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Motivation

« What if we could fill our propellant tanks at OR
on the way to Mars

Martian
Atmosphere
or Humans

e.g. MOXIE @
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Motivation, cont.

* What are the potential challenges for an ISRU
MAV?

— Throttling — hybrid performance at very low oxidizer
mass flux rates

— Packaging — how compact can the hybrid system be?

— Performance with “ISRU” oxidizer — oxidizer could
potentially be O, mixed with CO,



Jet Propulsion Laboratory
Iy California Institute of Technology

Motivation, cont.

* What are the potential challenges for an ISRU
MAV?

— Throttling — hybrid performance at very low oxidizer
- mass flux rates

— Packaging — how compact can the hybrid system be?

— Performance with “ISRU” oxidizer — oxidizer could
potentially be O, mixed with CO,
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Test Set Up — JPL Hybrid Lab
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Fuel Properties

* There are many types of “paraffin wax,” so
several chemical analyses were conducted to
give a baseline to the fuel being discussed here

* Looking beyond the current tests, two analyses
were completed to inform IRSU missions

— Glass transition temperature (for low temperature
conditions, e.g. Mars)

— Volatiles analysis
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Chemistry Analysis

Volatiles

* Why is thermogravimetric analysis necessary?

— Volatiles will not be allowed in space environment

— To enable other tests (ensure hardware isn't damaged)
* No appreciable loss of volatiles

— Thermal decomposition occurs at about 288 C for both samples
— Mass loss of only 0.035% by 200 C
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Chemistry Analysis

Phase Transition
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» Differential Scanning Calorimetry (DSC) — Phase transition is indicated by a

major change in the amount of heat required to keep the sample at the
same temperature as a reference.

» Melt temperature of neat paraffin is 44.3 C and blackened paraffin is 49.5 C

— The blackened paraffin was made by adding dye to the same batch of neat
paraffin

« The melt temperature is taken as the onset for metals and organics (like
paraffin) as opposed to the peak, which can be used for polymers.
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Dimension Change (um)
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Chemistry Analysis

Phase Transition & Coeff. of Thermal Expansion

 Thermomechanical Analysis

— The melt point is confirmed by the peak of the curve
(consistent with the DSC results)

— Glass Transition cannot be determined, but likely a
weak transition around -90 C
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Hotfire Results

Summary
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4/29/2015 73 Large 37 13.6-7.0 30
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5/13/2015 86 Large 45 15.5-7.5 38
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Supercritical Test
Test 5
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Test Results

Supercritical Pressure

* Chugging — low oxidizer mass flux

* Higher frequency instability and longer ignition time
believed to be due to secondary flow choking
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Supercritical Test
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Test Results

Supercritical Pressure

« Higher frequency instability is removed (single choke
point)

« Slightly higher oxidizer mass flow (55 g/s)

« Chugging begins at oxidizer mass flux of about 7 g/cm?s
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Subcritical Pressure Test







Test Results

Subcritical Pressure
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Subcritical Results
Flame Holding Instability

* Flame shedding out of chamber
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Conclusions

* During deep throttling the following can be
expected

— Chuffing instabilities (low frequency) — still working to
resolve limit at which this occurs

— Higher fuel regression rate (up to 3 mm/s)

 Thick liquid layer (HOWEVER, also lower melt temperature
for this particular paraffin fuel)

— Potential to eject the flame in the subcritical regime
* Very weak glass transition around -90 C.



	Hybrid Propulsion In-Situ Resource Utilization Test Facility Results
	Motivation
	Motivation, cont.
	Motivation, cont.
	Test Set Up – JPL Hybrid Lab
	Fuel Properties
	Chemistry Analysis�Volatiles
	Chemistry Analysis�Phase Transition
	Chemistry Analysis�Phase Transition & Coeff. of Thermal Expansion
	Hotfire Results�Summary
	Supercritical Test�Test 5
	Test Results�Supercritical Pressure
	Supercritical Test
	Test Results�Supercritical Pressure
	Subcritical Pressure Test
	Test Results�Subcritical Pressure
	Subcritical Results�Flame Holding Instability
	Conclusions



