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Keith S. Novak1, Jason G. Kempenaar2, Matthew J. Redmond3and Pradeep Bhandari4. 

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 9110 

The Mars 2020 rover, scheduled for launch in July 2020, is currently being designed at 
NASA’s Jet Propulsion Laboratory.  The Mars 2020 rover design is derived from the Mars 
Science Laboratory (MSL) rover, Curiosity, which has been exploring the surface of Mars in 
Gale Crater for over 2.5 years. The Mars 2020 rover will carry a new science payload made 
up of 7 instruments.  In addition, the Mars 2020 rover is responsible for collecting a sample 
cache of Mars regolith and rock core samples that could be returned to Earth in a future 
mission. Accommodation of the new payload and the Sampling Caching System (SCS) has 
driven significant thermal design changes from the original MSL rover design. This paper 
describes the similarities and differences between the heritage MSL rover thermal design 
and the new Mars 2020 thermal design.  Modifications to the MSL rover thermal design that 
were made to accommodate the new payload and SCS are discussed.  Conclusions about 
thermal design flexibility are derived from the Mars 2020 preliminary thermal design 
experience. 

Nomenclature 
AFT  =  Allowable Flight Temperature 
ChemCam  =  Chemistry and Camera instrument (MSL instrument) 
DAN  =  Dynamic Albedo of Neutrons (MSL instrument) 
DTE  =  Direct-to-Earth 
DEA  =  Digital Electronics Assembly 
EDL  =  Entry, Descent and Landing 
ELEX  =  Electronics 
FSW    =  Flight Software 
HazCam  =  Hazard Avoidance Camera 
HGA   =  High Gain Antenna   
HRS   =  Heat Rejection System 
IAR   =  Instrument Accommodation Review 
IMU   =  Inertial Measurement Unit 
ISRU   =  In-Situ Resource Utilization 
JPL   =  Jet Propulsion Laboratory 
LCE   =  Landing Context Electronics (part of the Terrain Relative Navigation System) 
LIBS   =  Laser Induced Breakdown Spectroscopy 
Ls   =  Solar Longitude 
M2020   =  Mars 2020 Project 
MAHLI  =  Mars Hand Lens Imager (MSL instrument) 
Mastcam-Z =  Mast Camera with Zoom capability 
MCR    =  Mission Concept Review 
MEDA    =  Mars Environmental Dynamics Analyzer 
MGCM    =  Mars General Circulation Model 
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MMRTG   =  Multi-Mission Radioisotope Thermoelectric Generator 
MOXIE   =  Mars Oxygen ISRU Experiment 
MSL    =  Mars Science Laboratory 
NASA   =  National Aeronautics and Space Administration 
NavCam  =  Navigation Camera 
PDR   =  Preliminary Design Review 
PIXL   =  Planetary Instrument for X-ray Lithochemistry 
PRT   =  Platinum Resistance Thermometer 
RA   =  Robotic Arm 
RAMP   =  Rover Avionics Mounting Panel 
RBAU   =  Rover Battery Assembly Unit 
RCE   =  Rover Compute Element 
REMS   =  Rover Environmental Monitoring System (MSL instrument) 
RIMFAX  =  Radar Imager for Mars' Subsurface Exploration 
RIMU   =  Rover Inertial Measurement Unit 
RIPA   =  Rover Integrated Pump Assembly 
RLGA   =  Rover Low Gain Antenna  
RMCA   =  Rover Motor Controller Assembly 
RPA   =  Rover Power Assembly 
RPAM   =  Rover Power and Analog Module 
RPFA   =  Rover Pyro Firing Assembly 
RSM   =  Remote Sensing Mast 
RUHF   =  Rover Ultra-High Frequency 
SCB   =  Sample Caching Box  
SCBU   =  SuperCam Body Unit 
SCMU   =  SuperCam Mast Unit 
SCS   =  Sampling Caching System 
SDST   =  Small Deep Space Transponder 
SHERLOC  =  Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals 
SMA   =  Shape Memory Alloy 
Sol   =  Day on Mars (duration is 24.66 Earth hours) 
SRR   =  System Requirements Review 
SSPA   =  Solid State Power Amplifier 
SuperCam  =  Advanced Version of the MSL ChemCam Instrument 
TIR  =  Thermal Infrared 
TRN  =  Terrain Relative Navigation 
UHF   =  Ultra-High Frequency 
UV   =  Ultra-Violet 
WATSON  =  Wide Angle Topographic Sensor for Operations and eNgineering 

I. Introduction 
ASA is scheduled to launch the Mars 2020 (M2020) rover to Mars in July of 2020. After a 7-month cruise, the 
M2020 rover will touch down on the surface of Mars in February of 2021.  The M2020 rover will go to a yet-

to-be-selected Mars landing site (somewhere in the ± 30° latitude range) where it will investigate the geology of the 
site, assess the habitability of the site and look for signs of ancient Martian life.  In order to carry out these 
investigations, the rover is equipped with 7 science instruments.  This rover mission has an additional science 
objective that is to extract and cache a collection of soil and rock samples from the surface of Mars for a potential 
return to Earth by a future sample return mission. The M2020 Rover design is heavily derived from the MSL Rover 
design.  Many of the changes that were made to the MSL Rover design for M2020 were driven by accommodation 
of the 7 science instruments and the Sampling Caching System (SCS).  Fortunately, the thermal architecture that was 
chosen for MSL (and re-used for M2020) is flexible enough to absorb these changes and retain the original design 
integrity and performance. 

A considerable number of papers have been written to document the MSL Rover thermal design and its 
performance on Mars during the MSL mission.1-16 The M2020 project has adopted a “build-to-print” philosophy, 
from the MSL design, wherever possible to keep costs and complexities down.   
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(Freon) in the top deck HRS tubes, in the worst-case cold environment.  This concern went away for MSL, when the 
Curiosity landing site was chosen.  The Curiosity landing site (Gale Crater) is at 4.5° South latitude, a nearly 
equatorial landing site, with much more benign winters than the M2020 worst-case cold landing site at 30° South 
latitude.  Options for warming up the M2020 top deck fluid include: 1) using an in-line electrical survival heater, 2) 
increasing the heat leak from the RAMP to the top deck and 3) re-routing of HRS fluid flow path so that cold fluid 
goes to the top deck first, before it is cooled by the cold plates. 

Once the HRS tubing layout is fully realized in a solids model, hydraulic pressure drop calculations need to be 
done.  The RIPA has a pump curve which describes the flow rate as a function of pressure drop.  The existing 
pressure drop is in a flat area of the pump curve, so any reasonable increase or decrease in HRS tubing length and 
the corresponding change in pressure drop is not expected to result in a significantly different thermal performance.  
Performance of the splitter and mixer valves is also dependent on the back pressure of the lines on either side of the 
valve output (either in the main flow direction or in the bypass direction).  These line pressures and valve 
performance parameters also need to be checked in the new M2020 HRS design. 

The thermal design of the SCS is completely new.  Consequently, it is one of the least-developed thermal 
designs in the M2020 rover. There is a science requirement to keep filled sample tubes at temperatures below a (yet 
to be determined) maximum temperature, to preserve any water in the sample and prevent any chemical reaction that 
might alter its natural state.  This requirement drove the SCS out of the warm rover chassis and outside underneath 
the front portion of the top deck.  There is no minimum temperature requirement for the coring sample. SCS has 17 
new actuators that will need to be fitted with warmup heaters.  The Coring drill has 6 actuators, the sample handling 
arm has 4 actuators, the bit carousel has 2 actuators and the RA has 5 actuators. The sample tube sealing technique 
has not yet been chosen.  Options include a heated, SMA-actuated seal and a mechanically pressed seal.  There are 
many thermal challenges to be resolved if the SMA thermally-driven seal option is selected.  M2020 has decided to 
employ a sample caching technique that saves volume inside the rover by allowing the rover to place sample tubes 
individually or in “piles” onto the Martian surface shortly after they have been acquired.  This technique is known as 
“adaptive-caching.” One of the thermal issues to be resolved is how to keep the sample tubes from exceeding their 
maximum allowable temperature after they have been placed onto the Martian surface, where the external surfaces 
of the sample tubes are exposed to dust and a solar load.  This is another thermal design challenge posed by the 
M2020 sample cache system. 

As shown in Figure 2, the RIMFAX antenna has been accommodated directly underneath the MMRTG.  The 
antenna will see an MMRTG that runs as warm as 200ºC.  The instrument is robust to high temperatures; it has a 
maximum AFT limit of 95ºC.  The RIMFAX antenna has a very small effect on the maximum temperature of the 
MMRTG (increasing it by only 1ºC in the hot case).  The majority of the MMRTG heat loss occurs from the top of 
the MMRTG to the cold sky.  The MMRTG view to the ground, now partially blocked by the RIMFAX antenna, 
does not drive MMRTG temperatures. 

V. Possible Changes to the MSL Rover Thermal Design for Increased Operability 
Experiences with the complex operations of the Curiosity (MSL) Rover on Mars, and concerns with the amount 

of time and effort that it takes to operate the vehicle, have spawned an effort on the M2020 team to find ways to 
increase operability of the M2020 rover. Level 1 requirements specify required drive distances and numbers of 
samples that need to be collected over the course of the prime mission (1 to 1.5 Mars Years).  In order to meet these 
requirements, the M2020 Rover must be operated more efficiently than the MSL Rover. Efficiency improvements, 
leveraging off the existing system design, are being considered across the entire Project (Flight System and Mission 
Operations).  Since the vehicle operates at the system level with a variety of interacting constraints, each of the 
thermal design solutions presented here, must be evaluated in mission-level scenarios to understand the actual 
impact to increased performance they provide and therefore which ones ultimately will be implemented for M2020. 

There is a desire on M2020 to drive more often and drive earlier in the day.  The Operations team would like to 
warm up the mobility actuators faster, consuming less daylight time waiting for actuators to warm up and opening 
up more daylight time for driving.  The thermal team has proposed adding 20W output heaters to the mobility 
actuators to speed up the warmups.  The mobility actuators will warm up faster with more heat, but at the cost of 
increased energy expended. There are also concerns about consuming additional power switches and PRT telemetry 
channels that are needed to make this design change a reality.   

Actuator warm-up sequences are written based on predictions of heating durations and target temperatures 
derived from test-correlated, analytical thermal models of the actuators.  Because the MSL (and M2020) actuators 
are large, rotating, distributed-mass thermal systems, it is not possible to directly measure the temperature of the 
actuator internals (where the viscous lubricant lies inside of bearings and gears).  Temperature sensors are mounted 
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on the external housings of the actuators.  As determined by the analytical thermal models, actuator external 
housings must be heated to temperatures well beyond actuator minimum operating AFT limits (-55C) in order to 
drive heat into the actuator internal components.11 

The thermal team has proposed a thermal test of an old MSL mobility life-test actuator that would be internally 
instrumented with thermocouples.  Uncertainty in how heat moves through the gearboxes of the large actuators (in 
mobility, RA and RSM) has resulted in conservative assumptions for gas conduction and gear-tooth-to-gear-tooth 
conduction inside actuator analytical thermal models, which are used to predict heating parameters.  This test would 
reveal how much more conduction exists inside the actuators and promises to reduce the predicted amount of time 
and energy it takes to warm up the actuators, with absolutely no design change whatsoever.  This test is currently 
scheduled to take place in 2017. 

Another way to reduce the energy needed to operate the vehicle is to lower the minimum operating AFT limit of 
the actuators.  Currently, the minimum operating temperature limit for the actuators is -55ºC (the minimum 
operating qualification limit is -70ºC). By requalifying the actuators to -90ºC, the project could take advantage of a  
-75ºC minimum operating AFT limit. This lower operating temperature limit would open up larger windows of 
operation during which no heating was needed. In addition, the lower operating temperature limit would reduce the 
amount of heating required at times of day when the actuator is not naturally warmed up to operating temperature. 
No actuator design changes are currently planned or required to take advantage of the lower temperature capability 
that may already exist in the actuators. There is however, a risk that operating actuators at colder temperatures could 
increase actuator wear and shorten lifetime.  Operating at colder temperatures will also certainly reduce torque 
margins due to the higher viscosity of the lubricant. 

Finally, another proposal for reducing the time and energy required to warm up actuators has to do with the 
addition of a temperature sensor inside the output drive shaft of the actuator. This is somewhat problematic in the 
mobility drive actuators, which rotate through angles greater than 360 degrees, but could be accomplished with a 
slip ring to carry the temperature sensor signal across the rotating interface.  In the other large actuators (mobility 
steer, RA and RSM) the range of motion on the output drive is less than 360 degrees.  A temperature sensor could be 
placed in the output drive shaft without slip rings.  If this sensor were placed where it reads the coldest temperature 
in the gearbox, this opens up the possibility of “event-driven” (as opposed to “time-driven”) operations.  Event-
driven sequencing is already done on the MSL rover in areas like mobility. The current baseline for M2020 is to use 
time-driven heating sequences, in the same manner as MSL. In time-driven operations, the rover planning team 
uploads sequences with conservatively long warmup heating times (derived from ground-based analytical thermal 
models) for actuators and cameras.  This is not the most efficient way to heat actuators, but it is a safe and 
conservative way to do so.  If the M2020 rover could look at a temperature sensor in real-time and know when an 
actuator was up to operating temperature, it could start an operation immediately thereafter.  This would be a much 
more efficient way to operate the M2020 vehicle. 

VI. Conclusion 
There is a significant amount of thermal design work left to do on the M2020 Rover in preparation for the 

Thermal PDR in September of 2105.  M2020 is in a unique position, since there is a lot of inherited hardware, 
inherited design and flight experience from MSL that can and will be incorporated into the M2020 design.  The 
MSL thermal architecture both outside (actuators and cameras) and inside (avionics and electronics boxes) the rover 
chassis is flexible enough to absorb the changes imposed by the accommodation a new science suite and the Sample 
Caching System. The warmup and survival heater architecture developed for the MSL rover is directly applicable 
and transferrable to the M2020 design.  The HRS pumped-fluid loop, developed for the MSL mission, is flexible 
enough to accommodate (with a reasonable number of modifications) the M2020 payload and avionics.  The 
flexibility of the HRS design allows the RAMP configuration to be iterated on until an optimal volume and interface 
area solution is achieved, with minimal thermal design constraints. 
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