ONCE = One NASA Repository 
S/C = Spacecraft 
SCHERRI = Software Cost Heuristics Embedded in a Rule-Based Reasoning Infrastructure 
SDC = Software Development Contactor 
SE = Systems Engineering 
SEER-SEM= System Evaluation and Estimation Review –  Software Estimation Model 
SLiC = Software Line Counter (code counter) 
SLOC = Source Lines of Code 
SMART = Software Measurement Analysis Repository Tool 
SQI = Software Quality Improvement 
SW = Software 
WBS = Work Breakdown Structure 

I. Introduction 
OST estimation at CalTech’s Jet Propulsion Laboratory (JPL) has in recent years become a crucial part of the mission 
formulation process [2][3][4].  Further, the rigor and exactitude constituting the basis of these estimates is attaining an 

importance that is becoming more and more pronounced with the passage of time [5][6].  Implicit in these analyses is a 
reliable and accurate estimation of the software costs involved in spacecraft, instruments (payload), simulation and testbeds, 
ground systems for commanding the spacecraft and instruments, and science data processing. Such software analysis is also 
required to support two other kinds of activities: Independent Cost Estimates (ICE’s) and Cost Analysis Data Requirement 
(CADRe) documents.  

ICE’s are an integral part of the cost verification process to ensure that costs are reasonable.  They may be variously 
requested by the project, NASA’s Independent Program Assessment Office (IPAO)3 and JPL’s Cost Analysis & Pricing 
section. ICE’s are required at milestone reviews and are performed separately from the project. Depending on how many 
ICE’s are performed, a reconciliation exercise may be conducted in order to understand the differences in content and scope 
of the estimates.  This allows for a single best estimate. During this process, interactions with project personnel are usually 
discouraged. One or more project independent data sources must be used to derive a software cost estimate. 

                                                             
3 The main role of the IPAO is to enable the independent review of the NASA’s Programs and to ensure mission success. 
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A CADRe is a report that provides present and future researchers with an encapsulated presentation of the technical and 
cost data of a project. The project could have already reached ‘End of Mission’ (EOM), or could be ongoing. A ‘Software 
Metrics Section’ in the report is used to categorize the modules of the software as defined by the project. Correspondingly, 
various parameters relating to the module are listed such as Source Lines of Code (SLOC), programmer and analyst 
experience, security requirements, multi-site development, work hours etc. These project given parameters (except for work 
hours) are used in conjunction with a computer program of choice to produce a software cost estimate for the project. The 
validation of the project given parameters is attained if the work hours produced by the program come close to those given by 
the project. If not, further project interaction and analysis is needed. 

This paper focuses on the work done in computing the FSW costs for N0 proposals done in the Engineering Cost Analysis 
Group. The techniques embedded in this work overlap considerably with those used for ICE’s and CADRe’s but differ in the 
sense that the work had to be done quickly and for many missions at once. It was therefore imperative that certain techniques 
and procedures had to be developed which not only streamlined the flight software analysis process but which also provided 
instantaneous confirmation that the data and processes used for these estimates was consistent across the board.  

The execution of software cost analyses for so many projects as described above suggested the existence of general 
patterns that could be followed which were, in effect, a part of all software cost analysis.  Therefore, aside from presenting 
the results of the analysis and describing what was done to get them, a high level generalized decomposition and illustration 
of the above mentioned techniques and procedures in a clear form is presented. Typically, a decision tree is used for such 
purposes. However, to give the reader insight as to what direction he or she should take for the creation of a cost analysis for 
a given project, it was decided that a decision tree with all its inherent detail would blur the high level concepts and direction 
for developing such an analysis. Hence, the embodiment of the implemented considerations took the form of high level 
directive ‘boxes’ followed by tree like alternatives given rise to as a result of these ‘boxed’ directives.  The resulting structure 
will be referred to as a decision graph. In essence, this decision graph represents the structuring of the thought processes and 
data acquisition necessities of FSW cost estimates as they were done here. This will be referred to as Knowledge Engineering 
the estimate.  

Formally, Knowledge Engineering (as defined by Edward Feigenbaum and Pamela McCorduck in 1983 [1]) “… is that 
discipline that involves integrating knowledge into computer systems in order to solve complex problems normally requiring 
a high level of human expertise”. Embedded in this definition is the acquisition and structuring of the related information 
characterizing the knowledge domain of interest [7].  The decision graph described above relates to such acquisition, 
structuring, and representation of knowledge as it is applied to the computation of FSW estimates. Although the process at 
this point is not automated, various aspects of the work are embedded in and related to computer activity. Further, the work is 
done in such a way as to facilitate further automation of its procedures. 

This paper is not only a description per se of the efforts by two software cost analysts. It is also an outline of the 
methodology used for FSW cost analysis presented in a form that serves as a foundation upon which others may gain insight 
into how to do FSW cost analyses for their own problems at hand.  Further, at the end of the paper, we describe a rule-based 
expert system, Software Cost Heuristics Embedded in a Rule-Based Reasoning Infrastructure (SCHERRI), which 
incorporates all of the ideas discussed.  The program is written in the C Language Integrated Production System (CLIPS) and 
incorporates approximately 145 rules. 

II. Flight Software Cost Estimation for N0 Type X Class Proposals 
As mentioned in the introduction, this paper focuses on the development of FSW cost estimates for N0 Type X class 

missions at the Jet Propulsion Laboratory of the California Institute of Technology. A Type X class mission is defined by the 
Type X Announcement of Opportunity (AO) issued by the National Aeronautics and Space Administration (NASA). In 
accord with this specification, the missions under discussion are of 3 types: Inner Heliosphere, Earth Orbiter, and Primitive 
Body Encounter.  

Aside from the rigor and detail inherent in the execution of such analyses, the work was further complicated due to the 
relatively short deadlines and the varying schedules and availability of the cost leads for each proposal. This made it difficult 
if not impossible to get the job done in a timely fashion unless several FSW cost estimates were done simultaneously. Work 
was done on one or more proposals to the greatest extent possible, and then as ‘information/personnel for discussion’ became 
available on others, work proceeded to them. Further, when more personnel or data became available for analyses previously 
initiated, work resumed on them and so on. To maintain consistency in the analyses as well as to facilitate an immediate view 
of data obtained and data needed at any point of the estimation process, the results obtained at all stages of the work were 
tabulated in a large Excel™ spreadsheet . In the end, all data used in the computation of all flight software estimates were on 
this spreadsheet. The sheet thus stemmed as a necessity due to the parallel nature of the work being done.  
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As often occurs when discussing research with respect to real life data and organizations, much of the inherent information 
is of a proprietary nature. To allow useful discussion of the issues, the following variable representation of the real life 
entities are given. 

Table 1 gives the variable representation of the mission types for which the FSW analyses were done. 

In the actual cost exercise, there could exist several missions for each mission type. Variable names for each mission are 
not necessary for the purposes of this paper.  

Table 1: Variable Representation of Real Life Mission Types 

 
 

The organizations responsible for developing the code are roughly of two types: SW Development Contractors (SDC’s) 
and Federally Funded Research Development Centers (FFRDC’s). The SDC’s are represented by SDC_1, SDC_2, SDC_3, 
SDC_4 and any FFRDC is simply represented by the acronym FFRDC. 

A. Establishing Initial SEER-SEM Inputs 

 Due to the large number of costs that had to be estimated in such a short time, a parametric software cost model was 
used.4  It is described in the following paragraphs. 

1) Parametric Cost Model Overview 

   The System Evaluation and Estimation of Resources - Software Estimating Model (SEER-SEM)5 was selected for use 
in the proposal effort because it is widely accepted within NASA and industry for software cost estimation and analysis. 

The model is based on approximately 6,700 historical data points that are used to create the internal model equations.  
Approximately 30% (2,000) of the historical programs are based on Commercial environments and the remaining 70% 
are defense related programs. The model’s internal database is significant because it is the basis for the default 
Knowledge Bases (KB’s)[10] that represent cost drivers for the FSW estimate.   

SEER-SEM requires four basic categories of information that represent the input data to the model.  These categories 
include: 

• Software Systems Work Breakdown Structure (WBS) - Identification of the software modules being developed 
(to the configuration item where possible, but often times to the software subsystem level). 

• Software Size - The number of logical source lines of code (SLOC).  This includes code that is anticipated to be 
reused from similar software developments.  SLOC may be entered into the model using least likely, most likely, 
and highest likely values to reflect the uncertainty of the software size. 

• Knowledge Bases - SEER-SEM contains industry data that is supplemented with related historical data that was 
used to calibrate, or adjust, the model parameters to reflect historical experience. 

• Parameter Settings – Parameter settings are initially established by the selected SEER-SEM knowledge bases and 
have been adjusted to reflect proposal-specific knowledge.  Parameter settings may also be entered as least likely, 
most likely, and highest likely values to reflect uncertainty. 

                                                             
4  A Parametric Cost Model refers to a mathematical representation of cost estimating relationships (CERs) that provides a 

logical and predictable correlation between the physical or functional characteristics of a system, and the resultant cost of 
the system. A parametric cost model is an estimating system comprised of CERs and other parametric estimating functions, 
e.g., software size, amount of reused software, staff skills, and development environment.  Parametric cost models yield 
product or service costs at designated levels and may provide departmentalized breakdown of generic cost elements. A 
parametric cost model provides a logical and repeatable relationship between input variables and resultant costs. 

5 SEER-SEM Version 8.0, Galorath Incorporated, Los Angeles, CA. 
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2) Initial Input Data 

  Decision box D0, shown in Figure 2, identifies the knowledge bases required by SEER-SEM (e.g., Platform, 
Application, etc.).  The selection of the appropriate subsets of these knowledge bases (e.g., unmanned space, flight systems, 
etc.) is the basis for the creation of default input parameters for SEER-SEM.  Certain of these default parameters will be 
adjusted based upon the procedures and techniques discussed throughout the paper. 

SEER -SEM Window:
Create/Modify 
WBS  Element 

(1) Platform: 
Unmanned Space

(2) Application:
Flight Systems

(3) Acquisition Method: 
Gen’l – New and 
Pre-existing

(4) Develpment Method: 
Incremental

(5) Develpment 
Standard: 

DO-1788 Level B
(6) Class: not used

D0

 
Figure 2: Initial SEER-SEM inputs 

Table 2 provides definitions for the knowledge bases and identifies the selection made for use in establishing the initial 
model input parameters. 

Aside from the initial inputs established by the SEER-SEM KB, additional data reflecting other facets of FSW cost 
analysis is required to run the SEER-SEM model.  The approach used for obtaining this data included collecting historical 
data and descriptive information required as input to the model.  This process is described in detail later in the paper.  During 
this initial phase, the software architecture, related new and reused code estimates, knowledge base selections, and parameter 
setting adjustments, were closely coordinated and reviewed with the technical points of contact. 

Table 2: Knowledge Base Definitions and Selections 

Knowledge 
Base Definition Selection 

(1) Platform Establishes a collection of input parameter settings that 
characterize a particular host environment. Unmanned Space 

(2) Application Establishes a collection of input parameter settings that 
characterize an application or application technology type. Flight Systems 

(3) Acquisition 
Method 

Establishes a collection of input parameter settings that 
characterize from where the software will come. New and Reuse 

(4) Development 
Method 

Establishes a collection of input parameter settings that 
characterize the particular Software Development Life Cycle 
method that will be used. 

Incremental 
Development 

(5) Development 
Standard 

Establishes a collection of input parameter settings that 
characterize the software development process standard that will 
be used. 

DO-178B Level B 

(6) Class A knowledge base calibrated to a specific set of data or domain. Not used 
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B. Mission Category and Coder/Analogy Data Pair 

After the initial inputs are fed to the program, further numerical and quantitative characteristics deemed important with 
respect to the FSW cost evaluation process have to be determined for each Computer Software Configuration Item 
(CSCI)[11]. The authors, in every case, found the initial reasoning as given in Figure 3 to be crucial in this respect.  In what 
follows, we discuss the nature of each node structure under its ‘decision box’ heading. 

 

Figure 3: Mission Types, Developers, and Analogy Data Decision Dynamics 

1) Mission Type— The first concern is the nature of the mission. If the project does not give SLOC values for FSW, 
the estimator will have to locate data to determine approximate SLOC values for the FSW. The SLOC data used 
depends upon how similar the mission that it was developed for is to the one of current interest. It is therefore 
important to classify the missions of interest to the level that that similarity can be established. The classifications 
for the Type X proposals as given in C1 in Figure 3 were inner heliosphere, near earth orbiters and primitive 
bodies and are listed in accordance to the variable names presented in Table 1. 

2) Software Developer (Coder): SDC or FFRDC— Knowledge of the organization assigned to develop the FSW for 
the proposal is important because that information, in conjunction with the analogy data available, will determine 
subsequent numerical SEER-SEM inputs (as discussed in Section 3.3 below). 

This knowledge is not always known at the beginning of a proposal. Sometimes it changes during the course of a 
proposal. This can, and does, cause a significant cost change during the estimation process. In the absence of any 
knowledge of the coder, the analyst and cost lead agree on a best guess as to whom the coder might be and the 
estimate is made with that assumption. The options are listed in C2. 

3) Analogy Data— Once the nature of the mission has been studied, the appropriate analogy data must be determined. 
The analogy data used consisted of code developed by the organizations as listed in C3. This data can be obtained 
by stored samples of code, reports (previous step 2 proposals, for example) or Technical Data Packages. In one 
case, there was a step 2 report giving actual SLOC values from a previous version of the mission of interest. In 
another case, there was a Technical Data Package (TDP) for a mission which was deemed very analogous to the 
proposal of interest. This TDP had SLOC values in it, and these were used. The vast majority of cases, however, 
required a search for data when the proposal gave inheritance directives without SLOC values or, in fact, when no 
inheritance directives were given at all. It was then up to the FSW analyst to determining appropriate data analogy 
sources for SLOC values approximating those that would apply to the Type X proposal at hand. 

4) Software Development Contractor/Analogy Data Pair— If it is known that Company X[12] is writing the SW, and 
we have analogy data that Company X developed, then that affords a cost advantage as compared to the case where 
Company X is doing the FSW and analogy data from Company Y is being used. In the first case, code already 
exists that Company X can use to do the present mission with. Further, having done the code, Company X has 
experience and infrastructure for that code. In the latter case, even though the Company Y analogy data can 
approximate the amount of code needed, there may be a lot of code and corresponding resources that Company X 
has to develop that it may not have developed enough to be consummate with Company Y’s work.  The 
coder/analogy pairs shown in the final tree structure indicates those combinations experienced in the Type X 
proposal experience[13].  The determination of these pairs is important to the FSW cost computation process in 
ways which will be discussed in the remaining Decision Graph subsections. 
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C.   Quantitative Parameter Determination 

This portion of the decision graph uses the coder/analogy data pairs to determine several sets of numerical inputs to SEER-
SEM which, in addition to SLOC values, are major cost drivers. Once the SLOC values are obtained, it is crucial to the cost 
estimating process to determine how much of the SLOC is new, reused without (wo) modifications (mods) and reused with 
mods.  It is also important to determine, for the code that is reused with modifications, the percentages corresponding to 
redesign, recode and retest. These 3 percentage categories also apply to code that is reused as is, but in these analyses they are 
given fixed values of 0%, 0% and 50% for all proposals.  Details and justifications regarding the elements described above 
are as follows. 

For purposes of explanation, the triplet: 

(% new, % reused wo mods, % reused with mods) 

is referred to as vector 1 and the triplet: 

(% redesign, % recode, % retest) 

is called vector 2. 

These percentages are applied to the delivered code size of the analogy data to produce Equivalent Source Lines of Code 
(ESLOC).  ESLOC is defined as the equivalent ‘new’ size of delivered code after taking into account the percent new, 
percent reused ‘as is’, and percent reused modified.  Also factored in are the percent redesign, percent recode, and percent 
retest as applied to both the percent reuse ‘as is’ code and the percent modified code. 

1)  Coder Relationship to Analogy Data as it Determines Vector 1— As can be seen in Figure 4, the decision box, 
D5,  indicating the need for determination of vector 1 is followed by C5 which shows several alternative sources 
for determining the value of this vector as encountered during the proposal cost estimating process. When actual 
% values for the vector were obtained with analogy data, proposal reports or Team X reports, they were used. In 
the absence of this data, default values based on cost estimating experience were used. For example, assume 
SDC_1 was developing the code and the analogy data (SLOC values) used was developed by SDC_1 as well. If 
the delivered logical SLOC size of the analogy data was X, Then if SDC_1 were to write code for the project, it 
typically would be approximately the same delivered size, X,  as that of the analogy data but would be such that:  

New code = 25% X 
Reused Code wo mods = 25% X 

Reused Code with mods = 50% X   
 

which gives:  
Vector 1 = (25, 25, 50). 

 
The same reasoning is applied if SDC_2 were the contractor for the S/C and SDC_2 analogy data was used. In 
this case, based upon FSW cost estimating experience, vector 1 would have the entries: 

 
New code = 7% X 

Reused Code wo mods = 70% X 
Reused Code with mods = 23% X   

 
which gives:  

Vector 1 = (7, 70, 23). 
 

Entry of this vector as opposed to the one corresponding to SDC_1 generally results in a lower FSW cost due to 
the coupling of a lower new code % and a higher reused wo mod code %. This is consistent with the fact that 
SDC_2 code development is more of a ‘production line’ as compared to SDC_1’s. 

In the case where the analogy data used was not developed by the assigned contractor, experience dictates that the 
% of new code developed would be somewhat larger than the 2 previous cases mentioned. The degree to which 
this is true depends on the assigned contractor. In the case of SDC_4 being the assigned contractor where SDC_1 
analogy data of delivered size X is used.  
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New code = 50% X 
Reused Code wo mods =25% X 

Reused Code with mods = 25% X 
 

yielding: 
Vector 1 = (50, 25, 25). 

As stated above, when actuals are obtained with the vector 1 values, or if available reports give these percentages 
(sometimes with SLOC values), then the above discussed default reasoning is overridden and those values are 
used.  

C6

SDC_2 : 10/10/ 50

Coder 
Rel to 
Analogy:
% new
% reused 
with mod
% reused 
wo mod

Team X Rpts

Proposal        
Rpts

Actuals

SDC_2 / SDC_2
7/70/23

25/25/50       
SDC_1 / SDC_1

SDC_4 / SDC_1
50/25/25

Coder & 
param vals:
For % reused 
with mod
% redesign
% recode
% retest

All Others:
10/25/25
10/25/25

50

Exception: Larger than 
appropriate analogy data used

Exception: MSAP analogy 
data used 

Exception: Lack of  visibility 
in code decomposition

D5

C5

D6

Coder & 
param vals
for  reused 
wo mod 
% redesigned = 0
% recode = 0
% retest =  50

D7, C7

 
Figure 4: Reasoning for Quantitative Input Determination 

 

2)   Software Development Contractor and Parameter Values as they Relate to Vector 2— The reasoning involved 
with vector 2 is computationally and conceptually similar to that of vector 1.  In the case of SDC_2, experience 
with its product line code indicates that, in general, if X represents the amount of reused modified code, then: 

 
Redesigned code = 10%X 
Rewritten code = 10%X 
Retested code = 50%X 

yielding: 

Vector 2 = (10, 10, 50). 

In general, for those cases where the SW contractor was not SDC_2 and the analogy data was not SDC_2, each 
of the slots characterizing vector 2 entries was not given a single value but a range of values[14].  More precisely 
for the ‘% redesign’ SEER-SEM input parameter, there are 3 values for input into SEER-SEM: A ‘Least Likely’ 
value for % redesign, a ‘Highly Likely’ value for % redesign and a ‘Most Likely’ value for % redesign (similarly 
for the value of %recode)[15].  As there is more uncertainty regarding the values of these parameters, a 
distribution of values as opposed to a single value was given with respect to the SEER-SEM input parameter 
rows.   
 
The values used for the non SDC_2 cases thusly are: 

Least likely value for % redesign = 10 
Highly likely value for % redesign = 25 
Most likely value for % redesign = 25 

 
Least likely value for % recode = 10 

Highly likely value for % recode = 25 
Most likely value for % recode = 25 
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Least likely value for % retest = 50 

Highly likely value for % retest = 50 
Most likely value for % retest = 50. 

 
These values were used because they tended to represent the cases where a non-product line FSW contractor (not 
at the level of experience of SDC_2) was used. Exceptions to this rule included cases where reusable FSW data 
was used. In that case, lower single valued % values, equal to those used for SDC_2, provided sufficient 
accuracy. Other exceptions existed as shown in Figure 4. 

3)    Treatment of Reused Code without Modification— Finally, SEER-SEM requires inputs for % redesign , % 
recode and % retest for the code designated as reused without modification as a means to measure how ‘New’ 
the code is. 

For all missions across the board, it is assumed that the % of code designated as new does not require any 
redesign or recoding. It however is assigned a value of 50% retest. This is due to the fact that in SEER-SEM 
100% retest means that 52% of the code includes the work relating to test plans, test procedures, test drivers, and 
test scripts.  The 48% requires the actual retesting and integration of the code. Again, it is the assumption that 
this new code does not require the activities which comprise the 52%. It only requires pure testing and 
integration. Hence 50% was chosen for convenience as it was close enough to 48%. 

D. Non - Default Parameter Identification 

This section deals with the assignment of Type X mission values to the SEER-SEM parameters not yet discussed in this 
paper. Figure 5 gives the decision graph component dealing with this issue. 

 

Turnaround Time

QA level

Rehost from Dev to Target

SEER -SEM input 
parms  which are non-
default and have the 
same value for all 
projects       

Response Time 

Spec Level Reliability

Labor Rates: Av

SEER - SEM input 
parms whose values 
change across projects 
( some missions can 
have the default value)

Personnel Ability/Exp

Reqts Volatility

Memory Constraint

Real Time Code

Num Progs Integrated

Hardware Int

D8 D9

Min Time vs Opt Effort

Security Requirements

Timing Constraint

C8
C9

 
Figure 5: Non Default Knowledge Base Breakout

Decision box D8, Figure 5, indicates those input parameters in SEER-SEM for which: 

(1) the default values assigned by the program are not appropriate for the Type X missions  

 and  

(2) which can be assigned a value which is the same for all of the missions. 

The nodes in column C8 give a listing of all parameters for which this is true.  

Decision box D9 in Figure 5 indicates the existence of parameters whose values varied from mission to mission followed 
by a listing of those parameters in C9.  

Any parameters appearing (other than the ones discussed in the sections above) that are not of the types described in this 
section have the SEER-SEM default values assigned to them. This is the case because, at that early stage in the cost 
estimation process, it was unrealistic to assign anything else.  Table 3 gives the name and description of those parameters 
corresponding to the first decision box and the reasons as to why the default values are not appropriate in the missions 
studied. Further, the table justifies the values assigned in this costing effort. 
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Table 3: Reasoning for Non-Default Non-Varying Parameter Assignment 

Parameter Definition
SEER-‐SEM
Default	  
Value

Reason	  for	  Not	  
Using	  Default

Value	  
Given

Reason	  for	  Value	  Given

Turnaround	  
Time

The time required to create a release version of 
the software solution. 

LOW-‐ Outdated	  Default	  
Value

VLO More	  reflective	  of	  
Recent	  HW/SW	  Reality

Response	  time

Rates the average transaction response time 
from the moment a developer presses a key or 
click a command, until that command is 
acknowledged and its action is completed.

NOM+
Outdated	  Default	  

Value LOW
More	  reflective	  of	  

Recent	  HW/SW	  Reality

Spec	  Level	  
reliability

Rates the level of documentation required. The 
level of documentation is often dictated by the 
development standard being used with 
government contracted software developments.

NOM
Outdated	  Default	  

Value HI-‐
More	  reflective	  of	  

Recent	  HW/SW	  Reality

QA	  Level

Evaluates the completeness of the Quality 
Assurance (QA) activities. The Quality 
Assurance effort is usually directly related to the 
impact that a failure in the software would have 
during its operational phase.

VHI-‐ Outdated	  Default	  
Value

HI More	  reflective	  of	  
Recent	  HW/SW	  Reality

Rehost	  from	  
Development	  
to	  Target

Rates the effort to convert the software from the 
development system to the target system on 
which the software will execute. 

VHI
Outdated	  Default	  

Value HIGH-‐
More	  reflective	  of	  

Recent	  HW/SW	  Reality

Security	  
Requirements

Rates development impacts of security 
requirements for the delivered target system. 
(All classifications are identified in the Orange 
book.)

HI

Security	  default	  
value	  is	  too	  High	  
for	  the	  work	  at	  

hand

NOM
Security	  is	  Nominal	  for	  
NASA	  Unmanned	  Space	  

Work

MinTime	  vs	  
Opt	  Effort

Choose between optimizing the schedule or the 
effort estimate.  Optimizing for schedule 
(minimum time) assumes the development will 
be finished as quickly as possible.  Optimizing 
for effort assumes the software will be 
developed as cheaply as possible, but will take 
longer to complete. 

Min	  Time

Min	  Time	  has	  
inappropriately	  

high	  cost	  used	  only	  
in	  special	  time	  

constrained	  cases

Optimal	  
Effort

Min	  Time	  would	  yield	  
unallowable	  and	  

unrealistic	  FSW	  costs

Labor	  Rates	  
Average

The average monthly labor rate for all personnel 
working on the project.

$28,400	  per	  
WM	  (FY10)

Used	  an	  average	  of	  
industry	  and	  JPL	  

Values

$xx	  per	  
WM	  (FY10)

Appropriate	  to	  use	  	  an	  
average	  of	  industry	  and	  

JPL	  Values

The parameters from the “Reason for Not Using Default” column in Table 3 require additional elaboration: 

Outdated Default Value – Due to the model not keeping pace with the state-of-the-art in software development. 

Security default value is too High for the work at hand – Based on the National Security Agency (NSA) “Orange Book” 
[16]. 

Min Time has inappropriately high cost used only in special time constrained cases – Min Time is used only when there 
is a scheduling constraint. 

Used an average of industry and JPL values – These values are based on an industry survey[17]. 

Table 4 gives the name and description of those parameters corresponding to the second decision box and the reasons as 
to why the values varied from mission to mission. 

Table 4: Reasoning for Variable Assignments to Parameters 

Parameter Definition Reason	  for	  Variation

Personel	  Ability/Experience Characteristics	  of	  the	  software	  development	  
personnel

Coder/Analyst	  Ability	  varies	  from	  company	  to	  company

Requirements	  Volatility How	  frequently	  the	  customer	  changes	  the	  software	  
development	  requirements

Industry	  varies	  from	  JPL

Memory	  Constraint Is	  there	  sufficient	  memory	  to	  meet	  the	  systems	  
requirements

Altered	  to	  adjust	  for	  lack	  of	  visibility	  in	  decomposition

Timing	  Constraint Is	  the	  timing	  requirement	  met Varies	  with	  GN&C	  complexity

Real	  Time	  Code The	  amount	  of	  code	  that	  requires	  an	  instantaneous	  
response

Altered	  to	  adjust	  for	  lack	  of	  visibility	  in	  decomposition

Number	  of	  Programs	  Being	  
Integrated	  

How	  many	  CSCIs	  are	  concurrently	  being	  integrated Have	  Different	  Numbers	  for	  Different	  Projects	  -‐	  Some	  
not	  Broken	  out

Hardware	  Integration The	  complexity	  of	  interfacing	  the	  hardware	  elements Altered	  to	  adjust	  for	  lack	  of	  visibility	  in	  decomposition  
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The following parameters from the “Reason for Variation” column in Table 4 similarly require additional elaboration: 

Coder/Analyst Abilities varies from company to company - Different organizations have different standards their 
programmers and analysts. 

Industry varies from JPL - The Defense Industry are more stringent than JPL and unmanned NASA projects. 

Altered to adjust for lack of visibility in decomposition - Lack of visibility into the breakout of CSCIs required additional 
adjustments. 

Varies with GN&C with complexity – Dependent on the type mission (planetary, earth orbiter, lunar, etc.). 

Have Different Numbers for Different Projects – Some not Broken out – Some project had more granularity than others 
based on their financial and engineering requirements. 

E. Program Output Mapping into JPL FSW Work Breakdown Structure 

The final decision box D10 (see Figure 6) alludes to the fact that when a FSW estimate is done, it is sometimes mandated 
that the costs be mapped as much as possible into the JPL Work Breakdown Structure (WBS).  Although this requirement has 
thus far been in force only for the production of Independent Cost Estimates (ICE’s) and Cost Analysis Data Requirements 
(CADRe’s), it is possible that in the future this mapping could be required for proposals as well. Therefore, due to the 
coupling of the potential importance of realistic FSW WBS element costs with the fast turnaround time often required, the 
algorithm for and automation of the mapping from SEER-SEM FSW costs to the JPL WBS is an essential component to 
effective FSW costing activity. 

The construction of a mapping from SEER-SEM to the JPL Standard WBS[18] first consists of choosing the format of the 
cost output in SEER-SEM. The format should be one which groups the output costs in such a way as to facilitate a clear and 
direct mapping to the JPL WBS. This is important for the abstract understanding of the JPL cost groupings a well as the 
practicalities of automating the mapping process. To this end, it was deemed that the “Cost by Labor Category” was the 
SEER-SEM output of choice. This format not only satisfied the above criteria but also served as a basis for cost analysis and 
cost comparisons by FSW analysts at JPL for many years. Having made this choice, the task is now to map this output into 
the JPL FSW WBS. The JPL FSW WBS essentially consists of FSW management, FSW systems engineering, FSW testbed, 
FSW I&T and Coding Related Activities (which correspond to the following S/C elements: Command & Data Handling 
(C&DH) , Guidance Navigation & Control (GN&C) , Engineering Models,  Payload & Instrument Control SW, SW Systems 
Services). 

Run SEER - SEM 
Program : Use 
Automated Program 
to Map into JPL WBS 
V5 when appropriate 
Note: Done so far 
only for Independent 
Cost Estimates 
(ICE’s). 

D10

 
Figure 6: Terminal Decision Box WBS correlation to SEER-SEM Output 

For each CSCI for which SLOC is available, the Cost by Labor Category of SEER-SEM produces column costs which 
can be grouped into all the above WBS elements except for FSW I&T for which it has a row cost and FSW testbed for which 
a calculation outside of SEER-SEM is done (see below). Note that the SW costs will have to be mapped into merged S/C 
elements of the JPL WBS if the SLOC values fed into SEER-SEM representing those S/C elements are correspondingly 
merged. For example, if a separate breakout of S/C GNC SLOC and S/C C&DH SLOC is not available to the FSW analyst, a 
breakout of costs into the GNC and C&DH JPL WBS elements is not feasible. Therefore, because these costs will be merged 
into the SEER-SEM input/output, they will be mapped into a merged WBS category consisting of both GNC and C&DH 
data. Figure 7 represents the SEER-SEM output and mapping to the JPL WBS for the more extreme (and most common case 
for the Type X proposals) where only one SLOC value is available for the total of all S/C elements.  
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	   C&DH	  

Eng Models	  

GN&C	  

Pld & Inst Cntrl 	  

System Srvcs	  

 
Figure 8: SEER-SEM / JPL WBS Mapping for Individual FSW Elements (Notional Sample Data)

IV. The Speadsheet 

As mentioned in the introduction, the comprehensive nature of the spreadsheet yielded a deeper perception regarding the 
nature and processes of FSW cost estimation (resulting in the conception and creation of a decision graph).  For each Type X 
proposal, the sheet included general mission information together with detailed and significant SEER-SEM input parameter 
data.  Since there were N0 missions that had to be costed, this yielded a spreadsheet whose size parameters made its complete 
inclusion in this paper prohibitive. A smaller portion of the sheet containing all of the parameters for only five of the missions 
sufficiently conveys the sense of expanse and detail implicit in the sheet and is displayed in Figure 9 and Figure 10[20].  
Each mission has its own column. The rows display pertinent information for the corresponding column mission. The first 9 
rows represent various ‘mission facts such as the mission category, name, cost lead etc. Note that certain proprietary data 
have been blanked out such as the final cost (dollars and work hours) and the proposal name. Note the contractor/analogy 
data row refers to the flight software contractor and analogy data parameters discussed earlier in the paper. The following 
groupings (colored in aqua) show the knowledge base inputs, software sizing data (vectors 1 and 2, size Basis of Estimate 
(BoE)) and parameter settings (non-default constant and varying). All SEER-SEM parameters not shown in the rows are 
default across the board. Figure 11 is notional and displays a mapping from the main components of the decision graph to the 
corresponding row parameters that those components determine the values of.  

Throughout the cost estimation process, hardcopy of the evolving spreadsheet was made (taped together) in its entirety to 
reflect the status of cost and cost estimation progress to higher level management. The use of a large paper sheet on a big 
table with pencils in hand added to the analysis and  monitoring process in a way that might not have been achieved 
otherwise. Further, a better understanding of the nature and justification of the costs was achieved by the cost leads when 
columns representing only their proposals were distributed to them. Finally, the bird’s eye view of the mission data and 
SEER-SEM inputs/outputs facilitated the cost estimation consistency analysis by the cost estimators. By checking the 
parameters mission by mission (i.e. column by column) and comparing costs resulting from the use of these parameters 
together with mission categories and contractor/analogy data, the analysts were  allowed insights in a way consistent with the 
‘one picture is worth 1000 words’ philosophy. 
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Category
Proposal	  Name 1 2 3 4 5
Cost	  Lead A B C D D
Spacecraft	  Provider SDC_1 SDC_1 SDC_2 SDC_3 FFRDC
Analogy	  Program(s)	  Used	   from from from from from

Contractor/Analogy	  Data SDC_1/
SDC_1

SDC_1/
SDC_2

SDC_2/
SDC_2

SDC_3/
FFRDC

FFRDC/
FFRDC

Software	  Cost	  Estimates	  (SEER-‐SEM)	  
(FY$10M)
(excludes	  testbed,	  equip,	  facilities)

$XX $XX $XX $XX $XX

SEER-‐SEM	  	  (-‐	  ATLO,	  SQA,	  CM	  50%) $XX $XX $XX $XX $XX
Team	  X	  Estimate
	  (for	  reconcilliation)

$XX $XX $XX $XX $XX

Software	  Duration	  (SEER-‐SEM)	  (mo) 27 30 23 30 26
Knowledge	  Bases
	  	  	  SEER-‐SEM	  Window	  Name:
	  	  Platform	  (Operating	  Environment) Unmanned Unmanned Unmanned Unmanned Unmanned
	  	  Application Flight	  Systems Flight	  Systems Flight	  Systems Flight	  Systems Flight	  Systems
	  	  Acquisition	  Method New/Reuse New/Reuse New/Reuse New/Reuse New/Reuse
	  	  Development	  Method Incremental Incremental Incremental Incremental Incremental
	  	  Development	  Standard DO-‐178B	  Level	  B DO-‐178B	  Level	  B DO-‐178B	  Level	  B DO-‐178B	  Level	  B DO-‐178B	  Level	  B

Software	  Size	  (SLOC)

Size	  BoE

Used	  actual	  SLOC	  
counts	  from	  SDC_1.	  	  
Assumed	  25%	  new,	  
25%	  reused	  "as	  is",	  
and	  50%	  reused	  
modified.

Used	  an	  average	  
actuals	  from	  FFRDC	  
projects	  with	  the	  
inheritance	  
percentages	  
fromFFRDC.

Used	  SDC_2-‐derived	  
SLOC	  values	  for	  new,	  
reused,	  reused	  
modified.	  	  Added	  
correction	  factor	  to	  
convert	  code	  counts.

Used	  FFRDC	  TDP	  	  
information.

Used	  FFRDC	  size	  
estimates.	  	  
Duplicated	  
reasoning	  used	  for	  
FFRDC	  estimate.

ESLOC 69,888 92,238 61,848 85,533 61,450

Delivered	  Software	  (SLOC)	  -‐	  most	  likely 153,812 202,000 204,990 221,664 180,000

Software	  Size	  (SLOC)
	  	  New	  SLOC	  -‐	  most	  likely 38,453 60,600 25,000 46,404 30,000
	  	  %	  of	  new	  SLOC 25% 30% 12% 21% 17%

	  	  Reuse	  SLOC	  (as	  is	  -‐	  no	  mod)	  -‐	  most	  likely 38,453 35,350 97,700 117,424 70,000

	  	  %	  of	  reused	  (as	  is)	  SLOC 25% 17% 48% 53% 39%
	  	  	  	  	  %	  re-‐design 0 0 0 0 0
	  	  	  	  	  %	  re-‐implementation	  (Re-‐coding) 0 0 0 0 0
	  	  	  	  	  %	  re-‐test 50% 50% 50% 50% 50%
	  	  Reuse	  SLOC	  (modified)	  -‐	  most	  likely 76,906 106,050 82,290 57,836 80,000
	  	  %	  of	  reused	  (modified)	  SLOC 50% 53% 40% 26% 44%
	  	  	  	  	  %	  re-‐design 10%,	  25%,	  25% 10% 10% 10%,	  25%,	  25% 10%
	  	  	  	  	  %	  re-‐implementation	  (Re-‐coding) 10%,	  25%,	  25% 10% 10% 10%,	  25%,	  25% 10%
	  	  	  	  	  %	  re-‐test 50% 50% 50% 50% 50%

Inn_Hel_1 NEO_1

 
Figure 9: Portion of Final Spreadsheet (a) 
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Parmeter	  Settings	  Notes
	  	  	  Personnel	  Capabilities	  &	  Experience*
	  	  	  (7	  parameters)
Analyst	  Capability NOM-‐
Analyst's	  Application	  Experience NOM
Programmer	  Capabilities NOM-‐
Programmer's	  Language	  Experience VHI
Developkent	  System	  Experience HIGH
Target	  System	  Experience VHI
Practices	  &	  Methods	  Experience VHI
	  	  	  Development	  Support	  Environment*
	  	  	  	  	  turnaround	  time VLO VLO VLO VLO VLO
	  	  	  	  	  response	  time LOW LOW LOW LOW LOW
	  	  	  Product	  Development	  Requirements*
	  	  	  	  	  requirements	  volatility HIGH HIGH HIGH HIGH HIGH
	  	  	  	  	  spec	  level	  -‐	  Reliability HIGH-‐ HIGH-‐ HIGH-‐ HIGH-‐ HIGH-‐
	  	  	  	  	  quality	  assurance	  level HIGH HIGH HIGH HIGH HIGH
	  	  	  	  	  rehost	  (development	  to	  target) HIGH-‐ HIGH-‐ HIGH-‐ HIGH-‐ HIGH-‐
	  	  	  Product	  Reusability	  Requirements*
	  	  	  Development	  Environment	  Complexity*
	  	  	  Target	  Environment*
	  	  	  	  	  memory	  constraint NOM NOM NOM NOM NOM

	  	  	  	  	  timing	  constraint NOM+,NOM+,HIGH-‐NOM+,NOM+,HIGH-‐ NOM+,NOM+,HIGH-‐ NOM+,NOM+,HIGH-‐ NOM+,NOM+,HIGH-‐

	  	  	  	  	  real	  time	  code NOM,	  NOM,	  NOM+ NOM,	  NOM,	  NOM+ NOM,	  NOM,	  NOM+ NOM,	  NOM,	  NOM+ NOM,	  NOM,	  NOM+

	  	  	  	  	  security	  requirements NOM NOM NOM NOM NOM
	  	  	  Schedule	  &	  Staffing	  Constraints*
	  	  	  	  	  start	  date 11/25/2012 11/25/2012 11/25/2012 11/25/2012 11/25/2012

	  	  	  	  	  Min	  Time	  vs	  Optimal	  Effort

	  	  	  Confidence	  Levels*
	  	  	  Requirements*
	  	  	  System	  Integration*
	  	  	  	  	  number	  of	  programs	  being	  integrated 5 5 7 5 5
	  	  	  	  	  hardware	  integration N-‐,	  N,	  N+ N-‐,	  N,	  N+ N-‐,	  N,	  N+ N-‐,	  N,	  N+ N-‐,	  N,	  N+
	  	  	  Ecomonic	  Factors*
	  	  	  	  	  cost	  base	  year 2010 2010 2010 2010 2010
	  	  	  	  labor	  rate	  (FY$2010)	  work	  months $xx $xx $xx $xx $xx

Leave	  at	  KB	  settings	  

Labor	  rate	  based	  on	  NASA	  Center	  contractor	  developed	  software	  survery	  conducted	  in	  FY08.	  	  Escalated	  

Should	  always	  be	  NOM	  (no	  reusability	  required	  by	  the	  contract).	  	  If	  the	  parameter	  is	  set	  to	  NOM	  the	  
Leave	  at	  KB	  settings	  
Leave	  at	  KB	  settings	  with	  the	  exception	  of:

Leave	  at	  KB	  settings	  with	  the	  exception	  of:

Always	  start	  with	  Optimal	  Effort.	  	  Where	  possible,	  verify	  that	  the	  schedule	  duration	  is	  achievable.	  	  If	  
not,	  evaluate	  schedule	  constraints	  to	  accommodate	  the	  estimated	  schedule.	  	  If	  the	  software	  
development	  time	  is	  less	  than	  the	  Minimal	  Time,	  the	  SEER-‐SEM	  model	  contends	  that	  it	  is	  not	  possible	  
to	  complete	  the	  software.	  	  Identify	  this	  as	  a	  significant	  risk	  issue!
Both	  effort	  and	  schedule	  should	  be	  run	  at	  50%	  and	  70%	  confidence.	  	  SQI	  recommends	  the	  70%	  

Leave	  at	  KB	  settings	  with	  the	  exception	  of:

Leave	  at	  KB	  settings	  with	  the	  exception	  of:

In	  general,	  these	  values	  were	  defaults,	  but	  exceptions	  were	  made	  for	  certain	  projects	  with	  personnel	  
having	  more	  mission-‐related	  experience.

Leave	  at	  KB	  settings	  with	  the	  exception	  of:

 
 
*Blue highlighted font corresponds to SEER-SEM parameter heading titles. 

Figure 10: Portion of Final Spreadsheet (b) 
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Figure 11: A Notional Retrospective of Decision Graph and Spreadsheet 
 
 

V. Computer Generation of Graphics with Explanations 

This section demonstrates not only how the rule based approach can produce useful tables and charts reflecting the results 
of FSW coat analysis but also how such a rule base can aid in the explanation of the output reflected in these charts. More 
precisely, it is demonstrated that the data used in the expert justification of analysis results for N0 Type X proposals is 
contained in the rules which would comprise the system conceived of in this paper. 

Upon completion of the FSW cost estimating activities for the N0 Type X proposals, a presentation was addressed to 
section personnel that summarized the relevant conclusions of the analyses. Included in the discussion was a trend chart, a 
justification of its graph and relevant high level tabular data.  

Figure 12 shows the trend chart giving the Costs ci (FY$10) vs Mission Category. This graph gave an immediate high 
level view of the relative estimated costs which would be incurred with respect to the types of missions described earlier in 
Table 1. 
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Figure 12:  Cost vs Mission Category Trend Line 

The mathematical evidence of the chart should properly be accompanied by a set of key factors influencing the relative 
nature of its ordinate values. To this end, a listing of distinguishing influences was given and is shown in Figure 13.  As can 
be seen in the text of the Figure, a justification of lower to higher costs is given in terms of production line maturity, % of 
new code size, general code size, and general increased coding costs due to SW developer /analogy data pairings. 

It is of interest to note that these relevant factors were proffered before the idea of a decision graph was developed. They 
were based solely upon the insights of and discussions between the cost estimators engaged in the FSW cost analysis for the 
proposals. The listing of the factors was not based upon any automated decision making system.  Upon examining these 
earlier efforts, however, it is clear that all of these listed factors are included in the decision graph presented at the beginning 
of the paper. Hence these factors would be included in any rule base arising from the decision graph and could therefore be 
included in any explanation of the obtained costs arising from the execution of said rules[21] (also, see Section 6, Summary 
and Future Work). The modular nature of these rules facilitates the production of computer generation of these explanations 
as well.  

It should be noted that the listing of factors influencing the nature of the trend line would serve as a first step in the 
justification of the trend line.  With continued use of the system and/or development of its rule base, deeper explanations 
could be extracted. 

 

 



 19 

 
Figure 13: High Level Factors influencing FSW Cost Estimates 

It is also of interest to see the information as it is presented in Table 5.  These data are embedded in the fabric of the 
decision graph nodes and thusly are incorporated in the execution of any rules derived from it.  Hence an extraction of this 
data as needed from the rules is possible (in a more straightforward fashion than as above) and, as before, 
explanations/justifications for values are facilitated by the rule-based modular nature as well. 

 

Table 5: SLOC Data Corresponding to Mission Categories* 

 
*’#’ represents a numerical value and ‘# - #’ correspondingly designates a numerical range.

The crucial point of this section is that the listing of factors relevant to trend determination produced by the experts 
(before the conception of the decision graph) is contained in, and can be easily extracted from, the decision graph and 
therefore from rules arising from its constitution. 
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VI. Brief Description of the SCHERRI Program 

The program was built using CLIPS. CLIPS is a forward-chaining rule-based programming language written in C which 
provides a complete environment for the construction of rule and/or object based expert systems[22]. At present, there are 
approximately 145 rules. 
 

S C H E R R I starts by querying the user as to the nature of the mission for which the cost analysis is to be performed. 
See Figure 14. The category of primitive bodies includes asteroids and comets. The Astrophysics category consists of earth 
orbiting spacecraft. 
 

 
 

Figure 14: Initial Query from S C H E R R I 
 

The program then uses various qualitative inputs from the user as described in the paper to determine the BOE for the 
analysis. An example of the BOE printouts is shown in Figure 15. Note that at he bottom the figure the program asks the user 
to enter the amount of SLOC being used in the analysis as described earlier in the paper. 
 

 
 

Figure 15: BOE for an Astrophysics Mission 
 

Figure 16 shows the outputs computed by the program based upon the user inputs and the expert rules built into the 
system. 
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Figure 16: Output Provided by the Rule-Based Structures 

Figure 17 shows some of the code use in the construction of the program. The rules shown represent the request for 
SLOC data and the corresponding computations done on this data relating to determination of % of new code, % of reused 
“as is” code  and % of reused “modified” code computations based upon the user input. 
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Figure 17: Two Rules of the Program 

VII. Summary and Future work 

The ideas presented in this report are best encapsulated by the tried and true sentiment “Necessity is the mother of 
invention”. During the process of producing timely and accurate flight software cost analyses, it became clear that efficient 
and effective methodologies for consistency checking had to be established. Intuitively, the best way to accommodate this 
requirement was to develop a comprehensive spreadsheet that showed, for each mission, all parameters which served as the 
blueprint for that mission’s FSW cost estimate. At first this only included certain parameters which were inputs to the SEER-
SEM FSW costing model. It was subsequently determined that it was equally important to include mission information that 
gave rise to parameter value selection. The consideration by the expert of the interplay of data /reason for data forced upon 
both authors a progressively exacting analysis not only regarding the FSW costing exercise but also with respect to an 
examination of the thinking processes behind the execution of such an exercise. This resulted in the invention of the decision 
graph. 

Logically, the next step would be to start expansion and refinement of the rule-based system[23] described in the previous 
section.  Our approach there was to use the decision graph presented in this paper for the N0 Type X proposals and build a  
decision tree using the descision graph as a high-level road map (see below).  This same approach could be used to enhance 
the current system, further allowing future analysts to obtain the costs of interest and have a complete explanation for how 
the cost was obtained based upon the triggered rules[24],[25],[26],[27]. 

An example of how a decision tree corresponds to the decision graph can be seen in the following example.  Figure 18 
shows an initial part of the decision graph. As can be seen, the first column of nodes contains all the mission types that 
appear on the spreadsheet while the second column lists all the FSW contractors.  No correlation between the two is given. 
Figure 19 shows the actual pairings of Mission Type/Coder that actually appeared in the spreadsheet. This serves as direction 
for the design of the expert system. One way in which this can be seen is that in a constructed system, after the user enters the 
Mission Type based upon the possibilities of column 1 nodes, the computer could then query the user to select from the 
limited range of FSW contractor possibilities based upon that initial input. 
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Figure 18: Portion of Decision Graph
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Figure 19: Corresponding Decision Tree 

So, for example, if the user chose that he was interested in a primitive body mission, the computer could then say: 

“In the Type X Mission Proposal Data Base for Year 2010, the two possible FSW contractors for Primitive Body 
Missions were SDC_4 and SDC_1. SDC_4 worked on a comet mission to examine its core and SDC_1 worked on a main 
belt comet and an asteroid mission. Please select which of these missions (as listed below) you would like to see a derivation 
of FSW cost for.” 

Expansion of the rest of the decision graph into a tree structure would allow a complete step by step explanation and 
justification of the how’s and why’s of the FSW cost estimate for the mission of interest. Details of precisely what the format, 
nature and expanse of the explanations at each step are one of the subjects for future research even within the strict confines 
of the Type X mission FSW costing effort. 

Previous efforts have been made to integrate neural networks, expert knowledge, and rule-based systems for use with 
algorithms and data sets of conventional software cost estimating models.[28],[29]  The continued refinement of the work 
presented in this paper would serve as a foundation for the efficacious use of these techniques to further enhance the accuracy 
and descriptive content of the FSW cost estimates of interest. 

The graph shown in Figure 12 was a first attempt to show a high level quantitative perspective that could serve as a quick 
reference for spotting trends in FSW cost estimation. One area of further work could be to compile more and more estimated 
costs and create corresponding graphs. Corresponding could also be made for actuals. These graphs could serve as an aid in 
determining and graphing a ‘difference metric’ between actual and estimated FSW costs. Analyses could be done to improve 
the estimation based on the comparisons. Further estimate data with rule-based generated explanations and graphs could be 
compiled to see if the difference metric is improving. A cycle of estimation-cost metric determination-analysis-improvement 
could occur through time as the cost estimation data base increases. 
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Finally, as previously discussed, the mapping scheme which takes the SEER-SEM output into the JPL FSW WBS is 
semi-automated. Complete automation of the mapping for fast delivery of precision FSW cost estimates would be a natural 
follow up to the efforts thus far. Integrating this system into an expert system as discussed above would, with proper 
interaction and feedback from appropriate personnel, yield a powerful interactive costing tool within the JPL community and 
beyond. 
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