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« Ram-air inflated isotensoid ballute
Is used to extract the parachute
from the SFDT vehicle.

\ Burble fence
 Ballute Key Stats 6" tall ram-ar
— 4.4 m diameter, 28.1 m3 volume e
— Nominal deployment altitude 50 km
Flush ram-air

— Deployment speed up to Mach 3 inlots (x5)

\ Inlet support
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~—— Inflation aid

« Goodyear Aerospace Corporation (GAC) o
developed similar ballutes in the 1960’s.
— Ballutes pre-inflated via a device that dispersed methanol, which rapidly
evaporated inside the ballute at ambient conditions.
— A 5.5 m ballute deployed at Mach 3.15 failed to inflate fast enough and

was destroyed.
* Only documented deployment of ballute without pre-inflation device

» Results drove requirement for pre-inflation device on SFDT.
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* Only two formal requirements levied on Inflation Aid (IA):

— The |IA shall supply at least 50% of the expected ballute internal pressure
in approximately 0.4 seconds with a 95% likelihood.

— The IA must not degrade the aerodynamic performance of the ballute and
must not preclude the use of the ram-air inlets for inflation should the IA
malfunction in flight.
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« Several methods for gas generation were explored:
— Pyrotechnic propellant
— Compressed Helium
— Liquid methanol/water solution
« Methanol solution was ultimately selected due based on lowest risk to
ballute hardware, device mass, and personnel safety.

» |A takes advantage of phase change parameters for methanol. Liquid at
standard temperature and pressure, vaporizes under reduced pressure
experienced at ballute deployment.

Qv,CH30H = Mey oA oy o

« Energy for vaporization is derived from several sources: sensible heat from
depressurization, heat of fusion of water, heat from ballute and IA itself.

Ooait = Qs,CH3OH + Qf,H20 +0, +0,
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Deployment at 3°C

Energy
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Req’d for methanol vaporization
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Depressurization +38.9
Fusion of liquid water +29.4
Ballute contact +87.4
Inflation aid contact +12.0
Deficit for full vaporization -149.3

Vaporized Mass, mgpail. cH.OH

Pressure Generated, pouail.c HaOH

0.148 kg

295.1 Pa
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Deployment at 40°C
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Energy Amount (kJ)
Req’d for methanol vaporization -303.0
Depressurization +68.4
Fusion of liquid water +29.4
Ballute contact +140.7
Inflation aid contact +19.3
Deficit for full vaporization -45.2

Vaporized Mass, mgyait.cHi0H

Pressure Generated, pauail.c HaOH

0.246 kg
489.1 Pa
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Possible methanol vessel architectures:
— Compliant vessel, pulled apart during ballute bag strip (used by GAC)
— Rigid vessel, pressurized until rupture at desired time.

* RIigid vessel was selected based on large ballute packing pressures,
and high acceleration experienced at mortar-fire and line stretch.

« Black powder was selected as a gas-generating propellant to
pressurize the reservorr.
 Initiation methods considered:
— Vehicle-commanded electrical initiation
— Timer-based electronic initiation
— Timer-based pyrotechnic fuse
— Mechanical initiation by ballute itself

« Selected method involved mechanical
initiation via lanyard connected to ballute.
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Section A Section B
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Interfaces
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|A interfaces to ballute via an
aluminum attachment collar.

— Collar attaches to 16
meridianal tapes

|A interfaces to to SFDT vehicle
via a 1” kevlar riser and pin.

|A is initiated via two trigger
lanyards that run along side
the ballute, and are attached
at the burble fence.

Rupture
dri,sk Ballute
meridians
Methanol IA attachment
reservoir collar
Pyrotechnic
1A lan_yard housinig
section
Ri Trigger
57 mechanism

clevis
Aerodynamic
shroud
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* Firing mechanism contains the same basic
components as modern small firearms.

« Lanyards are extracted from ballute
as it is stretched taught during bag strip.

« Lanyard extraction initiates firing mechanism.

Trigger
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Mechanism Test, primer only, 100 Ib tension in trigger lanyard 10
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Deployment of a 4.2 m ballute in 10 ft diameter vacuum chamber at 300 mTorr
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Deployment of a 4.2 m ballute in 10 ft diameter vacuum chamber at 300 mTorr
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» Verified operation of firing mechanism under a variety of conditions
— Hot, cold temperature
— Varying Lanyard orientations

— Varying Lanyard Actuation Methods
« Hand pull with load cell
* Preloaded to various forces
» Preloaded via various amounts of lanyard deflection
— Helped to inform development of trigger lanyard design

||
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* Qualification of mechanism performance and hardware safety was
verified using two propellant margin tests.
— In both tests, chamber was filled with water to simulate the proper amount
of ullage.

— Strength margin test
* 120% of nominal amount of propellant in both chambers.
» No catastrophic hardware failure was observed.

— Energy margin test
* 67% of nominal amount of propellant in only one chamber.
» Rupture of burst disk and fluid discharge were acceptable.
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Energy Margin Test, 67% propellant load, H,O in reservoir, ambient conditions 15
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Abnormal Dispersion

Abnormal Disk Failure, Post Test Nominal Disk Failure, Post Test
16
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» Final verification of flight
hardware operation prior to
delivery.

» Reservoir filled with methanol
solution, nominal amount of
propellant

 In-flight conditions simulated
using a vacuum chamber
— 300 mTorr initial pressure
— Ambient temperature

e Actuated using solenoids,
operated from outside chamber.
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Full Functional Test, 100% propellant load, methanol in reservoir, 300 mTorr, 20°C
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e SFDT-1 Test conducted on June 28, 2014

 PDD Deployment at altitude of 50 km, Mach 2.73

* Predicted temperature of |A at deployment was 50°C

» Predicted inflation pressure was 99% of expected ballute pressure
« Complete inflation occurred in approximately 0.56 seconds

19
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(]
Deployment altitude 50 km, Mach 2.73, predicted PDD temperature 50°C 20
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