

American Institute of Aeronautics and Astronautics

1

Message brokering evaluation for live spacecraft telemetry
monitoring, recorded playback, and analysis

Daren Lee1 and Marc Pomerantz2

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

Live monitoring and post-flight analysis of telemetry data play a vital role in the
development, diagnosis, and deployment of components of a space flight mission.
Requirements for such a system include low end-to-end latency between data producers and
visualizers, preserved ordering of messages, data stream archiving with random access
playback, and real-time creation of derived data streams. We evaluate the RabbitMQ and
Kafka message brokering systems, on how well they can enable a real-time, scalable, and
robust telemetry framework that delivers telemetry data to multiple clients across
heterogeneous platforms and flight projects. In our experiments using an actively developed
robotic arm testbed, Kafka yielded a much higher message throughput rate and a consistent
publishing rate across the number of topics and consumers. Consumer message rates were
consistent across the number of topics but can exhibit bursty behavior with an increase in
the contention for a single topic partition with increasing number of consumers.

Nomenclature
AMQP = Advanced Message Queueing Protocol
API = Application Programming Interface
JMS = Java Messaging Service
JSON = Javascript Object Notation
RAM = Random-access Memory

I. Introduction
ive monitoring and post-flight analysis of telemetry data play a vital role in the development, diagnosis, and
deployment of components of a space flight mission. For example, this telemetry data can be used to assess the

real-time health of a flight system or troubleshoot deficiencies during development or post-flight analysis.
Requirements for such a system include low end-to-end latency between data producers and visualizers, preserved
ordering of messages, data stream archiving with random access playback, and real-time creation of derived data
streams. This paper evaluates recent developments in message brokering on how well they can enable a real-time,
scalable, and robust telemetry framework that delivers telemetry data to multiple consumers across heterogeneous
platforms and flight projects. In Section II, message brokers are introduced along with the main telemetry features
on which we evaluate this technology. In Section III, the experimental performance configurations are detailed with
the results of the message brokering experiments presented in Section IV. Section V details our system design which
enables real-time, interactive telemetry visualization from application or browser based clients.

II. Background
Message brokers are mediators that handle communication among applications and have been applied in

domains where real-time or distributed transactions are vital, such as financial transactions, web analytics, business
intelligence, and big data analysis1-4. They have also been identified as an enabling technology for cloud based
mission design and operations5. Message brokers typically abstract the low-level networking protocols, message
queueing logic, and routing details from the applications. Incorporating message brokering into a design architecture
enforces distinct modular boundaries that decouple telemetry producers from consumers. This design effectively
isolates the impact of changes to each individual module, increasing the system's re-usability and interoperability

1 Research Technologist, Robotics Modeling and Simulation Group, Mail Stop 198-219, AIAA Member.
2 Member of Technical Staff, Robotics Modeling and Simulation Group, Mail Stop 198-235, AIAA Member.

L

American Institute of Aeronautics and Astronautics

2

among heterogeneous applications and platforms. Common features of modern message broker frameworks include
high throughput, low latency end-to-end communication via a publish-subscribe methodology, scalability to
distributed resources such as cloud computing, and support for common programming languages. Differences
include message delivery guarantees to subscribers, message ordering guarantees, message persistence for archival
purposes, and ecosystem support. For this evaluation, we chose two of the more common open source messaging
systems, RabbitMQ and Kafka.

RabbitMQ (https://www.rabbitmq.com) is an Erlang-based Advanced Message Queueing Protocol (AMQP)
broker with a mature ecosystem of tools6. It provides rich routing capabilities through exchanges, bindings, and
queues. Messages are published to exchanges that distribute the messages to queues using rules called bindings. The
messages are then either pushed to queue subscribers or pulled by consumers on demand. Exchange types include
direct (unicast messaging), fanout (broadcast messaging), and topic (multicast messaging). For message delivery
guarantees, the RabittMQ broker uses acknowledgements to guarantee at-least-once delivery and without
acknowledgements, guarantees at-most-once delivery. AMQP does not specify any message ordering guarantees.
Distributed RabbitMQ is possible through clustering where the cluster appears as a single logical broker or
federation where an exchange on one broker receives all messages from another broker.

Kafka (http://kafka.apache.org) is a high throughput Java-based messaging system that leverages Apache
Zookeeper (https://zookeeper.apache.org/) for synchronous and distributed storage7. Unlike most other message
brokering systems that only provide built-in transient messaging, Kafka provides persistent messaging through logs
stored as files. Kafka achieves parallelism by dividing topic data into partitions to allow multiple consumers to
simultaneously access data. Each partition is an ordered sequence of messages and each message is assigned a
unique identifier called the offset. Consumers can then use the offset to achieve random access to any of the
messages since Kafka retains all published messages whether or not they were consumed. Kafka guarantees that
within a partition, a consumer will be delivered the messages in order. Ordering is not guaranteed across multiple
partitions. Kafka does not use message acknowledgements and delivery guarantee is delegated to the consumer to
keep track of its partition offset state. Kafka can run as a distributed cluster, using an explicit model where the
producer knows it is dividing a topic’s messages across several nodes.

In addition to low end-to-end latency and high throughput, the major capabilities needed for a multi-mission
telemetry framework are preserving telemetry data order, supporting multiple consumers on heterogeneous systems,
providing telemetry archiving and playback, and enabling creation of derived telemetry data. While message
ordering preservation is an atypical use case for most message brokering systems that use parallelization to achieve
higher throughput, supporting multiple heterogeneous consumers is a common use case for modern messaging
systems to support today’s wide landscape of software and hardware devices. The messaging system achieves this
by specifying on-the-wire protocols rather than application programming interfaces (API) such as the Java
Messaging Service (JMS). On-the-wire protocols allow greater interoperability as any programming language can
directly interface with the messaging system whereas API-based systems require a translation layer from the base
programming language to the target language. Messaging archiving and playback is also an atypical use case for
most message broker systems where the common capability is to provide transient messages that only persist until a
delivery guarantee is met. Derivative messages are out of the scope of message brokers and are typically handled
through stream processing frameworks.

III. Design & Methodology
To evaluate the open source messaging systems, we acquire telemetry data generated from an actively developed

robotic arm (Sampling Lab Universal Robotic Manipulator) that is part of the JPL Environmental Development
Testbed for Mars 2020 Sampling and Caching System. The robotic arm produces 130 different topics of data, with a
mixture of data rates of 1000Hz and 100Hz. Each topic represents a single scalar data stream. Our messaging testbed
framework interfaces with the robotic arm software through C language bindings for RabbitMQ
(https://github.com/alanxz/rabbitmq-c) and Kafka producers (https://github.com/edenhill/librdkafka) and publishes
the telemetry in JSON serialized format. Both the producer rate of the robotic arm and the publisher rate of the
messaging layer in the testbed framework can be user-defined. For example, the robotic arm data can produce data
at 200Hz and the telemetry message server can publish at 60Hz by aggregating data between sends. Three
computers are used for the testbed: (1) an 8-core desktop with 2.90 GHz Intel Core i7-3920XM CPUs with 32GB of
RAM that hosts the RabbitMQ v3.4.2 and Kafka v0.8.1 servers, (2) a 6-core desktop with 3.33 GHz Intel Xeon
X5680 CPUs with 12GB of RAM that run the consumer threads, and (3) a notebook with a 2.90 GHz i7-3920XM
CPU with 16GB RAM that runs the robotic arm software to publish the telemetry data. All computers are on the
same local area network to minimize any networking latencies.

https://www.rabbitmq.com/
http://kafka.apache.org/
https://zookeeper.apache.org/
https://github.com/alanxz/rabbitmq-c
https://github.com/edenhill/librdkafka

https://github.com/mumrah/kafka-python

American Institute of Aeronautics and Astronautics

6

through kafka-node (https://github.com/SOHU-Co/kafka-node) and the WebSockets protocol. The WebSockets
protocol allows full-duplex communication unlike traditional HTTP. Hence, a Javascript-based web application can
send a subscribe request to the node.js server which creates a consumer topic instance through kafka-node.
Messages from Kafka are then sent back to the node.js server, where they are forwarded to the browser via
WebSockets.

An optional component of our design is the stream processing module. Stream processors, like Apache Storm
(https://storm.apache.org/), provide real-time computation systems that consume real-time streams of data and
perform arbitrary sequence of calculations specified through graph topologies. They abstract away the complexity of
modeling data processing as a graph of computational nodes and scaling data processing, synchronization, and
communication to large distributed systems. Stream processing frameworks have been used effectively in the field
of real-time big data analysis1. For our telemetry system, stream processing can be used to calculate derivative
channels, detect anomalies, or diagnose faults.

VI. Conclusion
For a real-time telemetry monitoring and playback framework, the Kafka messaging system provides a robust

solution. Its high message throughput with a single threaded producer, consistent publishing rate across topics and
consumers, and built-in archiving and playback capabilities make Kafka well suited to meet the demands of a
telemetry framework. From the flight project perspective, based on our experimentation, we believe that the Kafka
messaging system can support testbed as well as assembly, test, and launch operations (ATLO). The main challenge
is to design clients that fit the constraints of the desired data rate, required number of topics and consumers, and
target processing platforms. For mission operations, we believe that Kafka’s built-in replication and redundancy
protocols for the server side are well suited to provide robust fail over mechanisms. However, this needs further
investigation as it was not addressed in this work. Other areas of future work include performance analysis of
distributed clustering and using cloud-based servers. As computing technologies and platforms evolve, choosing
architectures that decouple key functionality will facilitate technology adoption for future space flight operations.

Acknowledgments
The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a

contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

References
1Marz, N., and Warren, J., Big Data: Principles and best practices of scalable realtime data systems, Manning Publications

Co., 2015.
2Subramoni, H., Marsh, G., Narravula, S., Lai, P., and Panda, D.K. "Design and evaluation of benchmarks for financial

applications using Advanced Message Queuing Protocol (AMQP) over InfiniBand." High Performance Computational Finance,
2008. WHPCF 2008. Workshop on. IEEE, 2008.

3Liu, X., Iftikhar, N., and Xie,X.. "Survey of real-time processing systems for big data." Proceedings of the 18th
International Database Engineering & Applications Symposium. ACM, 2014.

4Kalashnikov, D., Bartashev, A., Mitropolskaya, A., Klimov, E., and Gusarova, N. "Cerrera: In-stream data analytics cloud
platform." Digital Information, Networking, and Wireless Communications (DINWC), 2015 Third International Conference on.
IEEE, 2015.

5Arrieta, J., Beswick, R., and Gerasimatos,D., "Cloud Computing for Mission Design and Operations," AIAA SpaceOps 2012
Conference, 2012.

6Vinoski, Steve. "Advanced message queuing protocol." IEEE Internet Computing 6 (2006): 87-89.
7Kreps, Jay, Neha Narkhede, and Jun Rao. "Kafka: A distributed messaging system for log processing." Proceedings of the

NetDB. 2011.
8Tilkov, Stefan, and Steve Vinoski. "Node. js: Using JavaScript to build high-performance network programs." IEEE Internet

Computing 6 (2010): 80-83.

https://github.com/SOHU-Co/kafka-node
https://storm.apache.org/)

	Nomenclature
	I. Introduction
	II. Background
	III. Design & Methodology
	IV. Results and Discussion
	V. System Architecture
	VI. Conclusion
	Acknowledgments
	References

