Concurrent Mission Design of NEA Scout & Lunar Flashlight, Solar Sail CubeSat Missions

George Carlisle, Damon Landau, Dan Grebow, Gregory Lantoine, Sumita Nandi, Eric Gustafson, Ed Riedel, Frank Laipert, Jeffrey Stuart
Jet Propulsion Laboratory, California Institute of Technology
jeffrey.r.stuart@jpl.nasa.gov
Mission Concept(s)
Mission Objectives & Drivers

NEA Scout

- 6-U Cubesat form factor
- Common bus / hardware (mostly)
- Different science payloads
- Deployable solar sail
- Ride-share with EM-1
- 30 month mission
- Fly-by of near-Earth asteroid
- Telecom: LGA + HGA
- Camera for science & opnav
- Tracking & trajectory coupled (via solar sail)

Lunar Flashlight

- Illuminate craters on lunar south pole to look for frozen H₂O
- Telecom: LGA
- Sail reflects light into target craters
- Science & trajectory coupled (via solar sail)

Additional programmatic goal: identify benefits & drawbacks of parallel CubeSat mission development
Launch window up to 2 Hrs long (depends on launch day in one week window recurring every month)

End of TLI burn.

Passive Thermal Control

25 minutes

Orient for Disposal Maneuver

Blowdown while in a transverse spin to minimize delta V.

Deployment Window
Opens ~ 4-5 hours post T0

T0+8 hrs
ICPS
Batt dies

ICPS/MPCV Separation 10 minutes after end of TLI burn

Post-disposal, duration dependent on ACS propellant usage, battery life, and mission requirements. ACS fuel driven, low thrust. Engine bell forward in line of velocity vector.
Trajectory Design – Common Factors
Key Requirements & Assumptions

- **Driving**
 - 2.5 year maximum mission duration
 - Compatibility with EM-1 launch and deployment
 - Assumed launch December 2017 (now 2018)
 - Post-ejection ΔV to initialize lunar flyby < 10 m/s

- **Sail**
 - 11-12 kg spacecraft, 80 m2 sail area
 - Design Characteristic Acceleration: 0.0601 mm/s2
 - Deploy after first lunar flyby
 - Sail normal to sun angle $\leq 50^\circ$ (NEA Scout), 60° (Lunar F)
 - Duty cycle:
 - NEA Scout = 90% (0.0541 mm/s2)
 - Lunar Flashlight = 85% (0.0511 mm/s2)
 - More conservative than NEAS due to lunar orbit with close perilune
Trajectory Design – NEA Scout
NS Rendezvous Target Search

- Colors (AU)
 - blue < .25
 - green < .5
 - orange < .75
 - red < 1
- Shape (OCC)
 - △ under 2
 - □ under 4
 - ▼ under 7
- Size (aprx dia.)
 - small < ~15 m
 - med. < ~30 m
 - large < ~50 m

Local minima for flight time. Flight time increases linearly with pre-escape loiter time
Flight time increases non-linearly with delayed escapes
• High thrust required to target 1st lunar flyby
 – First nav solution within 12 hours of separation
 – First TCM within 24 hours
 – Cleanup TCM within 36 hours
• No data on disposal burn dispersions yet
 – 1+ month of solar sailing available to clean up flyby errors
• Daily tracking and trajectory updates approaching 2nd lunar flyby reduce error
 – 12 mrad pointing control error results in \(~1 \text{ m/s flyby } \Delta V\) error
• Cruise flight time 724 days (~ 2.0 years)
• Max Earth distance ~0.7 AU
• Target position ellipse 3400/10/10 km, 1σ
 – Opportunity to recover object in 2017
NS 1991 VG Detection, Approach & Flyby

- **50 deg** max constraint on sail angle
- **7000-10000 km** distance @ detection
- Detection velocity ~ **0-15 m/s**

- **Flyby velocity ~ 18 m/s**
- **Flyby altitude: 500 m**
- **TOF ~ 7.5 + 12.5 days**
Trajectory Design – Lunar Flashlight
Cruise Phase (~190 days)
- Post-ejection $\Delta V = 9$ m/s
- 3 lunar flybys
- Lunar capture at E-M L2

Lunar Spiral Phase (~420 days)
- June 13, 2018 – Aug 7, 2019
- 60,000 km to 9,000 km apolune
Science Phase (~40 days)
- July 29, 2019 – Sep 7, 2019
- Begins 9 days before end of spiral
- 78 passes
- average viewing period < 10° from pole: 136 sec
- average viewing period < 6° from pole: 88 sec
- 9,000 km x 20 km orbit, orbital period 12.3 hr
- Global coverage achieved
- More than 25 passes at less than 20 km altitude

Total Flight Time (Launch to end of science) = ~630 days (1.7 years)
Flight times for other launch dates may require as much as 2.5 years
July 29, 2019

TOTAL PASSES: 1

Lunar South Pole Passes

< 20 km : 0
20-30 km : 0
30-50 km : 0
50-100 km : 0
100-150 km : 0
150-200 km : 1

Shoemaker crater median longitude: 24.6°E

perilune

light side of track

1-minute time ticks

1

< 20 km
20-30 km
30-50 km
50-100 km
100-150 km
150-200 km

LCROSS site
Lunar South Pole Passes

- < 20 km: 1
- 20-30 km: 0
- 30-50 km: 2
- 50-100 km: 3
- 100-150 km: 6
- 150-200 km: 7

TOTAL PASSES: 19

Shoemaker crater

LCROSS site

days: 9.39
Lunar South Pole Passes

- < 20 km: 34
- 20-30 km: 23
- 30-50 km: 5
- 50-100 km: 3
- 100-150 km: 6
- 150-200 km: 7

TOTAL PASSES: 78

Shoemaker crater

LCROSS site

days: 39.62
Navigation Overview

- Radiometric (both missions)
 - Doppler [range-rate]
 - SRA [range]
 - DDOR [range]
 - For critical events (e.g., post-ejection, LF orbit capture)

- Optical (NEA Scout)
 - Science camera
 - On approach to target body
Navigation – NEA Scout
Earth to negative z-axis angle for F2 One Watt
Measurement noise levels: 0.08, 0.06, 0.04 mm/sec

- LGA, 1W
- Gray regions in background indicate the quality of the navigation data
- When the blue line is in lighter shades of gray, the better the data quality
- Includes effect of SC-Earth distance and LGA boresight angle
- Can also estimate slew angle needed to increase the measurement quality
NS 20 day, Detection and Approach

After the first OpNav sets, the original 3400/10/10 km target ephemeris is reduced to ~3/10/3 km.

The mid range OpNavs will reduce the radial component, leaving 2/2/2 km downtrack, radial and out of plane.

Earliest resolution at 50 km / 1.5 hr out. Ephemeris errors have reduced to 50/800/50 m (implies 40 s flyby time uncertainty).
Navigation – Lunar Flashlight
Late Spiral: July 4 – 8, 2019
- ~1 month before start of science
- Approx. orbit period: 14 hours
- Approx. perilune altitude: 732 km
- Tracking: both sides of perilune

Perilune covariance study:
- RWA desaturation burns
- Sail pointing & modeling
- Duration of tracking passes
Nominal Case

Desats:
• 1 / week
• 0.21 m/s

Sail acceleration:
• 2 mrad / 1.1 μm/s²
• Stochastic batches
 4 hrs

Tracking passes:
• 4 hrs
Summary

- Two CubeSat missions under parallel development (currently Phase A)
 - Rideshare opportunity with SLS EM-1
 - Nearly identical hardware, including solar sail
 - Very different science objectives:
 - NEA Scout: flyby and characterization of near-Earth object
 - Lunar Flashlight: search for water ice in craters at lunar south pole
- Trajectory Design & Navigation
 - Similar solar sail models
 - Distinct gravitational regimes (after NEA Scout escape)
 - Two design teams
 - Work closely together
 - One team provides nav. support for both
- Big questions still remain (but initial signs are promising)
 - Cost savings
 - Reduction in risk
 - Constraints on trajectory / navigation
Thank you! Questions?
NEA Scout Backup
System Sensitivity for 1991 VG

minimum flight time / no escape phase

![Graph showing flight time vs. characteristic acceleration]

- **Sail model area for 12 kg & 10% MD margin**
 - 70 m²
 - 80 m²
 - 90 m²
 - 100 m²

- **S/C mass for 80 m² sail model & 10% MD margin**
 - 14 kg
 - 13 kg
 - 12 kg
 - 11 kg
 - 10 kg
 - 9 kg

Baseline design point:
12 kg and 80 m²
Resilience to Safe Mode

unplanned days pointing at Sun

- Can accommodate up to two weeks of safe mode first 1.5 years of cruise
- Mission recoverable with additional flight time last 6 months of cruise
Solar Angles

HGA, Communication

Sail, Thrusting

Power-positive when solar angle < 50 deg
(downlinks may occur on batteries)
• Delaying the initial maneuver by 1 day almost doubles the ΔV needed
McInnes Flat Plate Model

![Graph showing force magnitude at 1 AU (N) vs. angle between sunline and sail normal (sail angle) (deg), with curves labeled Flat Plate force, Ideal force, and Ideal force 93%. The area on the sail is 80 m².]
Lunar Flashlight Backup
Effect of Launch Date & Acc on Mission Duration

Loiter until phasing is right for spiral

k = 0.0558 mm/s^2
k = 0.0601 mm/s^2 (nominal)
Science Orbit Geodetic Altitude (km)
Angle between Sun-to-Moon Vector and Moon-to-S.P. Vector

- pole lit: $\theta > 90^\circ$
- pole dark: $\theta < 90^\circ$

nominal science phase