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EFFICIENT TRAJECTORY PROPAGATION FOR ORBIT
DETERMINATION PROBLEMS

Javier Roa∗and Jesús Peláez†

Regularized formulations of orbital motion apply a series of techniques to im-
prove the numerical integration of the orbit. Despite their advantages and po-
tential applications little attention has been paid to the propagation of the partial
derivatives of the corresponding set of elements or coordinates, required in many
orbit-determination scenarios and optimization problems. This paper fills this gap
by presenting the general procedure for integrating the state-transition matrix of
the system together with the nominal trajectory using regularized formulations and
different sets of elements. The main difficulty comes from introducing an indepen-
dent variable different from time, because the solution needs to be synchronized.
The correction of the time delay is treated from a generic perspective not focused
on any particular formulation. The synchronization using time-elements is also
discussed. Numerical examples include strongly-perturbed orbits in the Pluto sys-
tem, motivated by the recent flyby of the New Horizons spacecraft, together with
a geocentric flyby of the NEAR spacecraft.

INTRODUCTION

The propagation of the variational equations of orbital motion is required in most orbit deter-
mination problems, situational awareness scenarios, numerical searching methods, computation of
periodic orbits, etc. The solution to the variational equations determines how sensitive the solution
is to initialization errors or to uncertainties in the physical parameters.1 The linear propagation
of the covariance matrix is performed by means of the state-transition matrix,2 which is solved
from the variational equations. Introducing a different set of variables to describe the motion re-
quires additional transformations for computing the state-transition matrix and for propagating the
covariance. Vallado3 analyzes the performance of the transformation involving the equinoctial and
spherical variables, as well as the accuracy of the covariance estimation.4

Regularized formulations of orbital motion take advantage of different techniques for removing
the r → 0 singularity in the equations of motion in Cartesian coordinates and to improve the sta-
bility of the integration. Different approaches to regularizing the equations of orbital motion can be
found in the literature. Levi-Civita introduced a transformation in the complex plane to formulate
the planar problem, avoiding the singularity associated to a direct impact with the attractive cen-
ter. The Levi-Civita variables were extended to the three dimensional space by Kustaanheimo and
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Stiefel.5 Burdet, based on previous work by Sperling,6 embedded the Laplace-Runge-Lenz vector
and the energy in the equations of motion arriving to a fully regularized formulation. Both the
Kustaanheimo-Stiefel (KS) and the Sperling-Burdet (SB) regularizations succeed in transforming
the nonlinear and strongly coupled system of equations defining Keplerian motion into a linear and
decoupled system, which greatly improves the numerical stability. The advantages hold when intro-
ducing perturbations. Deprit et al.7 wrote an exhaustive essay on linearization. The practical use of
integrals of motion was explored by Milankovitch,8, 9 who reduced the problem to propagating the
Laplace-Runge-Lenz and the angular momentum vectors, together with an angular measurement.
Baumgarte10 and Janin11 stabilized Cowell’s method by introducing a fictitious time and embedding
the energy into the equations of motion. Based on the concept of Hansen ideal frames Peáez et al.12

formulated the special perturbations method called Dromo. A modified version for propagating
hyperbolic orbits has recently been published.13, 14

The physical time is replaced by a fictitious time by means of the Sundman transformation. The
fictitious time behaves as an analytic step-size adaption that improves the discretization of the or-
bit. A root-finding algorithm is required to detect when the physical time reaches its target value.
Despite the many advantages of these more sophisticated propagators very few applications to real
problems can be found. For example, little attention has been paid to how the partial derivatives
of the state vector are propagated adopting this formalism. The goal of this paper is to derive the
general theory that makes it possible to propagate the partial derivatives together with the reference
trajectory. It is formulated from a generic perspective and not focused on any particular formulation.
The main difficulty comes from the synchronism of the solutions. Roa and Peláez have studied this
phenomenon in the context of spacecraft relative motion.15, 16, 17, 18

The Paper is organized as follows. The first section is devoted to the governing equations of
motion, with an emphasis on the variational formulation. The concept of synchronism is presented
and its relevance when propagating the state-transition matrix is discussed. The section closes
with the required transformations for propagating the covariance matrix attached to a certain set
of elements or coordinates. The steps for integrating the variational equations and propagating the
covariance matrix are presented in the following section. Next, two practical considerations are
discussed: the importance of the initialization of the independent variable and the computation of
the time delay from a time-element. The theory is validated by integrating two elliptic orbits in the
Pluto system, and a geocentric flyby.

DYNAMICS

Let r, v ∈ R3 denote the position and velocity vectors of a particle immerse in a central gravita-
tional field, respectively. Its dynamics is defined by the initial value problem (IVP)


d2r
d t2 = −

µ

r3 r + ap

r(t0) = r0, v(t0) = v0

(1)

where r = ||r||, µ is the gravitational parameter of the attracting body, t is the physical time and
ap denotes the perturbing acceleration. The components of the position and velocity vectors of the
particle form the state vector in Cartesian coordinates x(t; x0) ∈ R6. When introducing the state
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vector x(t; x0) the second order system given in Eq. (1) reduces to the first order system
dx
d t

= f(t; x, ap)

x(t0) = x0

(2)

Although there are integration schemes that deal with second order systems, such as the Störmer-
Cowell or the Runge-Kutta-Nyström, the representation of the system given in Eq. (2) is preferred
for many applications.

Consider a set of elements∗ or generalized coordinates œ ∈ Rn that alternatively defines the state
of the particle, together with a generic, monotonically increasing independent variable ϑ. When
the independent variable is different from the physical time then the time is defined as a function
t = t(ϑ), and t ∈ œ. In what follows we assume that œ = (œ1,œ2, . . . ,œn)> and t = œ1. The IVP
defined in Eq. (2) transforms into 

dœ
dϑ

= g(ϑ; œ, ap)

œ(ϑ0) = œ0

(3)

This new representation of the motion might be better suited for numerical integration, be regular,
or enjoy interesting properties. Regularization is a broad line of research that looks for nonsingular
sets of variables. Examples of such transformations of the dynamical system are the Gauss planetary
equations, the Kustaanheimo-Stiefel (KS) transformation, the Sperling-Burdet regularization (SB),
the Burdet-Ferrándiz approach, Dromo, Deprit’s elements, and many others.

Consider the problem of propagating an orbit from an initial epoch t0 to a final epoch t1. If
the independent variable is different from the physical time, the integrator requires a root-finding
algorithm to solve for ϑ1 in the equation

t1 = t(ϑ1; œ0)

The solution to this equation determines when the integration stops. The final value of the indepen-
dent variable relates to the rest of variables in the problem by means of

ϑ1 = ϑ(t1,œ0) (4)

It is clear that a neighbor trajectory departing from œ0 + ∆œ0 will reach t1 with a different value of
the independent variable,

ϑ2 = ϑ(t1,œ0 + ∆œ0)

and the difference between both values is a function of the time t1 and the initial conditions:

∆ϑ = ∆ϑ(t1,œ0,∆œ0) (5)

For any given value of the independent variable ϑ, the function q : R × Rn → R6 transforms the
set œ to the state vector, x. That is,

x = q(ϑ; œ) (6)

∗According to Stiefel and Scheifele19 an element either remains constant or grows linearly with the independent
variable in the unperturbed problem.
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Such transformation is typically nonlinear, and ideally the mapping is injective, although exceptions
such as the KS transformation exist. The transformation must be invertible so that the initial values
of the set œ0 can be obtained from the state vector:

œ0 = q−1(0; x0)

Some formulations require a particular treatment of the inverse map q−1. The KS transformation is
a good example: a single point in R3 is transformed into a entire Hopf fibration in the KS space.
More details on this particular Hopf map have been discussed by different authors.20, 17

The variational equations

Consider a nominal trajectory, x(t; x0), and a neighbor trajectory, x(t; x0 +∆x0), defined by a small
offset in the initial conditions ||∆x0|| � ||x0||. The relative dynamics is represented by the differential
state

∆x(t) = x(t; x0 + ∆x0) − x(t; x0) (7)

A Taylor expansion about the nominal trajectory provides

∆x(t) = ∇x0x(t, t0) ∆x0 + O(||∆x0||
2)

Here, the Jacobian matrix ∇x0x(t, t0) is referred to as the state-transition matrix, A(t, t0). In the
linearized model it maps the initial separation ∆x0 to the separation at any given time, ∆x(t). The
components of the state-transition matrix are

Ai, j =
∂ xi

∂x0 j

Clearly the initial state-transition matrix reduces to the identity matrix,A(t0, t0) = III, and therefore
∆x(t0) ≡ ∆x0. Under these conditions Eq. (7) can be rewritten in terms of the state-transition matrix,

∆x(t) =A(t, t0) ∆x0

The solution x(t; x0) to Eq. (2) can be differentiated with respect to both the time and the initial
conditions,1 resulting in the differential equations governing the evolution of the state-transition
matrix 

∂

∂t
A(t, t0) = ∇xf(t; x, ap) ◦A(t, t0)

A(t0, t0) = III

In practice this IVP is integrated simultaneously with Eq. (2). To clarify the notation the symbol ◦
denotes the standard product of two matrices.

The same discussion applies to any set of variables different from the Cartesian coordinates.
Consider the relative dynamics between two neighbor solutions to Eq. (3), œ(ϑ; œ0) and œ(ϑ; œ0 +

∆œ0). Assuming that the initial separation is small the linearized solution reads

∆œ(ϑ) = œ(ϑ; œ0 + ∆œ0) − œ(ϑ; œ0) ' B(ϑ, ϑ0) ∆œ0 (8)

where B(ϑ, ϑ0) = ∇œ0œ is the state-transition matrix associated to the set of variables œ. Its com-
ponents are

Bi, j =
∂œi

∂œ0 j
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The state-transition matrix at each integration step is solved from the IVP
∂

∂ϑ
B(ϑ, ϑ0) = ∇œg(ϑ; œ, ap) ◦B(ϑ, ϑ0)

B(ϑ0, ϑ0) = III

(9)

The variational equations in Eq. (9) are integrated together with Eq. (3).

Synchronism of the solution

The main difficulty one encounters when integrating the variational equations with an indepen-
dent variable different from time is the synchronism of the solution. The right-hand side of the
variational equations is evaluated at every step in ϑ, and not in t. Hence, the partial derivatives
solved from the variational equations define the state-transition matrix for constant ϑ,

B(ϑ, ϑ0) = ∇œ0œ
∣∣∣
ϑ

(10)

that is different from the state-transition matrix computed for constant time. These results are called
the ϑ-synchronous and t-synchronous solutions, respectively. To clarify the synchronism of the
solution all ϑ-synchronous results will be denoted |ϑ, whereas t-synchronous variables correspond
to |t. A time delay ∆t appears in the ϑ-synchronous case. Indeed, provided that t ∈ oe(ϑ) Eq. (8)
shows that

∆t
∣∣∣
ϑ

= t(ϑ; œ0 + ∆œ0) − t(ϑ; œ0) = t2 − t1

The perturbed time is t2 = t1 + ∆t |ϑ, whereas t1 is simply the reference time for which the solution
is to be given. It is barely necessary to note that ∆t |t = 0, due to the definition of synchronism. This
delay must be corrected to recover the physical sense of the solution. It is obtained from

∆t
∣∣∣
ϑ

= ∇œ0 t
∣∣∣
ϑ
· ∆œ0 (11)

Note that the gradient ∇œ0 t|ϑ is simply the first row of the state-transition matrixB|ϑ(ϑ, ϑ0) given in
Eq. (10). The symbol |ϑ is redundant in this case and will be omitted.

Equation (4) readily suggests that the independent variable ϑ can be seen in practice as a function
of the form ϑ = ϑ(t; œ0). Equation (9) can then be rewritten in terms of the physical time:

∆œ
∣∣∣
ϑ

= œ(t2; œ0 + ∆œ0) − œ(t1; œ0)

The effect of the time delay can be observed in this equation: the variational solution ∆œ(ϑ) relates
the set of elements at two different times, t2 , t1. Assuming that the time delay is small compared
to the time scale of the problem∗ the variational solution can be referred to the reference time

∆œ
∣∣∣
t = œ(t2 − ∆t; œ0 + ∆œ0) − œ(t1; œ0) = œ(t2; œ0 + ∆œ0) − œ(t1; œ0) −

dœ
d t

(t2; œ0) ∆t + O(∆t2)

or simply

∆œ
∣∣∣
t = ∆œ

∣∣∣
ϑ
− g(ϑ; œ0, ap)

dϑ
d t

∆t (12)

∗This hypothesis holds for ||∆œ0|| � ||œ|| and for sufficiently short propagations.
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The function g ∈ Rn defines the right-hand side of Eq. (3). In addition, since œ1 = t then dϑ/dt is the
inverse of the first component of g, g1. The ϑ-synchronous solution is given by the state-transition
matrixB|ϑ(ϑ, ϑ0). With this result and the expression for the time delay given in Eq. (11) it follows

∆œ
∣∣∣
t = B

∣∣∣
ϑ
(ϑ, ϑ0) ∆œ0 − g(ϑ; œ0, ap)

dϑ
d t

(
∇œ0 t · ∆œ0

)
and therefore

∆œ
∣∣∣
t =

[
B

∣∣∣
ϑ
(ϑ, ϑ0) −

1
g1

g(ϑ; œ0, ap) ⊗ ∇œ0 t
]

∆œ0 = B
∣∣∣
t(ϑ, ϑ0) ∆œ0

Here ⊗ denotes the dyadic product∗. The t-synchronous state-transition matrix, B|t(ϑ, ϑ0), is ob-
tained when correcting the time delay in the ϑ-synchronous state-transition matrix:

B
∣∣∣
t(ϑ, ϑ0) = B

∣∣∣
ϑ
(ϑ, ϑ0) −

1
g1

g(ϑ; œ0, ap) ⊗ ∇œ0 t (13)

Recall that the gradient ∇œ0 t corresponds to the first row ofB
∣∣∣
ϑ
(ϑ, ϑ0), and g1 is the first component

of g(ϑ; œ0, ap). The matrix B|t(ϑ, ϑ0) propagates the variational solution from the initial state up to
a certain time t,

∆œ
∣∣∣
t(t) = B

∣∣∣
t(ϑ(t), ϑ0) ∆œ0 (14)

Linear mapping ∆x↔ ∆œ

The change on the state vector given an initial separation is denoted by ∆x = ∆x(t), as shown in
Eq. (7). The t-synchronous solution is the only physically admissible and therefore the subscripts
defining the synchronism are omitted when referred to ∆x, i.e. ∆x ≡ ∆x|t. The state vector of the
particle relates to œ by means of the transformation q : œ 7→ x defined in Eq. (6). The solution at a
given time t = t1 then reads

∆x(t1) = q(ϑ2(t1); œ2) − q(ϑ1(t1); œ1)

In this expression ϑ2 = ϑ1 + ∆ϑ|t, according to Eq. (5). In addition, œ2 = œ1 + ∆œ|t. Assuming
that both ∆ϑ|t and ∆œ|t are small the previous equation can be expanded about the solution at ϑ1 to
provide

∆x(t1) = ∇œq
∣∣∣
ϑ
(ϑ1; œ1) ∆œ

∣∣∣
t +

∂q
∂ϑ

∆ϑ
∣∣∣
t + . . . (15)

The second term is a correction applied to the Jacobian of q to recover the t-synchronism of the
solution. In what remains of the paper the gradient ∇œq

∣∣∣
ϑ
(ϑ1; œ1) is denoted byQ = ∇œq

∣∣∣
ϑ
(ϑ1; œ1).

Roa et al.18 deduced the following identity:

∂q
∂ϑ

∆ϑ
∣∣∣
t = −

∂q
∂ t

∆t
∣∣∣
ϑ

∗The dyadic (or outer) product of two vectors u = (u1, u2, . . . , un)> and v = (v1, v2, . . . , vn)> defines the matrix

u ⊗ v = u v> =


u1v1 u1v2 . . . u1vn

u2v1 u2v2 u2vn

...
. . .

unv1 unv2 unvn


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that combined sequentially with Eqs. (6) and (1) provides

∆x(t1) = Q∆œ
∣∣∣
t −

∂x
∂ t

∆t
∣∣∣
ϑ

= Q∆œ
∣∣∣
t − f(t1; x0, ap) ∆t

∣∣∣
ϑ

(16)

For transformations not depending explicitly on the independent variable ϑ, q = q(œ), the t-
synchronous and ϑ-synchronous Jacobians are the same, the Jacobian needs no additional correc-
tions and the relative state vector reduces to

q = q(œ) =⇒ ∆x(t1) = Q∆œ
∣∣∣
t (17)

This result follows naturally from Eq. (15) provided that ∂q/∂ϑ = 0.

Given an initial separation ∆x0 the relative dynamics can be propagated using the state-transition
matrixA(t, t0):

∆x(t) =A(t, t0) ∆x0

Alternatively, the relative state vector can be propagated using the set œ thanks to Eq. (16). This
equation can be rewritten as

∆x(t) = Q
[
B

∣∣∣
t(ϑ(t), ϑ0) ∆œ0

]
− f(t; x0, ap) (∇œ0 t · ∆œ0)

thanks to Eqs. (11) and (14). This equation is expanded to provide

∆x(t) =
[
Q ◦B

∣∣∣
t(ϑ(t), ϑ0) − f(t; x0, ap) ⊗ ∇œ0 t

]
∆œ0 (18)

The vector ∆œ0 can be obtained from the initial separation ∆x0 under the small-displacements
assumption:

∆œ0 = q−1(t0; x0 + ∆x0) − q−1(t0; x0) = ∇x0q−1(t0; x0) ∆x0 + . . . (19)

Writing Q†0 = ∇x0q−1(t0; x0), this result transforms Eq. (18) into

∆x(t) =
[
Q ◦B

∣∣∣
t(ϑ(t), ϑ0) − f(t; x0, ap) ⊗ ∇œ0 t

]
Q
†

0 ∆x0

meaning that the state-transition matrixA(t, t0) can be constructed from the set œ,

A(t, t0) =
[
Q ◦B

∣∣∣
t(ϑ(t), ϑ0) − f(t; x0, ap) ⊗ ∇œ0 t

]
Q
†

0

Finally, it can be referred to the ϑ-synchronous solution by virtue of Eq. (13):

A(t, t0) =

{
QB

∣∣∣
ϑ
(ϑ(t); œ) −

1
g1
Q ◦

[
g(ϑ; œ0, ap) ⊗ ∇œ0 t

]
− f(t; x0, ap) ⊗ ∇œ0 t

}
Q
†

0 (20)

This expression proves that the state-transition matrix that propagates the relative state vector ∆x(t)
can be constructed from any generic formulation. The correction including the vector function f is
only included if the transformation q depends explicitly on the independent variable, ϑ.
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The covariance matrix

Let P(t) denote the covariance matrix of the system. The uncertainty in the definition of the
initial conditions is P(t0). The covariance matrix associated to the state vector x(t) is denoted by
Px(t), and defined by the expectation

Px(t) = E
[
∆x ⊗ ∆x

]
Provided that ∆x(t) relates to the initial conditions through the state-transition matrix A(t, t0), the
covariance matrix reads

Px(t) = E
[
(A(t, t0) ∆x0) ⊗ (A(t, t0) ∆x0)

]
By virtue of the linearity of expectation it follows

Px(t) =A(t, t0) ◦ E
[
∆x0 ⊗ ∆x0

]
◦A>(t; x) =A(t, t0) ◦Px(t0) ◦A>(t; x) (21)

This is the standard procedure for propagating the covariance matrix.

Alternatively, let Pœ(ϑ) denote the covariance referred to the set œ. Considering the transforma-
tion given in Eq. (19) and the linearity of expectation, the covariance matrix Pœ is solved initially
from

Pœ(ϑ0) = E
[
∆œ0⊗∆œ0

]
= E

[
(Q†0 ∆x0)⊗ (Q†0 ∆x0)

]
= Q

†

0 ◦E
[
∆x0⊗∆x0

]
◦Q
†

0
>

= Q
†

0 ◦Px(t0)◦Q†0
>

This expression readily defines the transformation of the covariance matrix in Cartesian coordinates
to the covariance matrix referred to the set œ. The transformation is applied initially, where no time
delay exists.

The covariance matrix Pœ(ϑ) is propagated like the matrix Px(t), using the corresponding state-
transition matrix. For physical coherence only the t-synchronous solution is considered, i.e.

Pœ(t) = B
∣∣∣
t ◦Pœ(t0) ◦B

∣∣∣>
t = B

∣∣∣
t ◦Q

†

0 ◦Px(t0) ◦Q†0
>
◦B

∣∣∣>
t (22)

Equation (20) defined the state-transition matrix A(t, t0) in terms of œ. Hence, the covariance
of the Cartesian state vector can be propagated in terms of the set œ simply by introducing the
expression forA(t, t0) given in Eq. (20) into Eq. (21). It can also be transformed from the matrix
Pœ(ϑ), considering that

Px(t) = E
[
∆x ⊗ ∆x

]
= E

[{
Q∆œ

∣∣∣
t − (f ⊗ ∇œ0 t) ∆œ0

}
⊗

{
Q∆œ

∣∣∣
t − (f ⊗ ∇œ0 t) ∆œ0

}]
= E

[(
Q∆œ

∣∣∣
t

)
⊗

(
Q∆œ

∣∣∣
t

)]
− E

[
(f ⊗ ∇œ0 t) ∆œ0 ⊗

(
Q∆œ

∣∣∣
t

)
+

(
Q∆œ

∣∣∣
t

)
⊗ (f ⊗ ∇œ0 t) ∆œ0

]
= + E

[
(f ⊗ ∇œ0 t) ∆œ0 ⊗ (f ⊗ ∇œ0 t) ∆œ0

]
= Q ◦Pœ(ϑ(t)) ◦Q> − (f ⊗ ∇œ0 t) ◦Pœ(ϑ0) ◦

(
B

∣∣∣>
t ◦Q

>
)
−

(
Q ◦B

∣∣∣
t

)
◦Pœ(ϑ0) ◦ (∇œ0 t ⊗ f)

= + (f ⊗ ∇œ0 t) ◦Pœ(ϑ0) ◦ (∇œ0 t ⊗ f)

That is, the transformation from the covariance matrixPœ(ϑ(t)) to the covariance matrixPx(t) reads

Px(t) = Q ◦Pœ(ϑ(t)) ◦Q> + C (23)

Matrix C is the correction to be applied when the transformation q : œ 7→ x depends explicitly on
the independent variable ϑ. It reads

C = −(f⊗∇œ0 t)◦Pœ(ϑ0)◦
(
B

∣∣∣>
t ◦Q

>
)
−
(
Q ◦B

∣∣∣
t

)
◦Pœ(ϑ0)◦(∇œ0 t⊗f)+(f⊗∇œ0 t)◦Pœ(ϑ0)◦(∇œ0 t⊗f)
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THE GENERAL PROCEDURE

This section summarizes the procedure for propagating the state-transition matrix and the covari-
ance matrix using an arbitrary formulation. The formulation is defined by an invertible transforma-
tion q : œ 7→ x, together with the differential equations defining the evolution of the set œ:

x = q(ϑ; œ), œ = q−1(t; x),
dœ
dϑ

= g(ϑ; œ, ap)

The state of the particle is defined at departure by the initial conditions x0. The initial state vector
is transformed into the initial set œ0 using the transformation

œ0 = q−1
0 (t0; x0)

The initial-value problems
dœ
dϑ

= g(ϑ; œ, ap)

œ(ϑ0) = œ0


∂B|ϑ
∂ ϑ

= ∇œg(ϑ; œ, ap) ◦B|ϑ

B(ϑ0) = III

are integrated simultaneously until t(ϑ) reaches the final epoch. This provides both the solution œ(ϑ)
and the ϑ-synchronous state-transition matrix,B|ϑ(ϑ, ϑ0). The gradient ∇œt is the row ofB|ϑ(ϑ, ϑ0)
corresponding to the physical time. It has been assumed to the be the first row of the matrix, since
t ≡ œ1.

Three additional terms need to be computed in order to define the t-synchronous state-transition
matrix and to propagate the covariance matrix: vector f = f(t; x, ap), matrix Q, and matrix Q†0.
Vector f = f(t; x, ap) is simply

f(t; x, ap) =

 v

−
µ

r3 r + ap


Note that the state vector is given by x = q(ϑ; œ). Matrix Q consists of the partial derivatives of the
state vector with respect to the set œ. The independent variable ϑ is kept constant when computing
the partial derivatives, Q = ∇œq|ϑ. Analytical expressions for the Jacobians of most formulations
are can be found in the literature. This matrix can also be derived numerically. Finally, the linear
operator Q†0 is composed by the partial derivatives of the set œ with respect to the state vector.
This transformation is only needed at departure. Analytical solutions exist, although numerical
differentiation is a valid approach too.

Once the aforementioned auxiliary terms have been computed the t-synchronous state-transition
matrix B|t(ϑ, ϑ0) is solved from Eq. (13). If needed, the state-transition matrix A(t, t0) can be
computed from Eq. (20). The covariance matrix Pœ is propagated by means of Eq. (22). If needed,
the covariance matrix Px can be solved from Eq. (23).

FORMULATIONS

There are many different sets of elements and regularized formulations available in the literature.
Discussing the properties, advantages and equations for the formulations is out of the scope of this
paper. The present section is devoted to discussing two concepts to be considered when integrating
the variational equations. First, the initialization of the independent variable. Second, the correction
of the time delay when the physical time is described by a time-element.

9



Initializing the independent variable

The simplest generalization of the Sundman transformation reads

dt = rα dϑ

In this context the variable ϑ is usually referred to as the fictitious time. For α = 1 the fictitious
time relates to the eccentric (or hyperbolic) anomaly, and α = 2 corresponds to the true anomaly.
Nacozy21 coined the term intermediate anomaly for α = 3/2.

Typically, when the physical time is replaced by a fictitious time (or an equivalent angular vari-
able) the new independent variable is initialized in a specific way, and many times ϑ0 = ϑ0(x0) , 0.
For example, if the independent variable is the true anomaly its initial value is solved initially from
the projections of the position vector in the perifocal frame. But if the initial conditions change, as
it happens when the variational formulation is integrated, then the initial value of the independent
variable will change too. The gradient of the set œ does not account for the change in ϑ0, this in-
formation is lost and the differentiation fails. To solve this issue the formulation must be adapted so
that the independent variable is always zero at departure. This is achieved by introducing a modified
independent variable, ϑ∗ = ϑ − ϑ0. There are two systematic ways of modifying the formulation
accordingly:

1. To attach ϑ0 to the vector of elements or coordinates œ. It remains constant throughout the
integration process, and the original value of the independent variable is recovered simply by
means of ϑ = ϑ∗ + ϑ0. This approach requires little modification of the equations of motion,
but increases the dimension of system.

2. To reformulate the problem in terms of the modified independent variable ϑ∗. This approach
preserves the dimension of the system at the cost of having to derive the modified equations
of motion.

Examples of formulations requiring this correction are Dromo,12 the Minkowskian formulation for
hyperbolic orbits,13, 14 the Stiefel-Scheifele method,19 or the equinoctial elements with the longitude
as the independent variable.

The time-element

The concept of a time-element was proposed by Stiefel19 for reducing the truncation error when
integrating the time variable. This technique consists on separating the physical time t in a term that
depends on the perturbations (the time-element, tte) and a term not affected by perturbations, tnp,

t(ϑ; œ) = tte(ϑ; œ) + tnp(ϑ; œ) (24)

The time-element vanishes for ap = 0. The derivative of the time-element scales with the perturba-
tion and yields a smoother evolution in weakly perturbed problems.

The presence of a time-element complicates the definition of the time delay: the gradient ∇œ0 t
is no longer given explicitly by the state-transition matrix B|ϑ, since this matrix propagates the
time-element and not the physical time. In fact, taking the gradient ∇œ0 in Eq. (24) provides

∇œ0 t = ∇œ0 tte(ϑ; œ) + ∇œ0 tnp(ϑ; œ) (25)
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where ∇œ0 tte(ϑ; œ) is the corresponding row of the matrix B|ϑ. The second term is required for
retrieving the physical time.

Additionally, the term dt/dϑ that appears in Eq. (12) is no longer the first component of g(ϑ; œ, ap),
provided that now g1 = dtte/dϑ. The derivative of the time is

d t
dϑ

=
dtte
dϑ

+
dtnp

dϑ

so the derivative of tnp is required for the correction.

In order to illustrate how the time delay is solved from a time-element, the derivatives of tnp
required for the correction using the KS transformation, the formulation in Minkowskian geometry,
the SB regularization and the stabilized Cowell’s method are derived in the Appendix.

NUMERICAL EXAMPLES

Three test cases are considered for testing the propagation of the state-transition matrix and the
covariance matrix. Motivated by the recent flyby of Pluto performed by the New Horizons space-
craft, the two first cases are defined in the Pluto system. The inbound velocity of the actual flyby was
so high that the relative orbit is close to rectilinear and may not be a good candidate for numerical
analyses (e > 3000). In order to fully enjoy the strong perturbations from the Pluto moons (Charon,
Styx, Nix, Kerberos and Hydra) the orbits of two fictitious orbiters are defined. The first case (Case
1) is a strongly-perturbed elliptical orbit, and the second case (Case 2) is a weakly-perturbed quasi-
circular orbit. The third and last example (Case 3) is the geocentric flyby of the NEAR spacecraft on
January 23, 1998. The entire trajectory of the spacecraft inside the sphere of influence of the Earth
is propagated. Geocentric orbits allow to use a more detailed force model. Table 1 shows the initial
conditions for the described orbits and the initial separation used to test the linear propagation of
the relative dynamics.

Table 1: Definition of the numerical test cases

a (km) e (−) i (deg) Ω (deg) ω (deg) Osculation Span (days) Center

Case 1 10000 0.400 137.6 253.9 247.9 2015-Jul-08 20 Pluto
Case 2 1400 0.010 13.8 253.9 247.9 2015-Jul-08 20 Pluto
Case 3 8496 1.813 108.0 88.3 145.1 1998-Jan-23 4 Earth

Note: The orbits are defined by means of the semimajor axis, a, eccentricity, e, right ascension of the ascend-
ing node, Ω and argument of periapsis, ω. The orbital elements correspond to the epoch of osculation, shown
in the table. Angles are referred to the ICRF/J2000.0 reference frame, and the reference plane is the Earth
Mean Equator and Equinox of reference epoch.

∆x0 (m) ∆y0 (m) ∆z0 (m) ∆vx0 (m/s) ∆vy0 (m/s) ∆vz0 (m/s)

Case 1 6759.3 -2823.5 6523.0 0.133 -0.051 0.296
Case 2 -2267.4 -1520.6 -870.5 1.445 -0.757 0.244
Case 3 1496.0 0.0 0.0 -0.069 0.000 0.000

The perturbations from all the planets and the Sun are computed from the DE430 ephemeris
model. The orbits around Pluto also include the perturbations from Charon, Styx, Nix, Kerberos
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and Hydra. Perturbations from Charon are over six orders of magnitude stronger than those from the
rest of moons. For the geocentric flyby a 20×20 gravitational field grid is considered, together with
the IAU2006/2000A CIO based (X-Y series) Earth rotation model using the IERS Earth Orientation
Parameters. Relativistic corrections to the flyby trajectory are applied.

Figure 1 shows the configuration of the Pluto system between July 8 and July 28, 2015. The
path of the Pluto moons during that interval is plotted in black. The green line represents the New
Horizons flyby, passing inside the orbit of Charon. The blue orbits correspond to Cases 1 and 2.

Figure 1: Configuration of the Pluto system between 08-Jul-2015 and 28-Jul-2015. Distances
appear in Pluto radii (R\ = 1184 km). The spheres represent the final position of the moons
(Source: JPL Horizons)

In order to validate the propagation of the state-transition matrix using the proposed theory the
error of the linear propagation is considered. A neighbor orbit is generated, applying a small ∆œ0 to
the initial set of elements or coordinates. The exact neighbor trajectory is propagated numerically
and the difference with respect to the nominal trajectory is considered the reference solution to the
relative motion, ∆œnum. Alternatively, the initial separation is propagated using the state-transition
matrix according to Eq. (14), which provides ∆œlin. The relative error is measured at every time
step as

Error j =
||∆œnum, j − ∆œlin, j||

||∆œnum, j||

The solution corresponds to the t-synchronous case. The propagation in Cartesian coordinates
(Cowell’s method) is compared against Dromo formulation,12 the Kustaanheimo-Stiefel transfor-
mation,5 the equinoctial elements22 and the time explicit version of Dromo (TDromo). In addition,
the hyperbolic orbit is also described using the formulation in Minkowskian geometry.13, 14 This for-
mulation is replaced by the Sperling-Burdet regularization6 in the elliptic cases. The time-element
version of the methods is also considered, but represented only when the differences are of interest.
The stabilized version of Cowell’s method11 is referred to as its time-element version.
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The relative error of the linear propagation is displayed in Fig. 2. It is clear from Fig. 2b
that element-based formulations are better behaved than coordinate-based formulations when the
perturbations are small, because they change in a slower time scale and the derivatives scale with
the perturbations. In this quasi-circular case the introduction of a Sundman transformation provides
little advantages. The fact that Dromo and TDromo coincide exactly proves this statement. In Case 1
the perturbations are stronger and Fig. 2a shows that the difference in performance between element-
based and coordinate-based formulations is reduced. The frequency of the error is mostly governed
by the perturbation from Charon, and error peaks correspond to close approaches. The analytic step-
size adaption provided by the Sundman transformation is beneficial for the numerical integration,
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(a) Case 1: Pluto system, strongly-perturbed
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(b) Case 2: Pluto system, weakly-perturbed
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(c) Case 3: NEAR flyby

Figure 2: Relative error of the linear propagation of the relative dynamics. Dashed lines represent
the time-element version of the method. It is included when the difference with respect to the regular
method is relevant.
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but has no effect on the linearized dynamics. The larger error of TDromo when compared to Dromo
is caused by the error in the ideal anomaly. Excluding this variable the difference in performance
in negligible. This phenomenon is amplified in Case 3. The NEAR flyby characterizes by the error
increment at the perigee. The error peak that appears when using both the equinoctial elements and
TDromo is quite noticeable. It is caused by the error in the longitude and anomaly, respectively. The
integration of the angular variable is extremely sensitive to errors in the energy of the orbit. This is
because the corresponding component of the state-transition matrix, defining the partial derivative
of the angle with respect to the energy, grows rapidly. The original Dromo and the Minkowskian
propagator do not suffer this issue because they rely on the Sundman transformation. Thanks to it,
they are not affected by perigee passage. The rest of coordinate-based formulations yield similar
results.

The results from this figure yield an important conclusion about the use of the Sundman transfor-
mation. Not only the analytic step-size adaption helps the integration during the propagation, but it
also makes the formulation more robust due to initialization errors. Angle variables turn out to be
especially sensitive to errors in the orbital energy during flybys. Replacing the angle variable by a
time variable by means of the Sundman transformation compensates for this issue.

An illustrative to way to analyze the state-transition matrix of the system is by monitoring its
largest eigenvalue,2 λmax. The slow growth of the largest eigenvalue indicates a smooth, typically
stable behavior of the system. An exponential growth anticipates rather unstable dynamics, some-
times motivated by critical events such as the flyby shown in Fig. 3c. This figure shows how the
maximum eigenvalue increases during the flyby. Element-based methods exhibit the more stable
dynamics, except for the already discussed problem with the angular variable in the equinoctial
elements and TDromo. Dromo, and especially the Minkowskian propagator, yield the most stable
dynamical behavior. In the circular case, presented in Fig. 3b, it is clear than coordinate-based for-
mulations (Cowell and KS) are not as well-suited for linearization as element-based formulations.
This is due to the fact that the relative separation grows much faster, and hence nonlinear effects
soon appear. The relative dynamics in Case 1 are rather unpredictable due to the strong perturba-
tions and overlapping resonances from Charon. The propagation in Cartesian coordinates shows the
most remarkable variations on the largest eigenvalue, which is greatly reduced when switching to
the stabilized version of the method. The stabilization is achieved by introducing the Keplerian en-
ergy in the state vector. The advantages of introducing first integrals for the numerical propagation
of the equations of motion is widely discussed by Baumgarte.23 In both Case 1 and 2 the behavior
of Dromo and TDromo is comparable: the flow of the equations is not subject to the divergence of
the flyby, and the performance of the angular variable is not jettisoned. Despite the more adequate
discretization provided by the Sundman transformation it has little impact on the eigenvalues of the
state-transition matrix.

The state-transition matrix is required for propagating the covariance matrix of the system, defin-
ing the uncertainties on the corresponding elements. Although the analysis of its largest eigenvalue
leads to important conclusions, the study of the evolution of the covariance requires to consider
additional factors. The most important is possibly how a covariance matrix in Cartesian coordinates
maps to the covariance matrix for a certain set of elements (or coordinates). How the covariance
propagates in time is studied by following the time evolution of the largest eigenvalue of the co-
variance matrix. In the example an exaggerated covariance matrix is defined initially in the orbital
frame, with σx = σy = σz = 85 km and σvx = σvy = σvz = 20 m/s for the case of NEAR, and
σx = σy = σz = 40 km and σvx = σvy = σvz = 2 m/s. Figure 4b clearly shows the behavior of the
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(a) Case 1: Pluto system, strongly-perturbed

(b) Case 2: Pluto system, weakly-perturbed

(c) Case 3: NEAR flyby

Figure 3: Evolution of the maximum eigenvalue of the state-transition matrix. The state-
transition matrix propagates the corresponding set of elements or coordinates
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largest eigenvalue: the most rapid growth of the covariance corresponds to Cartesian coordinates,
which is strongly coupled. The covariance associated to TDromo and the equinoctial elements coin-
cide, and its rapid growth is caused by the uncertainty in the anomaly/longitude. The evolution of the
covariance in terms of the KS transformation and the SB regularization improves with respect to the
Cartesian propagation, thanks to transforming the system into a perturbed oscillator. It is interesting
to compare TDromo and the equinoctial elements in Figs. 3b and 4b. The evolution of the largest
eigenvalue of the state-transition matrix does not anticipate the rapid growth of the covariance. The
component which grows rapidly is the partial derivative of the angular variable with respect to the
energy; it is responsible for the rapid growth of the covariance and is not captured by the analysis of
the maximum eigenvalue. Dromo corrects this behavior and yields a slowly changing covariance.
In strongly-perturbed environments the performance of element-based formulations is affected, and
the evolution of the covariance is comparable to that of coordinate-based formulations. The NEAR
flyby, shown in Fig. 4c, is a good example of how the covariance of coordinate-based method grows
rapidly after periapsis passage. Element-based methods, however, are not so sensitive to the flyby.

Table 2 shows the mean and standard deviation of the error in the relative position and velocity.
All formulations yield similar results to the Cartesian solution. These results validate the transfor-
mation defined in Eq. (20), and show that the potential improvements in accuracy obtained when
propagating the linearized dynamics with alternative sets of elements might be lost when transform-
ing to the state vector.

Table 2: Error in the propagation of the relative state vector

Formulation µr (m) µv (m/s) σr (m) σv (m/s)

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

Cowell 954.30 275374 162.42 0.0402 164 0.0017 687.61 244556 191.66 0.0607 146 0.0015
Dromo 949.33 275374 162.56 0.0507 164 0.0428 686.62 244556 191.69 0.0617 146 0.0684
KS 1083.95 275366 162.49 0.0451 164 0.0017 789.19 244548 191.73 0.0721 146 0.0015
SB 847.15 275373 207.84 0.0370 164 0.0023 596.90 244556 245.72 0.0580 146 0.0021
Mink. − − 163.09 − − 0.0017 − − 188.94 − − 0.0016
TDromo 952.52 275373 162.26 0.0401 164 0.0017 686.52 244556 191.15 0.0606 146 0.0015
Equinoctial 953.55 275373 209.30 0.0402 164 0.0017 687.17 244556 248.42 0.0606 146 0.0015
Stab. Cow. 938.49 275371 163.66 0.0400 164 0.0017 674.54 244554 193.13 0.0618 146 0.0015

CONCLUSIONS

Regularized formulations of motion are not restricted to propagating the trajectory of a particle.
They can be extended to account for the partial derivatives of the corresponding elements or coor-
dinates, being applicable to orbit determination, optimization, and many other problems. The main
difficulty comes from the synchronism of the solution. Having introduced an independent variable
different from time, the derivatives require an additional transformation to correct the time delay.

• Element-based formulations are less sensitive to initialization errors. The state-transition
matrix grows in a slower time-scale when compared to coordinate-based formulations.

• The introduction of a fictitious time through the Sundman transformation improves the ro-
bustness of the formulations and reduces the growth rate of the covariance. This advantage
does not come from the regularization nor the analytic step-size adaption; it replaces the prop-
agation of an angular variable (such as the true anomaly or the longitude) by the propagation
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(a) Case 1: Pluto system, strongly-perturbed

(b) Case 2: Pluto system, weakly-perturbed

(c) Case 3: NEAR flyby

Figure 4: Evolution of the maximum eigenvalue of the covariance matrix. The covariance
matrix defines the uncertainties on the corresponding set of elements or coordinates
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of the time or a time element. Numerical results show that angular variables are especially
sensitive to initialization errors, in particular to those not preserving the energy. Replacing
these variables enhances the performance of the methods.

• Flybys have a greater impact on coordinate-based formulations: the rate of change of the
coordinates is faster than that of the elements. The derivatives take larger values, which make
them more sensitive to errors in the state definition. The divergence of the flow is stronger
during the flyby and magnifies the sensitivity of the propagation. Sets of elements might be
preferable for describing the orbit thanks to a smoother evolution.

The introduction of a time-element has well-known numerical advantages, although no clear benefits
in the propagation of the partial derivatives have been observed. However, we present a general
procedure for correcting the time delay in formulations including time-elements.
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APPENDIX: ADJUSTING THE TIME DELAY WITH TIME-ELEMENTS

Minkowskian formulation

Roa and Peláez13, 14 derived the set of elements œ = (tte, ψ1, ψ2, ψ3, χ1, χ2, χ3, χ4)> for describing
arbitrarily perturbed hyperbolic orbits. A modified independent variable ϑ ≡ u∗ needs to be intro-
duced, u∗ = u − H0, replacing the original independent variable u. Here H0 is the initial hyperbolic
anomaly. The physical time decomposes in

t = tte +ψ3/2
3 (r̂+1−u∗−H0)−ψ3/2

30 (ψ10 sinh H0−H0), r̂ = ψ1 cosh(u∗+H0)+ψ2 sinh(u∗+H0)−1

The definition of the time delay involves the gradient ∇œ0 tnp. Considering the function

d(u, ξ0) = ψ3/2
3

(
sinh u

∂ψ1

∂ξ0
+ cosh u

∂ψ2

∂ξ0

)
+

3
2

√
ψ3(r̂ + 1 − u)

∂ψ3

∂ξ0

the partial derivatives constituting the gradient ∇œ0 tnp take the form:

∂ tnp

∂ψ10
= d(u, ψ10) − ψ3/2

30 sinh H0

∂ tnp

∂ψ30
= d(u, ψ10) −

3
2

√
ψ30 (r̂0 + 1 − H0)

∂ tnp

∂H0
= d(u,H0) −

3
2

√
ψ30 (ψ10 cosh H0 − 1)

∂ tnp

∂ξi,0
= d(u, ξi,0), ξ0 = (tte0, ψ20, χ10, χ20, χ30, χ40)
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These derivatives complete Eq. (25). The partial derivatives of the elements with respect to the
initial conditions that appear in the definition of the function d(u, ξ0) are contained in the state-
transition matrix B|u∗ . Finally and denoting by ′ the derivatives with respect to u∗, the derivative of
tnp reads

t′np =
3
2
ψ′3

√
ψ3(r̂ + 1 − u∗ − H0) + ψ3/2

3 (q̂ − 1), q̂ = ψ1 sinh(u∗ + H0) + ψ2 cosh(u∗ + H0)

Kustaanheimo-Stiefel transformation

Kustaanheimo and Stiefel5 published an extension of the Levi-Civita transformation in R4. Re-
lying on the Sundman transformation, the set of KS variables is œ = (tte,u,u′, α). Here u,u′ ∈ R4

are the representation of the position and velocity vectors in the KS space, derivatives with respect
to the fictitious time are denoted by ′ and α is equivalent to the Keplerian energy:

α =
1
r

(
1
2
− ||u′||2

)
, r = u · u

The inclusion of α in the vector œ is optional.

The gradient ∇œtnp required for the definition of the time delay takes different expressions de-
pending on whether α is integrated directly or computed from the KS coordinates. If α is not
integrated as part of œ the gradient ∇œtnp decomposes in

∇u0 tnp = −
1

2rα
(
ru′ + 2r′u

)
◦ ∇u0u −

1
2rα2 (2r′u′ + rαu) ◦ ∇u0u′

∇u′0 tnp = −
1

2rα
(
ru′ + 2r′u

)
◦ ∇u′0u −

1
2rα2 (2r′u′ + rαu) ◦ ∇u′0u′

Typically the energy α is integrated together with the time and the coordinates u and u′. In such a
case the gradients ∇u0α and ∇u′0α are given by the corresponding row of the state-transition matrix.
The previous equations then reduce to

∇u0 t = ∇u0 tte −
1

2α
(
u ◦ ∇u0u′ + u′ ◦ ∇u0u

)
+

(u · u′)
2α2 ∇u0α

∇u′0 t = ∇u′0 tte −
1

2α
(
u ◦ ∇u′0u′ + u′ ◦ ∇u′0u

)
+

(u · u′)
2α2 ∇u′0α

Finally, the term t′np reads

t′np = −
1

2rα
(
ru′ + 2r′u

)
· u′ −

1
2rα2 (2r′u′ + rαu) · u′′

Sperling-Burdet regularization and stabilized Cowell’s method

Both the Sperling-Burdet6 regularization and the stabilized Cowell’s method11 introduce a fic-
titious time ϑ ≡ s by means of the Sundman transformation dt = r ds. For the former it is
œ = (tnp, r, r′, r, r′, α, µe)>, and for the latter œ = (tnp, r, r′, α)>. Considering the auxiliary terms

r′ =
r · r′

r
, α =

1
r

(
2 −
||r′||2

r

)

19



the gradient ∇œ0 tnp consists of

∇r0 tnp =
1

r4α2

[(
r′||r′||2r − r3α r′

)
◦ ∇r0r − r2(2r′r′ + αr r

)
◦ ∇r0r′

]
∇r′0 tnp =

1
r4α2

[(
r′||r′||2r − r3α r′

)
◦ ∇r′0r − r2(2r′r′ + αr r

)
◦ ∇r′0r′

]
and the derivative with respect to the fictitious time reads

t′np =
1

r4α2

[(
r′||r′||2r − r3α r′

)
· r′ − r2(2r′r′ + αr r

)
· r′′

]
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