
 1

Rule-Based Flight Software Cost Estimation

Sherry A. Stukes1 and Dr. John N. Spagnuolo, Jr.2
Jet Propulsion Laboratory, California Institute of Technology

This paper discusses the fundamental process for the computation of Flight Software (FSW) cost estimates. This
process has been incorporated in a rule-based expert system [1] that can be used for Independent Cost Estimates
(ICEs), Proposals, and for the validation of Cost Analysis Data Requirements (CADRe) submissions. A high-level
directed graph (referred to here as a decision graph) illustrates the steps taken in the production of these estimated
costs and serves as a basis of design for the expert system described in this paper. Detailed discussions are
subsequently given elaborating upon the methodology, tools, charts, and caveats related to the various nodes of the
graph.

We present general principles for the estimation of FSW using SEER-SEM as an illustration of these principles when
appropriate. Since Source Lines of Code (SLOC) is a major cost driver, a discussion of various SLOC data sources for
the preparation of the estimates is given together with an explanation of how contractor SLOC estimates compare
with the SLOC estimates used by JPL. Obtaining consistency in code counting will be presented as well as factors
used in reconciling SLOC estimates from different code counters. When sufficient data is obtained, a mapping into
the JPL Work Breakdown Structure (WBS) from the SEER-SEM output is illustrated. For across the board FSW
estimates, as was done for the NASA Discovery Mission proposal estimates performed at JPL, a comparative high-
level summary sheet for all missions with the SLOC, data description, brief mission description and the most relevant
SEER-SEM parameter values is given to illustrate an encapsulation of the used and calculated data involved in the
estimates.

The rule-based expert system described provides the user with inputs useful or sufficient to run generic cost
estimation programs. This system’s incarnation is achieved via the C Language Integrated Production System
(CLIPS) and will be addressed at the end of this paper.

1 Software Systems Engineer, Cross Mission System Development And Implementation, 4800 Oak Grove Drive/301-270,
Pasadena, CA 91109, Senior Member.
2 Cost Engineer, Engineering Cost Estimation, 4800 Oak Grove Drive/301-465, Pasadena, CA 91109, and Non-member.

 2

Nomenclature
ATLO = Assembly, Test, Launch Operations
BOE = Basis of Estimate
CADRe = Cost Analysis Data Requirement
C&DH = Command and Data Handling
CEH = Cost Estimating Handbook
CER = Cost Estimating Relationship
CLIPS = C Language Integrated Production System
EM = Engineering Model
EOM = End of Mission
ESLOC = Equivalent (new) Source Lines of Code
FFRDC = Federally Funded Research and Development Center
FSW = Flight Software
FY = Fiscal Year
GN&C = Guidance, Navigation and Control
GSW = Ground Software
ICE = Independent Cost Estimate
I&T = Integration and Test
ITAR = International Traffic in Arms Regulations
JPL = Jet Propulsion Laboratory
KB = Knowledge Base
LCC = Life Cycle Cost
Mgmt = Management
NPR = NASA Procedural Requirement
ONCE = One NASA Repository
S/C = Spacecraft
SCHERRI = Software Cost Heuristics Embedded in a Rule-Based Reasoning Infrastructure
SDC = Software Development Contactor
SE = Systems Engineering
SEER-SEM= System Evaluation and Estimation Review – Software Estimation Model
SLiC = Software Line Counter (code counter)
SLOC = Source Lines of Code
SMART = Software Measurement Analysis Repository Tool
SQI = Software Quality Improvement
SW = Software
WBS = Work Breakdown Structure

I. Introduction
OST estimation at CalTech’s Jet Propulsion Laboratory (JPL) has in recent years become a crucial part of the mission
formulation process [2][3][4]. Further, the rigor and exactitude constituting the basis of these estimates is attaining an

importance that is becoming more and more pronounced with the passage of time [5][6]. Implicit in these analyses is a
reliable and accurate estimation of the software costs involved in spacecraft, instruments (payload), simulation and testbeds,
ground systems for commanding the spacecraft and instruments, and science data processing. Such software analysis is also
required to support two other kinds of activities: Independent Cost Estimates (ICE’s) and Cost Analysis Data Requirement
(CADRe) documents.

ICE’s are an integral part of the cost verification process to ensure that costs are reasonable. They may be variously
requested by the project, NASA’s Independent Program Assessment Office (IPAO)3 and JPL’s Cost Analysis & Pricing
section. ICE’s are required at milestone reviews and are performed separately from the project. Depending on how many
ICE’s are performed, a reconciliation exercise may be conducted in order to understand the differences in content and scope
of the estimates. This allows for a single best estimate. During this process, interactions with project personnel are usually
discouraged. One or more project independent data sources must be used to derive a software cost estimate.

3 The main role of the IPAO is to enable the independent review of the NASA’s Programs and to ensure mission success.

C

 3

A CADRe is a report that provides present and future researchers with an encapsulated presentation of the technical and
cost data of a project. The project could have already reached ‘End of Mission’ (EOM), or could be ongoing. A ‘Software
Metrics Section’ in the report is used to categorize the modules of the software as defined by the project. Correspondingly,
various parameters relating to the module are listed such as Source Lines of Code (SLOC), programmer and analyst
experience, security requirements, multi-site development, work hours etc. These project given parameters (except for work
hours) are used in conjunction with a computer program of choice to produce a software cost estimate for the project. The
validation of the project given parameters is attained if the work hours produced by the program come close to those given by
the project. If not, further project interaction and analysis is needed.

This paper focuses on the work done in computing the FSW costs for N0 proposals done in the Engineering Cost Analysis
Group. The techniques embedded in this work overlap considerably with those used for ICE’s and CADRe’s but differ in the
sense that the work had to be done quickly and for many missions at once. It was therefore imperative that certain techniques
and procedures had to be developed which not only streamlined the flight software analysis process but which also provided
instantaneous confirmation that the data and processes used for these estimates was consistent across the board.

The execution of software cost analyses for so many projects as described above suggested the existence of general
patterns that could be followed which were, in effect, a part of all software cost analysis. Therefore, aside from presenting
the results of the analysis and describing what was done to get them, a high level generalized decomposition and illustration
of the above mentioned techniques and procedures in a clear form is presented. Typically, a decision tree is used for such
purposes. However, to give the reader insight as to what direction he or she should take for the creation of a cost analysis for
a given project, it was decided that a decision tree with all its inherent detail would blur the high level concepts and direction
for developing such an analysis. Hence, the embodiment of the implemented considerations took the form of high level
directive ‘boxes’ followed by tree like alternatives given rise to as a result of these ‘boxed’ directives. The resulting structure
will be referred to as a decision graph. In essence, this decision graph represents the structuring of the thought processes and
data acquisition necessities of FSW cost estimates as they were done here. This will be referred to as Knowledge Engineering
the estimate.

Formally, Knowledge Engineering (as defined by Edward Feigenbaum and Pamela McCorduck in 1983 [1]) “… is that
discipline that involves integrating knowledge into computer systems in order to solve complex problems normally requiring
a high level of human expertise”. Embedded in this definition is the acquisition and structuring of the related information
characterizing the knowledge domain of interest [7]. The decision graph described above relates to such acquisition,
structuring, and representation of knowledge as it is applied to the computation of FSW estimates. Although the process at
this point is not automated, various aspects of the work are embedded in and related to computer activity. Further, the work is
done in such a way as to facilitate further automation of its procedures.

This paper is not only a description per se of the efforts by two software cost analysts. It is also an outline of the
methodology used for FSW cost analysis presented in a form that serves as a foundation upon which others may gain insight
into how to do FSW cost analyses for their own problems at hand. Further, at the end of the paper, we describe a rule-based
expert system, Software Cost Heuristics Embedded in a Rule-Based Reasoning Infrastructure (SCHERRI), which
incorporates all of the ideas discussed. The program is written in the C Language Integrated Production System (CLIPS) and
incorporates approximately 145 rules.

II. Flight Software Cost Estimation for N0 Type X Class Proposals
As mentioned in the introduction, this paper focuses on the development of FSW cost estimates for N0 Type X class

missions at the Jet Propulsion Laboratory of the California Institute of Technology. A Type X class mission is defined by the
Type X Announcement of Opportunity (AO) issued by the National Aeronautics and Space Administration (NASA). In
accord with this specification, the missions under discussion are of 3 types: Inner Heliosphere, Earth Orbiter, and Primitive
Body Encounter.

Aside from the rigor and detail inherent in the execution of such analyses, the work was further complicated due to the
relatively short deadlines and the varying schedules and availability of the cost leads for each proposal. This made it difficult
if not impossible to get the job done in a timely fashion unless several FSW cost estimates were done simultaneously. Work
was done on one or more proposals to the greatest extent possible, and then as ‘information/personnel for discussion’ became
available on others, work proceeded to them. Further, when more personnel or data became available for analyses previously
initiated, work resumed on them and so on. To maintain consistency in the analyses as well as to facilitate an immediate view
of data obtained and data needed at any point of the estimation process, the results obtained at all stages of the work were
tabulated in a large Excel™ spreadsheet . In the end, all data used in the computation of all flight software estimates were on
this spreadsheet. The sheet thus stemmed as a necessity due to the parallel nature of the work being done.

 5

As often occurs when discussing research with respect to real life data and organizations, much of the inherent information
is of a proprietary nature. To allow useful discussion of the issues, the following variable representation of the real life
entities are given.

Table 1 gives the variable representation of the mission types for which the FSW analyses were done.

In the actual cost exercise, there could exist several missions for each mission type. Variable names for each mission are
not necessary for the purposes of this paper.

Table 1: Variable Representation of Real Life Mission Types

The organizations responsible for developing the code are roughly of two types: SW Development Contractors (SDC’s)
and Federally Funded Research Development Centers (FFRDC’s). The SDC’s are represented by SDC_1, SDC_2, SDC_3,
SDC_4 and any FFRDC is simply represented by the acronym FFRDC.

A. Establishing Initial SEER-SEM Inputs

 Due to the large number of costs that had to be estimated in such a short time, a parametric software cost model was
used.4 It is described in the following paragraphs.

1) Parametric Cost Model Overview

 The System Evaluation and Estimation of Resources - Software Estimating Model (SEER-SEM)5 was selected for use
in the proposal effort because it is widely accepted within NASA and industry for software cost estimation and analysis.

The model is based on approximately 6,700 historical data points that are used to create the internal model equations.
Approximately 30% (2,000) of the historical programs are based on Commercial environments and the remaining 70%
are defense related programs. The model’s internal database is significant because it is the basis for the default
Knowledge Bases (KB’s)[10] that represent cost drivers for the FSW estimate.

SEER-SEM requires four basic categories of information that represent the input data to the model. These categories
include:

• Software Systems Work Breakdown Structure (WBS) - Identification of the software modules being developed
(to the configuration item where possible, but often times to the software subsystem level).

• Software Size - The number of logical source lines of code (SLOC). This includes code that is anticipated to be
reused from similar software developments. SLOC may be entered into the model using least likely, most likely,
and highest likely values to reflect the uncertainty of the software size.

• Knowledge Bases - SEER-SEM contains industry data that is supplemented with related historical data that was
used to calibrate, or adjust, the model parameters to reflect historical experience.

• Parameter Settings – Parameter settings are initially established by the selected SEER-SEM knowledge bases and
have been adjusted to reflect proposal-specific knowledge. Parameter settings may also be entered as least likely,
most likely, and highest likely values to reflect uncertainty.

4 A Parametric Cost Model refers to a mathematical representation of cost estimating relationships (CERs) that provides a

logical and predictable correlation between the physical or functional characteristics of a system, and the resultant cost of
the system. A parametric cost model is an estimating system comprised of CERs and other parametric estimating functions,
e.g., software size, amount of reused software, staff skills, and development environment. Parametric cost models yield
product or service costs at designated levels and may provide departmentalized breakdown of generic cost elements. A
parametric cost model provides a logical and repeatable relationship between input variables and resultant costs.

5 SEER-SEM Version 8.0, Galorath Incorporated, Los Angeles, CA.

 6

2) Initial Input Data

 Decision box D0, shown in Figure 2, identifies the knowledge bases required by SEER-SEM (e.g., Platform,
Application, etc.). The selection of the appropriate subsets of these knowledge bases (e.g., unmanned space, flight systems,
etc.) is the basis for the creation of default input parameters for SEER-SEM. Certain of these default parameters will be
adjusted based upon the procedures and techniques discussed throughout the paper.

SEER -SEM Window:
Create/Modify
WBS Element

(1) Platform:
Unmanned Space

(2) Application:
Flight Systems

(3) Acquisition Method:
Gen’l – New and
Pre-existing

(4) Develpment Method:
Incremental

(5) Develpment
Standard:

DO-1788 Level B
(6) Class: not used

D0

Figure 2: Initial SEER-SEM inputs

Table 2 provides definitions for the knowledge bases and identifies the selection made for use in establishing the initial
model input parameters.

Aside from the initial inputs established by the SEER-SEM KB, additional data reflecting other facets of FSW cost
analysis is required to run the SEER-SEM model. The approach used for obtaining this data included collecting historical
data and descriptive information required as input to the model. This process is described in detail later in the paper. During
this initial phase, the software architecture, related new and reused code estimates, knowledge base selections, and parameter
setting adjustments, were closely coordinated and reviewed with the technical points of contact.

Table 2: Knowledge Base Definitions and Selections

Knowledge
Base Definition Selection

(1) Platform Establishes a collection of input parameter settings that
characterize a particular host environment. Unmanned Space

(2) Application Establishes a collection of input parameter settings that
characterize an application or application technology type. Flight Systems

(3) Acquisition
Method

Establishes a collection of input parameter settings that
characterize from where the software will come. New and Reuse

(4) Development
Method

Establishes a collection of input parameter settings that
characterize the particular Software Development Life Cycle
method that will be used.

Incremental
Development

(5) Development
Standard

Establishes a collection of input parameter settings that
characterize the software development process standard that will
be used.

DO-178B Level B

(6) Class A knowledge base calibrated to a specific set of data or domain. Not used

 7

B. Mission Category and Coder/Analogy Data Pair

After the initial inputs are fed to the program, further numerical and quantitative characteristics deemed important with
respect to the FSW cost evaluation process have to be determined for each Computer Software Configuration Item
(CSCI)[11]. The authors, in every case, found the initial reasoning as given in Figure 3 to be crucial in this respect. In what
follows, we discuss the nature of each node structure under its ‘decision box’ heading.

Figure 3: Mission Types, Developers, and Analogy Data Decision Dynamics

1) Mission Type— The first concern is the nature of the mission. If the project does not give SLOC values for FSW,
the estimator will have to locate data to determine approximate SLOC values for the FSW. The SLOC data used
depends upon how similar the mission that it was developed for is to the one of current interest. It is therefore
important to classify the missions of interest to the level that that similarity can be established. The classifications
for the Type X proposals as given in C1 in Figure 3 were inner heliosphere, near earth orbiters and primitive
bodies and are listed in accordance to the variable names presented in Table 1.

2) Software Developer (Coder): SDC or FFRDC— Knowledge of the organization assigned to develop the FSW for
the proposal is important because that information, in conjunction with the analogy data available, will determine
subsequent numerical SEER-SEM inputs (as discussed in Section 3.3 below).

This knowledge is not always known at the beginning of a proposal. Sometimes it changes during the course of a
proposal. This can, and does, cause a significant cost change during the estimation process. In the absence of any
knowledge of the coder, the analyst and cost lead agree on a best guess as to whom the coder might be and the
estimate is made with that assumption. The options are listed in C2.

3) Analogy Data— Once the nature of the mission has been studied, the appropriate analogy data must be determined.
The analogy data used consisted of code developed by the organizations as listed in C3. This data can be obtained
by stored samples of code, reports (previous step 2 proposals, for example) or Technical Data Packages. In one
case, there was a step 2 report giving actual SLOC values from a previous version of the mission of interest. In
another case, there was a Technical Data Package (TDP) for a mission which was deemed very analogous to the
proposal of interest. This TDP had SLOC values in it, and these were used. The vast majority of cases, however,
required a search for data when the proposal gave inheritance directives without SLOC values or, in fact, when no
inheritance directives were given at all. It was then up to the FSW analyst to determining appropriate data analogy
sources for SLOC values approximating those that would apply to the Type X proposal at hand.

4) Software Development Contractor/Analogy Data Pair— If it is known that Company X[12] is writing the SW, and
we have analogy data that Company X developed, then that affords a cost advantage as compared to the case where
Company X is doing the FSW and analogy data from Company Y is being used. In the first case, code already
exists that Company X can use to do the present mission with. Further, having done the code, Company X has
experience and infrastructure for that code. In the latter case, even though the Company Y analogy data can
approximate the amount of code needed, there may be a lot of code and corresponding resources that Company X
has to develop that it may not have developed enough to be consummate with Company Y’s work. The
coder/analogy pairs shown in the final tree structure indicates those combinations experienced in the Type X
proposal experience[13]. The determination of these pairs is important to the FSW cost computation process in
ways which will be discussed in the remaining Decision Graph subsections.

 8

C. Quantitative Parameter Determination

This portion of the decision graph uses the coder/analogy data pairs to determine several sets of numerical inputs to SEER-
SEM which, in addition to SLOC values, are major cost drivers. Once the SLOC values are obtained, it is crucial to the cost
estimating process to determine how much of the SLOC is new, reused without (wo) modifications (mods) and reused with
mods. It is also important to determine, for the code that is reused with modifications, the percentages corresponding to
redesign, recode and retest. These 3 percentage categories also apply to code that is reused as is, but in these analyses they are
given fixed values of 0%, 0% and 50% for all proposals. Details and justifications regarding the elements described above
are as follows.

For purposes of explanation, the triplet:

(% new, % reused wo mods, % reused with mods)

is referred to as vector 1 and the triplet:

(% redesign, % recode, % retest)

is called vector 2.

These percentages are applied to the delivered code size of the analogy data to produce Equivalent Source Lines of Code
(ESLOC). ESLOC is defined as the equivalent ‘new’ size of delivered code after taking into account the percent new,
percent reused ‘as is’, and percent reused modified. Also factored in are the percent redesign, percent recode, and percent
retest as applied to both the percent reuse ‘as is’ code and the percent modified code.

1) Coder Relationship to Analogy Data as it Determines Vector 1— As can be seen in Figure 4, the decision box,
D5, indicating the need for determination of vector 1 is followed by C5 which shows several alternative sources
for determining the value of this vector as encountered during the proposal cost estimating process. When actual
% values for the vector were obtained with analogy data, proposal reports or Team X reports, they were used. In
the absence of this data, default values based on cost estimating experience were used. For example, assume
SDC_1 was developing the code and the analogy data (SLOC values) used was developed by SDC_1 as well. If
the delivered logical SLOC size of the analogy data was X, Then if SDC_1 were to write code for the project, it
typically would be approximately the same delivered size, X, as that of the analogy data but would be such that:

New code = 25% X
Reused Code wo mods = 25% X

Reused Code with mods = 50% X

which gives:
Vector 1 = (25, 25, 50).

The same reasoning is applied if SDC_2 were the contractor for the S/C and SDC_2 analogy data was used. In
this case, based upon FSW cost estimating experience, vector 1 would have the entries:

New code = 7% X

Reused Code wo mods = 70% X
Reused Code with mods = 23% X

which gives:

Vector 1 = (7, 70, 23).

Entry of this vector as opposed to the one corresponding to SDC_1 generally results in a lower FSW cost due to
the coupling of a lower new code % and a higher reused wo mod code %. This is consistent with the fact that
SDC_2 code development is more of a ‘production line’ as compared to SDC_1’s.

In the case where the analogy data used was not developed by the assigned contractor, experience dictates that the
% of new code developed would be somewhat larger than the 2 previous cases mentioned. The degree to which
this is true depends on the assigned contractor. In the case of SDC_4 being the assigned contractor where SDC_1
analogy data of delivered size X is used.

 9

New code = 50% X
Reused Code wo mods =25% X

Reused Code with mods = 25% X

yielding:
Vector 1 = (50, 25, 25).

As stated above, when actuals are obtained with the vector 1 values, or if available reports give these percentages
(sometimes with SLOC values), then the above discussed default reasoning is overridden and those values are
used.

C6

SDC_2 : 10/10/ 50

Coder
Rel to
Analogy:
% new
% reused
with mod
% reused
wo mod

Team X Rpts

Proposal
Rpts

Actuals

SDC_2 / SDC_2
7/70/23

25/25/50
SDC_1 / SDC_1

SDC_4 / SDC_1
50/25/25

Coder &
param vals:
For % reused
with mod
% redesign
% recode
% retest

All Others:
10/25/25
10/25/25

50

Exception: Larger than
appropriate analogy data used

Exception: MSAP analogy
data used

Exception: Lack of visibility
in code decomposition

D5

C5

D6

Coder &
param vals
for reused
wo mod
% redesigned = 0
% recode = 0
% retest = 50

D7, C7

Figure 4: Reasoning for Quantitative Input Determination

2) Software Development Contractor and Parameter Values as they Relate to Vector 2— The reasoning involved
with vector 2 is computationally and conceptually similar to that of vector 1. In the case of SDC_2, experience
with its product line code indicates that, in general, if X represents the amount of reused modified code, then:

Redesigned code = 10%X
Rewritten code = 10%X
Retested code = 50%X

yielding:

Vector 2 = (10, 10, 50).

In general, for those cases where the SW contractor was not SDC_2 and the analogy data was not SDC_2, each
of the slots characterizing vector 2 entries was not given a single value but a range of values[14]. More precisely
for the ‘% redesign’ SEER-SEM input parameter, there are 3 values for input into SEER-SEM: A ‘Least Likely’
value for % redesign, a ‘Highly Likely’ value for % redesign and a ‘Most Likely’ value for % redesign (similarly
for the value of %recode)[15]. As there is more uncertainty regarding the values of these parameters, a
distribution of values as opposed to a single value was given with respect to the SEER-SEM input parameter
rows.

The values used for the non SDC_2 cases thusly are:

Least likely value for % redesign = 10
Highly likely value for % redesign = 25
Most likely value for % redesign = 25

Least likely value for % recode = 10

Highly likely value for % recode = 25
Most likely value for % recode = 25

 10

Least likely value for % retest = 50

Highly likely value for % retest = 50
Most likely value for % retest = 50.

These values were used because they tended to represent the cases where a non-product line FSW contractor (not
at the level of experience of SDC_2) was used. Exceptions to this rule included cases where reusable FSW data
was used. In that case, lower single valued % values, equal to those used for SDC_2, provided sufficient
accuracy. Other exceptions existed as shown in Figure 4.

3) Treatment of Reused Code without Modification— Finally, SEER-SEM requires inputs for % redesign , %
recode and % retest for the code designated as reused without modification as a means to measure how ‘New’
the code is.

For all missions across the board, it is assumed that the % of code designated as new does not require any
redesign or recoding. It however is assigned a value of 50% retest. This is due to the fact that in SEER-SEM
100% retest means that 52% of the code includes the work relating to test plans, test procedures, test drivers, and
test scripts. The 48% requires the actual retesting and integration of the code. Again, it is the assumption that
this new code does not require the activities which comprise the 52%. It only requires pure testing and
integration. Hence 50% was chosen for convenience as it was close enough to 48%.

D. Non - Default Parameter Identification

This section deals with the assignment of Type X mission values to the SEER-SEM parameters not yet discussed in this
paper. Figure 5 gives the decision graph component dealing with this issue.

Turnaround Time

QA level

Rehost from Dev to Target

SEER -SEM input
parms which are non-
default and have the
same value for all
projects

Response Time

Spec Level Reliability

Labor Rates: Av

SEER - SEM input
parms whose values
change across projects
(some missions can
have the default value)

Personnel Ability/Exp

Reqts Volatility

Memory Constraint

Real Time Code

Num Progs Integrated

Hardware Int

D8 D9

Min Time vs Opt Effort

Security Requirements

Timing Constraint

C8
C9

Figure 5: Non Default Knowledge Base Breakout

Decision box D8, Figure 5, indicates those input parameters in SEER-SEM for which:

(1) the default values assigned by the program are not appropriate for the Type X missions

 and

(2) which can be assigned a value which is the same for all of the missions.

The nodes in column C8 give a listing of all parameters for which this is true.

Decision box D9 in Figure 5 indicates the existence of parameters whose values varied from mission to mission followed
by a listing of those parameters in C9.

Any parameters appearing (other than the ones discussed in the sections above) that are not of the types described in this
section have the SEER-SEM default values assigned to them. This is the case because, at that early stage in the cost
estimation process, it was unrealistic to assign anything else. Table 3 gives the name and description of those parameters
corresponding to the first decision box and the reasons as to why the default values are not appropriate in the missions
studied. Further, the table justifies the values assigned in this costing effort.

 11

Table 3: Reasoning for Non-Default Non-Varying Parameter Assignment

Parameter Definition
SEER-‐SEM
Default	
Value

Reason	 for	 Not	
Using	 Default

Value	
Given

Reason	 for	 Value	 Given

Turnaround	
Time

The time required to create a release version of
the software solution.

LOW-‐ Outdated	 Default	
Value

VLO More	 reflective	 of	
Recent	 HW/SW	 Reality

Response	 time

Rates the average transaction response time
from the moment a developer presses a key or
click a command, until that command is
acknowledged and its action is completed.

NOM+
Outdated	 Default	

Value LOW
More	 reflective	 of	

Recent	 HW/SW	 Reality

Spec	 Level	
reliability

Rates the level of documentation required. The
level of documentation is often dictated by the
development standard being used with
government contracted software developments.

NOM
Outdated	 Default	

Value HI-‐
More	 reflective	 of	

Recent	 HW/SW	 Reality

QA	 Level

Evaluates the completeness of the Quality
Assurance (QA) activities. The Quality
Assurance effort is usually directly related to the
impact that a failure in the software would have
during its operational phase.

VHI-‐ Outdated	 Default	
Value

HI More	 reflective	 of	
Recent	 HW/SW	 Reality

Rehost	 from	
Development	
to	 Target

Rates the effort to convert the software from the
development system to the target system on
which the software will execute.

VHI
Outdated	 Default	

Value HIGH-‐
More	 reflective	 of	

Recent	 HW/SW	 Reality

Security	
Requirements

Rates development impacts of security
requirements for the delivered target system.
(All classifications are identified in the Orange
book.)

HI

Security	 default	
value	 is	 too	 High	
for	 the	 work	 at	

hand

NOM
Security	 is	 Nominal	 for	
NASA	 Unmanned	 Space	

Work

MinTime	 vs	
Opt	 Effort

Choose between optimizing the schedule or the
effort estimate. Optimizing for schedule
(minimum time) assumes the development will
be finished as quickly as possible. Optimizing
for effort assumes the software will be
developed as cheaply as possible, but will take
longer to complete.

Min	 Time

Min	 Time	 has	
inappropriately	

high	 cost	 used	 only	
in	 special	 time	

constrained	 cases

Optimal	
Effort

Min	 Time	 would	 yield	
unallowable	 and	

unrealistic	 FSW	 costs

Labor	 Rates	
Average

The average monthly labor rate for all personnel
working on the project.

$28,400	 per	
WM	 (FY10)

Used	 an	 average	 of	
industry	 and	 JPL	

Values

$xx	 per	
WM	 (FY10)

Appropriate	 to	 use	 	 an	
average	 of	 industry	 and	

JPL	 Values

The parameters from the “Reason for Not Using Default” column in Table 3 require additional elaboration:

Outdated Default Value – Due to the model not keeping pace with the state-of-the-art in software development.

Security default value is too High for the work at hand – Based on the National Security Agency (NSA) “Orange Book”
[16].

Min Time has inappropriately high cost used only in special time constrained cases – Min Time is used only when there
is a scheduling constraint.

Used an average of industry and JPL values – These values are based on an industry survey[17].

Table 4 gives the name and description of those parameters corresponding to the second decision box and the reasons as
to why the values varied from mission to mission.

Table 4: Reasoning for Variable Assignments to Parameters

Parameter Definition Reason	 for	 Variation

Personel	 Ability/Experience Characteristics	 of	 the	 software	 development	
personnel

Coder/Analyst	 Ability	 varies	 from	 company	 to	 company

Requirements	 Volatility How	 frequently	 the	 customer	 changes	 the	 software	
development	 requirements

Industry	 varies	 from	 JPL

Memory	 Constraint Is	 there	 sufficient	 memory	 to	 meet	 the	 systems	
requirements

Altered	 to	 adjust	 for	 lack	 of	 visibility	 in	 decomposition

Timing	 Constraint Is	 the	 timing	 requirement	 met Varies	 with	 GN&C	 complexity

Real	 Time	 Code The	 amount	 of	 code	 that	 requires	 an	 instantaneous	
response

Altered	 to	 adjust	 for	 lack	 of	 visibility	 in	 decomposition

Number	 of	 Programs	 Being	
Integrated	

How	 many	 CSCIs	 are	 concurrently	 being	 integrated Have	 Different	 Numbers	 for	 Different	 Projects	 -‐	 Some	
not	 Broken	 out

Hardware	 Integration The	 complexity	 of	 interfacing	 the	 hardware	 elements Altered	 to	 adjust	 for	 lack	 of	 visibility	 in	 decomposition

 12

The following parameters from the “Reason for Variation” column in Table 4 similarly require additional elaboration:

Coder/Analyst Abilities varies from company to company - Different organizations have different standards their
programmers and analysts.

Industry varies from JPL - The Defense Industry are more stringent than JPL and unmanned NASA projects.

Altered to adjust for lack of visibility in decomposition - Lack of visibility into the breakout of CSCIs required additional
adjustments.

Varies with GN&C with complexity – Dependent on the type mission (planetary, earth orbiter, lunar, etc.).

Have Different Numbers for Different Projects – Some not Broken out – Some project had more granularity than others
based on their financial and engineering requirements.

E. Program Output Mapping into JPL FSW Work Breakdown Structure

The final decision box D10 (see Figure 6) alludes to the fact that when a FSW estimate is done, it is sometimes mandated
that the costs be mapped as much as possible into the JPL Work Breakdown Structure (WBS). Although this requirement has
thus far been in force only for the production of Independent Cost Estimates (ICE’s) and Cost Analysis Data Requirements
(CADRe’s), it is possible that in the future this mapping could be required for proposals as well. Therefore, due to the
coupling of the potential importance of realistic FSW WBS element costs with the fast turnaround time often required, the
algorithm for and automation of the mapping from SEER-SEM FSW costs to the JPL WBS is an essential component to
effective FSW costing activity.

The construction of a mapping from SEER-SEM to the JPL Standard WBS[18] first consists of choosing the format of the
cost output in SEER-SEM. The format should be one which groups the output costs in such a way as to facilitate a clear and
direct mapping to the JPL WBS. This is important for the abstract understanding of the JPL cost groupings a well as the
practicalities of automating the mapping process. To this end, it was deemed that the “Cost by Labor Category” was the
SEER-SEM output of choice. This format not only satisfied the above criteria but also served as a basis for cost analysis and
cost comparisons by FSW analysts at JPL for many years. Having made this choice, the task is now to map this output into
the JPL FSW WBS. The JPL FSW WBS essentially consists of FSW management, FSW systems engineering, FSW testbed,
FSW I&T and Coding Related Activities (which correspond to the following S/C elements: Command & Data Handling
(C&DH) , Guidance Navigation & Control (GN&C) , Engineering Models, Payload & Instrument Control SW, SW Systems
Services).

Run SEER - SEM
Program : Use
Automated Program
to Map into JPL WBS
V5 when appropriate
Note: Done so far
only for Independent
Cost Estimates
(ICE’s).

D10

Figure 6: Terminal Decision Box WBS correlation to SEER-SEM Output

For each CSCI for which SLOC is available, the Cost by Labor Category of SEER-SEM produces column costs which
can be grouped into all the above WBS elements except for FSW I&T for which it has a row cost and FSW testbed for which
a calculation outside of SEER-SEM is done (see below). Note that the SW costs will have to be mapped into merged S/C
elements of the JPL WBS if the SLOC values fed into SEER-SEM representing those S/C elements are correspondingly
merged. For example, if a separate breakout of S/C GNC SLOC and S/C C&DH SLOC is not available to the FSW analyst, a
breakout of costs into the GNC and C&DH JPL WBS elements is not feasible. Therefore, because these costs will be merged
into the SEER-SEM input/output, they will be mapped into a merged WBS category consisting of both GNC and C&DH
data. Figure 7 represents the SEER-SEM output and mapping to the JPL WBS for the more extreme (and most common case
for the Type X proposals) where only one SLOC value is available for the total of all S/C elements.

 14

	 C&DH	

Eng Models	

GN&C	

Pld & Inst Cntrl 	

System Srvcs	

Figure 8: SEER-SEM / JPL WBS Mapping for Individual FSW Elements (Notional Sample Data)

IV. The Speadsheet

As mentioned in the introduction, the comprehensive nature of the spreadsheet yielded a deeper perception regarding the
nature and processes of FSW cost estimation (resulting in the conception and creation of a decision graph). For each Type X
proposal, the sheet included general mission information together with detailed and significant SEER-SEM input parameter
data. Since there were N0 missions that had to be costed, this yielded a spreadsheet whose size parameters made its complete
inclusion in this paper prohibitive. A smaller portion of the sheet containing all of the parameters for only five of the missions
sufficiently conveys the sense of expanse and detail implicit in the sheet and is displayed in Figure 9 and Figure 10[20].
Each mission has its own column. The rows display pertinent information for the corresponding column mission. The first 9
rows represent various ‘mission facts such as the mission category, name, cost lead etc. Note that certain proprietary data
have been blanked out such as the final cost (dollars and work hours) and the proposal name. Note the contractor/analogy
data row refers to the flight software contractor and analogy data parameters discussed earlier in the paper. The following
groupings (colored in aqua) show the knowledge base inputs, software sizing data (vectors 1 and 2, size Basis of Estimate
(BoE)) and parameter settings (non-default constant and varying). All SEER-SEM parameters not shown in the rows are
default across the board. Figure 11 is notional and displays a mapping from the main components of the decision graph to the
corresponding row parameters that those components determine the values of.

Throughout the cost estimation process, hardcopy of the evolving spreadsheet was made (taped together) in its entirety to
reflect the status of cost and cost estimation progress to higher level management. The use of a large paper sheet on a big
table with pencils in hand added to the analysis and monitoring process in a way that might not have been achieved
otherwise. Further, a better understanding of the nature and justification of the costs was achieved by the cost leads when
columns representing only their proposals were distributed to them. Finally, the bird’s eye view of the mission data and
SEER-SEM inputs/outputs facilitated the cost estimation consistency analysis by the cost estimators. By checking the
parameters mission by mission (i.e. column by column) and comparing costs resulting from the use of these parameters
together with mission categories and contractor/analogy data, the analysts were allowed insights in a way consistent with the
‘one picture is worth 1000 words’ philosophy.

 15

Category
Proposal	 Name 1 2 3 4 5
Cost	 Lead A B C D D
Spacecraft	 Provider SDC_1 SDC_1 SDC_2 SDC_3 FFRDC
Analogy	 Program(s)	 Used	 from from from from from

Contractor/Analogy	 Data SDC_1/
SDC_1

SDC_1/
SDC_2

SDC_2/
SDC_2

SDC_3/
FFRDC

FFRDC/
FFRDC

Software	 Cost	 Estimates	 (SEER-‐SEM)	
(FY$10M)
(excludes	 testbed,	 equip,	 facilities)

$XX $XX $XX $XX $XX

SEER-‐SEM	 	 (-‐	 ATLO,	 SQA,	 CM	 50%) $XX $XX $XX $XX $XX
Team	 X	 Estimate
	 (for	 reconcilliation)

$XX $XX $XX $XX $XX

Software	 Duration	 (SEER-‐SEM)	 (mo) 27 30 23 30 26
Knowledge	 Bases
	 	 	 SEER-‐SEM	 Window	 Name:
	 	 Platform	 (Operating	 Environment) Unmanned Unmanned Unmanned Unmanned Unmanned
	 	 Application Flight	 Systems Flight	 Systems Flight	 Systems Flight	 Systems Flight	 Systems
	 	 Acquisition	 Method New/Reuse New/Reuse New/Reuse New/Reuse New/Reuse
	 	 Development	 Method Incremental Incremental Incremental Incremental Incremental
	 	 Development	 Standard DO-‐178B	 Level	 B DO-‐178B	 Level	 B DO-‐178B	 Level	 B DO-‐178B	 Level	 B DO-‐178B	 Level	 B

Software	 Size	 (SLOC)

Size	 BoE

Used	 actual	 SLOC	
counts	 from	 SDC_1.	 	
Assumed	 25%	 new,	
25%	 reused	 "as	 is",	
and	 50%	 reused	
modified.

Used	 an	 average	
actuals	 from	 FFRDC	
projects	 with	 the	
inheritance	
percentages	
fromFFRDC.

Used	 SDC_2-‐derived	
SLOC	 values	 for	 new,	
reused,	 reused	
modified.	 	 Added	
correction	 factor	 to	
convert	 code	 counts.

Used	 FFRDC	 TDP	 	
information.

Used	 FFRDC	 size	
estimates.	 	
Duplicated	
reasoning	 used	 for	
FFRDC	 estimate.

ESLOC 69,888 92,238 61,848 85,533 61,450

Delivered	 Software	 (SLOC)	 -‐	 most	 likely 153,812 202,000 204,990 221,664 180,000

Software	 Size	 (SLOC)
	 	 New	 SLOC	 -‐	 most	 likely 38,453 60,600 25,000 46,404 30,000
	 	 %	 of	 new	 SLOC 25% 30% 12% 21% 17%

	 	 Reuse	 SLOC	 (as	 is	 -‐	 no	 mod)	 -‐	 most	 likely 38,453 35,350 97,700 117,424 70,000

	 	 %	 of	 reused	 (as	 is)	 SLOC 25% 17% 48% 53% 39%
	 	 	 	 	 %	 re-‐design 0 0 0 0 0
	 	 	 	 	 %	 re-‐implementation	 (Re-‐coding) 0 0 0 0 0
	 	 	 	 	 %	 re-‐test 50% 50% 50% 50% 50%
	 	 Reuse	 SLOC	 (modified)	 -‐	 most	 likely 76,906 106,050 82,290 57,836 80,000
	 	 %	 of	 reused	 (modified)	 SLOC 50% 53% 40% 26% 44%
	 	 	 	 	 %	 re-‐design 10%,	 25%,	 25% 10% 10% 10%,	 25%,	 25% 10%
	 	 	 	 	 %	 re-‐implementation	 (Re-‐coding) 10%,	 25%,	 25% 10% 10% 10%,	 25%,	 25% 10%
	 	 	 	 	 %	 re-‐test 50% 50% 50% 50% 50%

Inn_Hel_1 NEO_1

Figure 9: Portion of Final Spreadsheet (a)

 16

Parmeter	 Settings	 Notes
	 	 	 Personnel	 Capabilities	 &	 Experience*
	 	 	 (7	 parameters)
Analyst	 Capability NOM-‐
Analyst's	 Application	 Experience NOM
Programmer	 Capabilities NOM-‐
Programmer's	 Language	 Experience VHI
Developkent	 System	 Experience HIGH
Target	 System	 Experience VHI
Practices	 &	 Methods	 Experience VHI
	 	 	 Development	 Support	 Environment*
	 	 	 	 	 turnaround	 time VLO VLO VLO VLO VLO
	 	 	 	 	 response	 time LOW LOW LOW LOW LOW
	 	 	 Product	 Development	 Requirements*
	 	 	 	 	 requirements	 volatility HIGH HIGH HIGH HIGH HIGH
	 	 	 	 	 spec	 level	 -‐	 Reliability HIGH-‐ HIGH-‐ HIGH-‐ HIGH-‐ HIGH-‐
	 	 	 	 	 quality	 assurance	 level HIGH HIGH HIGH HIGH HIGH
	 	 	 	 	 rehost	 (development	 to	 target) HIGH-‐ HIGH-‐ HIGH-‐ HIGH-‐ HIGH-‐
	 	 	 Product	 Reusability	 Requirements*
	 	 	 Development	 Environment	 Complexity*
	 	 	 Target	 Environment*
	 	 	 	 	 memory	 constraint NOM NOM NOM NOM NOM

	 	 	 	 	 timing	 constraint NOM+,NOM+,HIGH-‐NOM+,NOM+,HIGH-‐ NOM+,NOM+,HIGH-‐ NOM+,NOM+,HIGH-‐ NOM+,NOM+,HIGH-‐

	 	 	 	 	 real	 time	 code NOM,	 NOM,	 NOM+ NOM,	 NOM,	 NOM+ NOM,	 NOM,	 NOM+ NOM,	 NOM,	 NOM+ NOM,	 NOM,	 NOM+

	 	 	 	 	 security	 requirements NOM NOM NOM NOM NOM
	 	 	 Schedule	 &	 Staffing	 Constraints*
	 	 	 	 	 start	 date 11/25/2012 11/25/2012 11/25/2012 11/25/2012 11/25/2012

	 	 	 	 	 Min	 Time	 vs	 Optimal	 Effort

	 	 	 Confidence	 Levels*
	 	 	 Requirements*
	 	 	 System	 Integration*
	 	 	 	 	 number	 of	 programs	 being	 integrated 5 5 7 5 5
	 	 	 	 	 hardware	 integration N-‐,	 N,	 N+ N-‐,	 N,	 N+ N-‐,	 N,	 N+ N-‐,	 N,	 N+ N-‐,	 N,	 N+
	 	 	 Ecomonic	 Factors*
	 	 	 	 	 cost	 base	 year 2010 2010 2010 2010 2010
	 	 	 	 labor	 rate	 (FY$2010)	 work	 months $xx $xx $xx $xx $xx

Leave	 at	 KB	 settings	

Labor	 rate	 based	 on	 NASA	 Center	 contractor	 developed	 software	 survery	 conducted	 in	 FY08.	 	 Escalated	

Should	 always	 be	 NOM	 (no	 reusability	 required	 by	 the	 contract).	 	 If	 the	 parameter	 is	 set	 to	 NOM	 the	
Leave	 at	 KB	 settings	
Leave	 at	 KB	 settings	 with	 the	 exception	 of:

Leave	 at	 KB	 settings	 with	 the	 exception	 of:

Always	 start	 with	 Optimal	 Effort.	 	 Where	 possible,	 verify	 that	 the	 schedule	 duration	 is	 achievable.	 	 If	
not,	 evaluate	 schedule	 constraints	 to	 accommodate	 the	 estimated	 schedule.	 	 If	 the	 software	
development	 time	 is	 less	 than	 the	 Minimal	 Time,	 the	 SEER-‐SEM	 model	 contends	 that	 it	 is	 not	 possible	
to	 complete	 the	 software.	 	 Identify	 this	 as	 a	 significant	 risk	 issue!
Both	 effort	 and	 schedule	 should	 be	 run	 at	 50%	 and	 70%	 confidence.	 	 SQI	 recommends	 the	 70%	

Leave	 at	 KB	 settings	 with	 the	 exception	 of:

Leave	 at	 KB	 settings	 with	 the	 exception	 of:

In	 general,	 these	 values	 were	 defaults,	 but	 exceptions	 were	 made	 for	 certain	 projects	 with	 personnel	
having	 more	 mission-‐related	 experience.

Leave	 at	 KB	 settings	 with	 the	 exception	 of:

*Blue highlighted font corresponds to SEER-SEM parameter heading titles.

Figure 10: Portion of Final Spreadsheet (b)

 17

Figure 11: A Notional Retrospective of Decision Graph and Spreadsheet

V. Computer Generation of Graphics with Explanations

This section demonstrates not only how the rule based approach can produce useful tables and charts reflecting the results
of FSW coat analysis but also how such a rule base can aid in the explanation of the output reflected in these charts. More
precisely, it is demonstrated that the data used in the expert justification of analysis results for N0 Type X proposals is
contained in the rules which would comprise the system conceived of in this paper.

Upon completion of the FSW cost estimating activities for the N0 Type X proposals, a presentation was addressed to
section personnel that summarized the relevant conclusions of the analyses. Included in the discussion was a trend chart, a
justification of its graph and relevant high level tabular data.

Figure 12 shows the trend chart giving the Costs ci (FY$10) vs Mission Category. This graph gave an immediate high
level view of the relative estimated costs which would be incurred with respect to the types of missions described earlier in
Table 1.

 18

Figure 12: Cost vs Mission Category Trend Line

The mathematical evidence of the chart should properly be accompanied by a set of key factors influencing the relative
nature of its ordinate values. To this end, a listing of distinguishing influences was given and is shown in Figure 13. As can
be seen in the text of the Figure, a justification of lower to higher costs is given in terms of production line maturity, % of
new code size, general code size, and general increased coding costs due to SW developer /analogy data pairings.

It is of interest to note that these relevant factors were proffered before the idea of a decision graph was developed. They
were based solely upon the insights of and discussions between the cost estimators engaged in the FSW cost analysis for the
proposals. The listing of the factors was not based upon any automated decision making system. Upon examining these
earlier efforts, however, it is clear that all of these listed factors are included in the decision graph presented at the beginning
of the paper. Hence these factors would be included in any rule base arising from the decision graph and could therefore be
included in any explanation of the obtained costs arising from the execution of said rules[21] (also, see Section 6, Summary
and Future Work). The modular nature of these rules facilitates the production of computer generation of these explanations
as well.

It should be noted that the listing of factors influencing the nature of the trend line would serve as a first step in the
justification of the trend line. With continued use of the system and/or development of its rule base, deeper explanations
could be extracted.

 19

Figure 13: High Level Factors influencing FSW Cost Estimates

It is also of interest to see the information as it is presented in Table 5. These data are embedded in the fabric of the
decision graph nodes and thusly are incorporated in the execution of any rules derived from it. Hence an extraction of this
data as needed from the rules is possible (in a more straightforward fashion than as above) and, as before,
explanations/justifications for values are facilitated by the rule-based modular nature as well.

Table 5: SLOC Data Corresponding to Mission Categories*

*’#’ represents a numerical value and ‘# - #’ correspondingly designates a numerical range.

The crucial point of this section is that the listing of factors relevant to trend determination produced by the experts
(before the conception of the decision graph) is contained in, and can be easily extracted from, the decision graph and
therefore from rules arising from its constitution.

 20

VI. Brief Description of the SCHERRI Program

The program was built using CLIPS. CLIPS is a forward-chaining rule-based programming language written in C which
provides a complete environment for the construction of rule and/or object based expert systems[22]. At present, there are
approximately 145 rules.

S C H E R R I starts by querying the user as to the nature of the mission for which the cost analysis is to be performed.
See Figure 14. The category of primitive bodies includes asteroids and comets. The Astrophysics category consists of earth
orbiting spacecraft.

Figure 14: Initial Query from S C H E R R I

The program then uses various qualitative inputs from the user as described in the paper to determine the BOE for the
analysis. An example of the BOE printouts is shown in Figure 15. Note that at he bottom the figure the program asks the user
to enter the amount of SLOC being used in the analysis as described earlier in the paper.

Figure 15: BOE for an Astrophysics Mission

Figure 16 shows the outputs computed by the program based upon the user inputs and the expert rules built into the
system.

 21

Figure 16: Output Provided by the Rule-Based Structures

Figure 17 shows some of the code use in the construction of the program. The rules shown represent the request for
SLOC data and the corresponding computations done on this data relating to determination of % of new code, % of reused
“as is” code and % of reused “modified” code computations based upon the user input.

 22

Figure 17: Two Rules of the Program

VII. Summary and Future work

The ideas presented in this report are best encapsulated by the tried and true sentiment “Necessity is the mother of
invention”. During the process of producing timely and accurate flight software cost analyses, it became clear that efficient
and effective methodologies for consistency checking had to be established. Intuitively, the best way to accommodate this
requirement was to develop a comprehensive spreadsheet that showed, for each mission, all parameters which served as the
blueprint for that mission’s FSW cost estimate. At first this only included certain parameters which were inputs to the SEER-
SEM FSW costing model. It was subsequently determined that it was equally important to include mission information that
gave rise to parameter value selection. The consideration by the expert of the interplay of data /reason for data forced upon
both authors a progressively exacting analysis not only regarding the FSW costing exercise but also with respect to an
examination of the thinking processes behind the execution of such an exercise. This resulted in the invention of the decision
graph.

Logically, the next step would be to start expansion and refinement of the rule-based system[23] described in the previous
section. Our approach there was to use the decision graph presented in this paper for the N0 Type X proposals and build a
decision tree using the descision graph as a high-level road map (see below). This same approach could be used to enhance
the current system, further allowing future analysts to obtain the costs of interest and have a complete explanation for how
the cost was obtained based upon the triggered rules[24],[25],[26],[27].

An example of how a decision tree corresponds to the decision graph can be seen in the following example. Figure 18
shows an initial part of the decision graph. As can be seen, the first column of nodes contains all the mission types that
appear on the spreadsheet while the second column lists all the FSW contractors. No correlation between the two is given.
Figure 19 shows the actual pairings of Mission Type/Coder that actually appeared in the spreadsheet. This serves as direction
for the design of the expert system. One way in which this can be seen is that in a constructed system, after the user enters the
Mission Type based upon the possibilities of column 1 nodes, the computer could then query the user to select from the
limited range of FSW contractor possibilities based upon that initial input.

 23

CoderPrim B

InnHel_1

NEO_1

InnHel_2

NEO_2

SDC_1

SDC_2

SDC_-3

FFRDC

SDC_4

Figure 18: Portion of Decision Graph

Prim B

InnHel_1

NEO_1

InnHel_2

NEO_2

SDC_1

SDC_2

SDC_-3

FFRDC

SDC_4

SDC_1

SDC_1

SDC_2

Figure 19: Corresponding Decision Tree

So, for example, if the user chose that he was interested in a primitive body mission, the computer could then say:

“In the Type X Mission Proposal Data Base for Year 2010, the two possible FSW contractors for Primitive Body
Missions were SDC_4 and SDC_1. SDC_4 worked on a comet mission to examine its core and SDC_1 worked on a main
belt comet and an asteroid mission. Please select which of these missions (as listed below) you would like to see a derivation
of FSW cost for.”

Expansion of the rest of the decision graph into a tree structure would allow a complete step by step explanation and
justification of the how’s and why’s of the FSW cost estimate for the mission of interest. Details of precisely what the format,
nature and expanse of the explanations at each step are one of the subjects for future research even within the strict confines
of the Type X mission FSW costing effort.

Previous efforts have been made to integrate neural networks, expert knowledge, and rule-based systems for use with
algorithms and data sets of conventional software cost estimating models.[28],[29] The continued refinement of the work
presented in this paper would serve as a foundation for the efficacious use of these techniques to further enhance the accuracy
and descriptive content of the FSW cost estimates of interest.

The graph shown in Figure 12 was a first attempt to show a high level quantitative perspective that could serve as a quick
reference for spotting trends in FSW cost estimation. One area of further work could be to compile more and more estimated
costs and create corresponding graphs. Corresponding could also be made for actuals. These graphs could serve as an aid in
determining and graphing a ‘difference metric’ between actual and estimated FSW costs. Analyses could be done to improve
the estimation based on the comparisons. Further estimate data with rule-based generated explanations and graphs could be
compiled to see if the difference metric is improving. A cycle of estimation-cost metric determination-analysis-improvement
could occur through time as the cost estimation data base increases.

 24

Finally, as previously discussed, the mapping scheme which takes the SEER-SEM output into the JPL FSW WBS is
semi-automated. Complete automation of the mapping for fast delivery of precision FSW cost estimates would be a natural
follow up to the efforts thus far. Integrating this system into an expert system as discussed above would, with proper
interaction and feedback from appropriate personnel, yield a powerful interactive costing tool within the JPL community and
beyond.

References

[1] The Fifth Generation : Artificial Intelligence and Japan’s Computer Challenge to the World, Edward A Feigenbaum, and
Pamela McCorduck, Addison-Wesley, Reading, MA, 1983.

[2] LA Times Article, “Thirty Year Veteran of JPL Chosen as its Leader”, Lee McFarling: Times Science writer, February
1, 2001, reference link:

 http://articles.latimes.com/2011/Feb/01/local/mc-19734.

[3] CNN.com/technology, “Mar Science Lab Delayed Two Years”, Alan Silverleib: CNN, December 4, 2008, reference
link:

 http://edition.cnn.com/2008/TECH/Space/12/04/NASA.Mars.Delay/availableindex.html.

[4] Nature: A International Journal of Science Published on Line, “Mars Rovers Debut Delayed”, Eric Hand: Nature,
reference link:

 http://dx.doi.org/10.1038/news.2008.1283.

[5] “Software Cost Risk Estimation and Management at the Jet Propulsion Laboratory”, Jairus Hihn and Karen Lum, 17th
International Forum on COCOMO and Software Cost Modeling, October 22-25, 2002.

[6] “2008 NASA Cost Estimating Handbook” (2008), reference link:
 http://www.nasa.gov/pdf/263676main_2008-NASA-Cost-Handbook-FINAL_v6.pdf.

[7] Thinking Allowed: DVD, Jeffrey Mishlove, host. Edward Feigenbaum & Penny Nii: Expert Systems. reference link:
 http://www.youtube.com/watch?v=Uk9YA1kwZLw.

[8] Decision Analysis, Howard Raiffa, Addison-Wesley, Reading, MA, 1968.

[9] The Concise Oxford Dictionary of Mathematics, Christopher Clapham and James Nicholson, Oxford University Press,
2005: Pages 27, 189 and 290.

[10]A default knowledge base is a selected database in the SEER-SEM program which provides values for input parameters
when such parameters are not provided by the user.

 [11]CSCI is a standard term from DoD-STD-2167 representing a managed and configured block of code.

[12]The same letter “X” is used throughout the paper to indicate an unknown quantity. Unless implied by the text, there is no
correlation between the different uses of this variable.

[13]Note that the number of coder/analogy data pairs shown (7) indicates a subset of all combinations of coder and analogy
data possibilities (15).

[14]In SEER-SEM, each value for a ‘% type’ parameter can be given a range of three values corresponding to least likely,
most likely and highly likely. The fact that previous to this discussion, only one % value was used means that that one
value was given to all three possibilities.

[15]%retest does not require a distribution as do the others (see subsection 3.3.3 for details).

[16]The NSA “Orange Book” is titled "A Guide to Understanding Discretionary Access Control In Trusted Systems," and is
issued by the National Computer Security Center (NCSC) under the authority of and in accordance with Department of
Defense (DoD) Directive 5215.1, "Computer Security Evaluation Center." The guidelines defined in this document are
intended to be used by computer hardware and software designers who are building systems with the intent of meeting
the requirements of the Department of Defense Trusted Computer System Evaluation Criteria, DoD 5200.28-STD.

[17]“CxL Software Composite Labor Rate Justification”, Sherry Stukes and Bob Estes, February 2008.
[18]JPL Standard WBS v4.0, Flight Software elements 06.12.01 – 06.12.09.

[19]The 4% factor is based on discussions and analysis with Elihu McMahon, Deputy Section Manager, Flight System
Avionics, with over 20 years of direct experience working on JPL software testbeds.

[20]The contents of Figure 10 are juxtaposed directly beneath the contents of Figure 9 in the actual spreadsheet.

 25

[21]Software Cost Estimation Using a Decision Graph Process: A Knowledge Engineering Approach, S. Stukes, J.
Spagnuolo Jr, 2011 ISPA/SCEA Joint Annual Conference, June 7-10, 2011.

[22]Rule-based systems, Frederick Hayes Roth, Communications of the ACM, Volume 28, Issue 9, Sept. 1985.

[23]Logical Foundations for Rule-Based Systems (Studies in Computational Intelleigence) 2nd Edition, Antoni Ligeza,
Springer-Verlag Berlin Heidelberg, 2006, pages 91-97.

[24]Lindsay, Robert K., et al (1980). “Applications of Artificial Intelligence for Organic Chemistry: The Dendral Project”.
ISBN: 0-07-037895-9.

[25]Shortliffe, E. H. (1976). “Computer-Based Medical Consultations, Mycin”. ISBN: 0444001794.

[26]Hart, P., & Duda, R. (1977). “Prospector: A Computer-Based Consultation System for Mineral Exploration”. Volume
155 of Technical Note. Artificial Intelligence Center. Stanford Research Institute: Artificial Intelligence Group.

[27]Ed Fegenbaum’s Search for A.I. , “Feigenfest 70th” at Stanford University 2006, iAM Digital Archival Media, 2006.
Internet reference:
http://www.youtube.com/watch?v=B9zVdU3N7DY.

[28]Wei, L. D., et al. (2010). “Improving Software Estimation Using A Neuro-Fuzzy Model with SEER-SEM”.Global
Journal of Computer Science and Technology. Volume 10. Issue 12 (V1.0). Page 52-64.

[29]Khan, I.R. et al, (2010), Efficient Software Cost Estimation using Neuro-Fuzzy Technique, Proceedings of the ISCET
2010, pages 59-62.

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with
the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

