
The Use of UML for Software Requirements Expression
and Management

Alex Murray
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

818-354-0111
alex.murray@jpl.nasa.gov

Ken Clark
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

818-393-6258
kenneth.c.clark@jpl.nasa.gov

Abstract— It is common practice to write English-language
”shall” statements to embody detailed software requirements
in aerospace software applications. This paper explores the
use of the UML language as a replacement for the English
language for this purpose. Among the advantages offered by the
Unified Modeling Language (UML) is a high degree of clarity
and precision in the expression of domain concepts as well as
architecture and design. Can this quality of UML be exploited
for the definition of software requirements?

While expressing logical behavior, interface characteristics,
timeliness constraints, and other constraints on software using
UML is commonly done and relatively straight-forward, achiev-
ing the additional aspects of the expression and management
of software requirements that stakeholders expect, especially
traceability, is far less so. These other characteristics, concerned
with auditing and quality control, include the ability to trace
a requirement to a parent requirement (which may well be an
English ”shall” statement), to trace a requirement to verification
activities or scenarios which verify that requirement, and to
trace a requirement to elements of the software design which
implement that requirement.

UML Use Cases, designed for capturing requirements, have not
always been satisfactory. Some applications of them simply
use the Use Case model element as a repository for English
requirement statements. Other applications of Use Cases, in
which Use Cases are incorporated into behavioral diagrams
that successfully communicate the behaviors and constraints
required of the software, do indeed take advantage of UML’s
clarity, but not in ways that support the traceability features
mentioned above.

Our approach uses the Stereotype construct of UML to precisely
identify elements of UML constructs, especially behaviors such
as State Machines and Activities, as requirements, and also to
achieve the necessary mapping capabilities. We describe this
approach in the context of a space-based software application
currently under development at the Jet Propulsion Laboratory.

TABLE OF CONTENTS

1 INTRODUCTION . 1
2 OVERVIEW OF GRACE F-O AND LRI 1
3 THE UML PROFILING MECHANISM 2
4 OUR REQUIREMENTS MANAGEMENT PROFILE 3
5 OUR PROFILE IN ACTION . 5
6 CONCLUSIONS AND LESSONS LEARNED 7
7 FUTURE WORK . 8

ACKNOWLEDGMENTS . 9
REFERENCES . 9
BIOGRAPHY . 9

978-1-4799-5380-6/15/$31.00 c©2015 IEEE.

1. INTRODUCTION
This work is being performed as part of the engineering of
the flight software for the Laser Ranging Interferometer (LRI)
of the Gravity Recovery and Climate Experiment (GRACE)
Follow-On (F-O) mission. However, rather than use the real
project’s model to illustrate our approach in this paper, we
have developed a separate, ”toy” model for use here, because
this makes it easier to avoid getting bogged down in project
details, and instead to focus on the technical approach to
requirements expression and management that is the subject
of this paper.

There is one exception to this choice: we will describe our
actual UML profile for requirements management in this
paper, and show diagrams from it to present the stereotypes it
contains. We apply the same profile in the GRACE F-O LRI
FSW models as well as in our illustrative example model.

In spite of not using the real GRACE F-O/LRI flight software
models, we will present a brief overview of the GRACE F-O
mission and the LRI instrument, in order to give the reader a
good sense of the scope and depth of the application of our
ideas. This will be followed by a very brief discussion of
the concept of profiling in UML and then a description of
our profile. Following this, we’ll step through our example
to illustrate our techniques in a concrete and specific manner.
Finally, we’ll give a section on conclusions we can draw from
this work, and then wind up with a discussion of further work
that we plan to or hope to do.

2. OVERVIEW OF GRACE F-O AND LRI
The original Gravity Recovery And Climate Experiment
(GRACE) mission was launched in March 2002, and has been
providing scientists with continuous detailed measurements
of the Earth’s gravity field, enabling a better understanding
of:

• Tracking water movement on and beneath Earth’s surface.

• Tracking changes in ice sheets and in global sea level.

• Studying ocean currents both near the surface and far
beneath the waves.

• Tracking changes in the structure of the solid Earth.

The gravity field measurements are accomplished by flying
twin GRACE satellites in tandem, separated by a distance
of approximately 220 kilometers, in a polar orbit which
completes 15 revolutions of the Earth per day. (See Figure
1). A microwave ranging instrument onboard each satel-

1

Figure 1. An illustration of the two GRACE Follow-On
spacecraft with lasers pointed at each other

lite measures the distance between them to an accuracy of
approximately 10 microns (less than the width of a human
hair). Small variations in the Earth’s gravity field cause
the twin satellites to speed up and slow down as they orbit,
resulting in constantly varying distance and relative velocity
between the two satellites. These variations are measured
by the microwave ranging instrument, and downlinked to the
GRACE mission control - resulting in an updated map of the
Earth’s gravity field every 30 days.

In June 2010 NASA directed JPL to plan implementation
of the GRACE Follow-On mission as one of the Climate
Continuity Missions, which are a coordinated series of satel-
lite and airborne missions for long-term global observations
of the land surface, biosphere, solid Earth, atmosphere, and
oceans. The GRACE Follow-On mission leverages GRACE
mission heritage, including the same key partners (JPL and
German Space Operations Center (GSOC)), and implements
improvements for known GRACE systematic errors.

In addition, JPL was instructed to strongly consider flying a
technology demo laser interferometer ranging instrument in
addition to the primary microwave ranging instrument. The
GRACE Follow-On Laser Ranging Interferometer (LRI) is
planned to provide an approximately 20X improvement in
measurement accuracy over the microwave instrument. The
LRI is based on technology developed as part of the Laser
Interferometer Space Antenna (LISA), and the NASA Instru-
ment Incubator and Advanced Technology Infusion Program.

The Laser Ranging Interferometer

The instrument consists of several subsystems: the laser
and laser electronics assembly, an optical bench assembly,

an optical cavity for characterizing and controlling the laser
frequency, a triple-mirror assembly for guiding the the remote
laser, and a digital signal processing subsystem, which in-
cludes a computer running the LRI flight software.

The flight software requirements include the following re-
sponsibilities:

• Controlling the major modes and behaviors of the instru-
ment
• Collecting, formatting, and sending science data, as well as
housekeeping telemetry from instrument subsystems
• Configuring the digital control subsystem (programming an
FPGA, accepting and implementing partial FSW modifica-
tions, etc)
• Controlling various diagnostic and characterization modes
with special data flows
• Maintaining a flash file system with various search profiles,
parameter files, FSW object files, FPGA programming im-
ages, etc.
• Communicating with the spacecraft Command & Data
Handling system
• Handling commands from ground operators, producing
telemetry for downlink

Our approach to managing the requirements for this flight
software subsystem and their verification are the subject of
our paper.

3. THE UML PROFILING MECHANISM
This section gives a brief introduction to the Unified Model-
ing Language profiling mechanism, which necessarily begins
with a discussion of the concept of metamodel. Some readers
may wish to skip this section.

The UML Metamodel

The Unified Modeling Language is grounded on a meta-
model, which is a system of metaclasses that defines the
concepts of the language.

A UML model describes some kind of domain, such as a
hardware or software system, by allowing the modeler to rep-
resent entities in the domain or system in a way that expresses
the key aspects of the entity, in a way that communicates well
to users of the model. The model consists of a set of model
elements, corresponding to the entities in the system being
modeled.

Loosely speaking, model elements can be a class, an instance
of a class, or a relationship among classes or class instances.
A class represents a potential set of things, in the system or
domain being modeled, that share a common set of features,
where a feature can be an attribute or a behavior. As an
example, a company’s information technology system will
generally have a number of printers. In a UML model of
that system, a class, named, say Printer, might be used to
model the general entity of a printer: all printers have certain
features in common: a place to load paper, a power button,
a printing function or behavior. These features would be
modeled as attributes and operations (behaviors that the class
can perform) on the class Printer. A specific printer in the
system might be modeled as an instance of the class Printer.

The UML contains a language element - a metaclass - called
Class, and it is this language element that would be used to
define the Printer class in the IT model. The UML metaclass

2

Figure 2. The stereotypes of the GRACE F-O/LRI profile used for requirements management

Class represents the concept of modeling a domain or system
using the concept of some set of things which share common
features (although in various forms and extents). Thus, where
a UML model will have Classes, such as Printer, to describe
the entities in the modeled system, the UML metamodel has
a metaclass Class which defines how the concept of a class of
things is defined and used in a UML model. In the IT model,
the class Printer is an instance of the metaclass Class.

Similarly, there are metaclasses in UML which describe and
define concepts about modeling relationships. There is a
metaclass Association, which is used to model various flavors
of relationships between classes. Associations have features
such as multiplicity of the ends, visibility of a class on one
end from the point of view of the class on the other end,
exclusivity of the relationship, etc.

UML is defined by many metaclasses: there are many flavors
of class, and many kinds of relationships.

Profiles in UML

UML provides a mechanism to extend itself, called profiling.
Profiling allows modelers to extend and refine the existing
UML metaclasses, in order to allow models to better describe
entities in the system or domain the user is modeling. It does
not allow users to create wholly new metaclasses, but only to
extend existing ones.

As with the rest of UML, the profiling mechanism is defined
by a metaclass, a special one called Stereotype. Stereotype
is pretty much unique among metaclasses in that an instance
of the metaclass Stereotype is itself a metaclass (instead of
a class), and this metaclass becomes part of the metamodel
underlying the user’s extension of UML. An instance of the
metaclass Stereotype is also called a stereotype (with a small
’s’ in this paper). We give several examples of stereotypes in

the next section.

A Profile is a collection of stereotypes. A well-known
example of a Profile is the one defining the System Modeling
Language (SysML), which is based on UML. In the following
section we will describe the relevant portions of our profile,
which we developed for use on GRACE F-O/LRI.

4. OUR REQUIREMENTS MANAGEMENT
PROFILE

The elements of our GRACE F-O/LRI profile used for re-
quirements management and identification are shown in Fig-
ure 2. The stereotypes that we’ve defined are shown as pink
boxes in the diagram. The box labeled NamedElement is
the UML metaclass of that name. The relationships shown
from each stereotype to that box indicate that each stereotype
extends that metaclass (all stereotypes are in at least one
extension relationship with a metaclass). One implication of
this fact is that any element to which we apply any of these
stereotypes has a name (and many of the model elements in
a UML model do have a name, being based on metaclasses
derived from NamedElement). This also means that these
stereotypes may be applied to any UML model element that is
based on any metaclass derived from NamedElement, which
covers a large portion of the UML metamodel.

A defined stereotype can have attributes, but is not required
to. For example, our stereotype reqtTrace has an attribute
named requirement, with type reqt and multiplicity fixed at 1.
The attributes of a stereotype are called tag definitions, or just
tags. So for example, we say that our reqtTrace stereotype has
a requirement tag and an owner tag, etc. When a stereotype
is applied to a specific model element, an instance of the
stereotype is created, and then the tags can be given values
on that instance. The act of applying a stereotype to a class

3

or instance is also referred to in this paper as ”marking” the
class or instance, e.g. ”marking Action X as a reqt” means
applying the stereotype reqt to the Action named X (which
would be an Action of some Activity in our model).

Note too that the type of a stereotype attribute, or tag, can
itself be a stereotype, as is the case with the reqt tag. This
enables us to use our reqtTrace stereotype to map together
things marked as reqt with things marked as verifScenario,
for example; a key piece of our methodology.

Our reqt stereotype has no attributes, reflecting that its pur-
pose is to identify model elements as requirements, but only
that, and not to add information to the elements that they don’t
already have.

Defined stereotypes can also participate in generalization
relationships, as do our analysis, systemTest, and unitTest
stereotypes, all derived from the base stereotype verifSce-
nario. The meaning is that the first three are all specific kinds
of the latter.

Defined stereotypes may also have associations to other
stereotypes, as shown by the association from verifActivity
to verifScenario named scenario. We could have shown
the property scenario as a regular attribute of the stereotype
verifActivity, but the association notation is more expressive.

What Are Requirements?

The heart of the work we’re describing in this paper is the
conception of a requirement as any named element in a UML
model, rather than (or more accurately, in addition to) an
English ’shall’ statement. Our definition of a requirement
on the software includes such model elements as a state in a
state machine (including entry, do and exit behaviors as well
as any constraints), an action in an activity, a transition in
a state machine (with all of its features: trigger, guard, and
constraints), a control or data flow in an activity (again with
all guards and constraints), a message in a sequence diagram,
a UML constraint (including duration constraints), and, yes,
a SysML Requirement, which embodies an English ’shall’
statement.

This approach expresses requirements in the language of
software design, and more than that, it depends on and uses
a model-based approach to systems engineering, in that we
describe the hardware of our system using SysML, and these
elements figure prominently in framing our requirements,
even though we are not placing requirements on the hardware.
We will show examples below.

We mark or ”tag” all of the elements in our model that we
take to be requirements with the stereotype reqt.

Source or Parent Requirements

A necessary part of our software systems engineering process
at JPL is maintaining a trace of source requirements for all of
the software requirements. For each software requirement,
we need to know what motivated it and where it came from.
Conversely, given a higher-level system requirement, we need
to know whether it has implications for the software, and if
so, which software requirement(s) needed to be generated to
satisfy that system requirement.

Achieving these traces in our UML models requires that we
represent the higher-level requirements in our UML model.
A large majority of the flight software requirements are

derived from a body of English ’shall’ statement requirements
called the LRP Level 4 Requirements (”LRP” stands for Laser
Ranging Processor, which is the digital subsystem of the LRI
instrument). This set of requirements exists as a module in
DOORS ([1]), a commonly-used requirements management
tool. We have a somewhat clumsy process of exporting these
requirements from

into a spreadsheet, then importing the spreadsheet into a
UML model, where they become SysML requirements.

Another source of flight software requirements is an Inter-
face Control Document between the LRI instrument and the
spacecraft bus. Rather than replicate this large document in
a UML model, we manually created SysML requirements in
one of our UML models to express the software requirements
contained in this ICD. Here we use English ’shall’ statements,
with references to clauses in the ICD.

We also have a small number of requirements levied by
institutional process documents. These are also expressed as
SysML requirements.

Verification Activities

Flight software in general needs to be highly reliable, and so
must be well verified. We use a combination of white-box and
black-box test, analysis, code checking tools, peer reviews
and code walkthroughs to achieve this reliability. The test
and analysis activities, which we refer to as verification, are
relevant here, and the aim of verification is to provide high
confidence that the flight software actually implements all of
its requirements correctly, reliably, and robustly.

The expression ”verify a requirement” is shorthand for ”ver-
ify that the software correctly implements a requirement”. We
prefer to verify a requirement using a system-level, black-box
test, if possible. The ”system” in this case means the flight
software subsystem as a whole, and ”black-box” means that
the test must be doable using only true flight interfaces. This
is in contrast with white-box testing, in which the internals
of the software are available and used in the test. In our
model, we tend to express these kinds of system-level tests,
or scenarios, as a UML Activity. We identify them as system
tests by tagging them with the stereotype systemTest.

Some requirements cannot be verified with a system-level
test, usually because they involve a scenario that is difficult
or impossible to produce in a system context. In this case we
fall back to our second-best verification means: a sub-system-
level, white-box test. By this we mean a test that involves
only some of the pieces or components of the software, and
also uses knowledge of the inner workings of the software.
These tests are themselves implemented as software, as a
separate application that runs stand-alone. The application
that is the test programs shows in the UML model as a class,
and we apply the stereotype unitTest to that class, enabling us
to find and trace the unit test in the model. Note: we have
many unit tests, and the vast majority of them are not used to
formally verify a requirement, and only those that are so used
have the stereotype applied.

The third verification type is analysis, which is used only if
the other two methods are unworkable. This is typical for
requirements of an abstract or overarching nature, and there
are few of these. We express analyses also as UML Activities,
and we apply the stereotype analysis to them, again so that we
can find them and trace to them.

4

Traceability

As our abstract mentions, there are several traces involving
requirements and verification activities that we must main-
tain. On GRACE F-O/LRI, we achieve all of these traces
with the use of the stereotype reqtTrace. Referring again to
Figure 2, note that that stereotype has an attribute requirement
that contains exactly one element of type reqt. Thus, for
each software requirement, there is exactly one requirement
trace object with the stereotype reqtTrace applied to it, and
that requirement element (which may be a state, an action,
a transition, etc., but must be assigned the stereotype reqt)
is assigned to the value of the requirement tag of the trace
object.

The UML type of the requirement trace object is unimportant:
we use the type InstanceSpecification for the trace object, and
give it a name of the form <requirement-name> trace.

All of the needed traces are accomplished by assigning values
to the other tags of the reqtTrace instance associated with the
trace object. The trace to parent requirements is done with the
tag parent, by assigning it a value that is an array of elements,
each being a source requirement for the software requirement,
since a software requirement can flow down from more than
one parent or source requirement.

The trace into the software design is given by assigning an
array of elements to the implementers tag. Each of these ele-
ments represents a software component that plays a primary
role in implementing the requirement.

The trace to verification activities for that requirement is
encoded as the assignment of the verifiers tag with an array of
verifScenarios that, taken as a group, provide a comprehen-
sive verification of the implementation of that requirement.

There is another trace, from the LRP L4 requirement set to
the flight software requirements, that must be done. This
answers the questions, for a given LRP L4 requirement, does
that requirement map to a software requirement? And if so,
which one or ones? This trace is embodied in the model with
a similar technique. For each LRP L4 requirement, we create
a trace object, again an InstanceSpecification, mark that
object with the stereotype lrpL4Trace, and set the lrpL4Reqt
tag with the value of the LRP L4 requirement (a SysML
requirement).

Then, the fswReqtTargets tag is set with an array of values,
consisting of all of the flight software requirements that are
derived from this LRP L4 requirement.

In order to edit and display these traces, we have two tables in
our model. The first has all of the flight software requirement
trace objects; all of the objects tagged with the stereotype
reqtTrace. The table has a column for each of the tags of the
stereotype, and we can edit and view the tag values through
this table.

The second table is for viewing the trace from the LRP L4
requirement to the flight software requirements. This table
contains all of the trace objects assigned with the lrpL4Trace
stereotype, and it has columns for each of the tags of that
stereotype. We’ll show an example of these tables below.

Automation—As we’ve described in the previous paragraph,
our traceability process requires the creation of a trace object
for every software requirement. We have automated this
task, using the application programming interface provided

Figure 3. The top-level behavior of the instrument,
described as a state machine

by our modeling tool, MagicDraw ([5]). We have a script that
searches the model for elements tagged with the stereotype
reqt, and, for each one it finds, searches the model for an
element with stereotype reqtTrace applied to it and having
that requirement as the requirement tag value. If it doesn’t
find it, it creates the trace element.

The script also fills in the owner tag with a reference to the
model element that owns the element that is the requirement.
So for example, if the requirement is a state in a state
machine, the owner will be the region of the state machine
in which that state resides. The reason for this owner tag is to
make it easy for a user to find the requirement.

Filling in the rest of the tags is a manual process. The tables
help with this: each cell is editable, and the tool provides pop-
up windows for navigating to elements in the model that are
to be assigned to the tag value represented by that cell.

Similarly, we automated the creation of a trace object for
every LRP L4 requirement.

Delivery Planning

There is one other tag on the reqtTrace stereotype that we
haven’t mentioned: the implRelease tag. This holds the ID
or name of the software release in which the requirement is
first implemented. The main trace table contains a column
with this tag value as well, and the table can be sorted by this
column to see which requirements are planned to be (or have
been) implemented in a given software release.

5. OUR PROFILE IN ACTION
In this section we’ll show examples of the requirement
identification and trace techniques described in the previous
section.

Activity diagrams make up the bulk of our flight software
requirements on GRACE F-O/LRI. The activity shown in
Figure 4 is a simple representative of the style of activities

5

Figure 4. A key interaction between the flight software and two hardware components, and specifying the flight software’s
behavior in the interaction

Figure 5. The requirements from which the flight software
requirements flow down

used in our requirements model. The hardware swimlanes
(on the left and right) are typed by SysML blocks representing
hardware components with which the flight software has di-
rect interfaces. And of course the middle swimlane represents
the flight software in this activity.

Several of the actions, as well as most of the transitions, bear
the marking <<reqt>>. This is the way UML displays the
application of a stereotype (reqt in this case) has been applied
to a model element.

Note that only actions in the flight software swimlane are
stereotyped as reqt’s: we do not levy requirements on hard-
ware components, but having the hardware components and
their behaviors represented adds to the clarity of the flight
software requirements.

Recall that the requirement for each marked element includes
all associated constraints and behaviors on the element. The

requirement that is the action labeled Transform Data has a
very detailed constraint specifying how the output data is to
be derived from the input data, and this constraint is part of
(really the heart of) the requirement.

The state machine in Figure 3 shows a simplified version of
an actual LRI system modes state machine in our require-
ments model. Most of the states and transitions are marked
as requirements, and in each case, any constraints, effects,
or guard expressions are part of the requirements. So for
example, the requirement that is the Standby state includes
the entry behavior doSomeStuff, and the guard condition,
condition 2, on the left-most transition labeled Event1, is part
of the requirement that is that transition.

Our example model also represents the higher-level require-
ments from which most of the flight software requirement are
derived. These are shown in Figure 5. This table is easily
generated from a set of SysML requirement in the model.

Our model also has a set of verification scenarios, shown in
the table of Figure 6. These scenarios, while suggestive of
the flavor of some of the scenarios in our GRACE F-O/LRI
model, are not nearly as detailed as those. In the GRACE F-
O/LRI model, each scenario details the steps of the scenario
(mostly in the form of ground commands to the instrument),
and also the expected results (in terms of telemetry timing and
content). But the example model’s scenarios are adequate for
our purposes here.

One final diagram needs mention before we can discuss the
traceability tables: the high-level flight software design dia-
gram shown in Figure 7 shows the component and interface
structure of a toy flight software subsystem. These software

6

Figure 6. The list of verification scenarios for the flight software

Figure 7. The high-level design of the software, showing
components and interfaces

design elements are the targets of traces from requirements.

Tables—Now we can discuss the traces among the require-
ments and other elements in our model. Figure 8 shows the
primary trace table. The column headings of the table are the
names of the tags on stereotype reqtTrace. The requirement
column contains the model element that is the requirement,
represented both by name and with an icon showing the type
of element that it is. The owner column shows where each
requirement is found in the model.

The parent column shows the high-level requirement from
which the requirement in that row is derived. In all cases
in this model there is only one source requirements, but that
there can be multiple parents because the multiplicity of the
stereotype’s tag parent is unbounded.

The elements of the flight software design - components
and interfaces - most directly involved in implementing a
requirement are shown in the implementers column.

The verifiers column maps each requirement to one or more
test scenarios. The set of test scenarios in a given cell, taken
together, are considered sufficient to comprehensively verify
the requirement.

The last column, implRelease, gives the first software release
in which that row’s requirement has been, or is expected to
be, implemented. The assumption is that once implemented,
it remains implemented in all subsequent releases.

The final trace to mention is the one from higher-level re-

quirement into the set of flight software requirements, shown
in Figure 9. This trace is used in auditing activities to
ensure that all of the higher-level requirements are being
ultimately implemented. As in the primary trace table, the
column headers are the names of the tags on the stereotype,
in this case lrpL4Trace. The fswReqtTargets column shows
an array of flight software requirement elements (the same
ones appearing in the primary trace table). For each element
in one of those arrays, there is a corresponding fswReqPaths
entry showing where the flight software requirement appears
in the model (i.e., in which behavior). This column performs
the same function as the owner column in the primary table.

MagicDraw provides the capability to export these tables to
spreadsheets, among other formats. Some people engaged in
review and audit functions prefer this format.

A Few Statistics

To provide a more concrete idea of the scope of our appli-
cation of these techniques for the GRACE F-O/LRI flight
software engineering task, we’ll mention a few statistics
about our GRACE F-O/LRI requirements and verification
models:

• We have 2 state machines, one containing approximately
30 individual requirements.

• We have 28 activity diagrams containing requirements.

• We have a total of 221 requirements (10 of those are
English shall statements contained in SysML requirements).

• We have 46 system test scenarios and 8 formally mapped
unit tests.

• The LRP L4 requirement set contains about 100 require-
ments, and about 1/4th of them map to flight software require-
ments.

6. CONCLUSIONS AND LESSONS LEARNED
There are pros and cons to managing software requirements
with the approach that we’ve described here. Among the
advantages:

• UML and SysML behavioral model elements (and their
manifestations in diagrams) have a high level of clarity and
precision. The languages force the modeler to think and
model clearly about the behaviors being modeled, and to
identify and express the essential, leaving out the incidental.

• Identifying specific, fairly low-level UML and SysML
elements enables making a clear case for verification quality.
We have seen many examples of ”shall” statements that

7

Figure 8. The primary trace table, showing requirements, their owner or location, parent requirement, implementing design
element, verification scenarios, and first implemented software release

Figure 9. The LRP L4 trace table, showing parent requirements and the software requirements (if any) derived from them

essentially say ”do it like the state machine in Figure x”.
This isn’t surprising, since state machines are wonderfully
expressive, compact, precise, and to quite an extent intuitive.
But the shall statement-reference approach essentially buries
many requirements under one English requirement, which
makes understanding the completeness and correctness of the
requirement’s verification very difficult.

• UML and SysML behavioral diagrams and models are
quite intuitive. Our instrument team consists of people of
hardware engineering and physical science disciplines, most
of whom had never seen UML or SysML (probably with the
exception of state machines, which are more common than
the rest of UML) before we started expressing the desired
behavior of the instrument with those languages. And yet, the
team by and large found our diagrams immediately excessible
and clear. They particularly like the swim lanes of activities
that so easily show the interactions between hardware and
software.

There were also difficulties and disadvantages:

• Change tracking is difficult. It’s hard to get a comprehen-
sible ”diff” of two versions of a state machine diagram, at
least without a great deal of manual, error-prone work. This
difficulty could be alleviated by tooling improvements.

• On this project, the software requirements were fairly
volatile in some areas. As the development phase went on,
we found it difficult to keep the requirements as we have
expressed them up to date. This was partly a result of the
volatility, but also, we came to believe, because our require-
ments were perhaps too precise, and perhaps too detailed. In
our next application of these techniques, we will be careful to
leave any unnecessary or design-specific information out of
the requirements.

• Documentation was somewhat difficult to produce. We
produced, from our model, one sizeable web document with
all requirements, verification scenarios, parent requirements,
software architecture, and traces. The production and main-
tenance of this document was not at all trivial, involving
a multi-step process with an export-to-XML step, followed
by a transformation-to-HTML step, with some intermediate
processing scripts in between, as well as a significant tool
configuration effort. On a larger project, we would want to
have a toolsmith to handle these mechanics. This difficulty
could be improved with advances in tooling.

• We had to duplicate some systems engineering work done
by other parts of the team, including a SysML model of
the instrument hardware components (which we needed to
show the interactions between the software and hardware)
and a SysML incorporation of the high-level requirements.
This problem may be alleviated by these systems engineering
products being done in SysML in the first place in future
applications.

Overall, we’ve found that this approach has been a net plus for
getting the software’s required behavior and characteristics
well communicated, well understood, and agreed upon.

7. FUTURE WORK
As we mentioned in the previous section, we duplicated some
systems engineering work because we needed a model of the
instrument, and that this wouldn’t have been necessary if the
instrument were described in a model in the first place. We
think our approach would be even more advantageous in a
setting in which most of the systems engineering were being

8

done in SysML. Our institution is moving in this direction
for system engineering in general, so we have a good chance
of applying this approach on a future project in a MBSE
environment, and we will look for opportunities to do so.

Much work has been done on analyzing models for cor-
rectness, consistency, and other characteristics. Having our
requirements specified as model elements, especially behav-
iors, would lend itself to validation by analysis and simula-
tion. We hope to explore some of these possibilities in future
projects.

In our current task, verification scenarios, in our models, are
places to hang text-based descriptions of the scenario and
expected results. Many people have explored using UML or
SysML behaviors to detail executable scenarios and use them
to generate simulations or executions of the scenario. We plan
to incorporate some of these techniques in future efforts.

ACKNOWLEDGMENTS
We would like to thank our colleagues on the GRACE
Follow-On/Laser Ranging Interferometer project, for their
open-minded, curious, and supportive approach to working
with us in doing this software systems engineering task. We’d
like to thank our colleague Mike Roche for a careful review
of this paper.

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

REFERENCES
[1] The IBM Rational DOORS website: http://www-

03.ibm.com/software/products/us/en/ratidoor/.
[2] Current UML specifications (version 2.4.1) are

on the Object Management Group website:
http://www.omg.org/spec/UML/2.4.1/. There are two
components: the Infrastructure and the Superstructure.
The latter describes the UML metamodel.

[3] Current SysML specification, version 1.3, available on
the OMG website: http://www.omg.org/spec/SysML/1.3/

[4] The NASA GRACE Mission public website:
http://www.nasa.gov/mission pages/GRACE/index.html

[5] The homepage of the SysML/UML
tool we use, MagicDraw (TM):
http://www.nomagic.com/products/magicdraw.html

BIOGRAPHY[

Alex Murray is a senior systems en-
gineer with the Jet Propulsion Labora-
tory, California Institute of Technology.
He is currently serving as Payload Sys-
tems Engineering staff and APSS Pay-
load Instrument Systems Engineer for
the InSight project. Previously he led
the development of GRACE Follow On’s
LRI instrument FSW. He previously de-
veloped FSW for the Mars Science Labo-

ratory, led the development of the SMAP spacecraft bus FSW,
and led and performed the development of the software for
flight, ground, and simulation software for other missions
and technology development projects at JPL. Previously he
performed systems engineering, and V&V for a variety of
projects at TRW (now Northrop- Grumman), and he served as
a system engineer for the European weather satellite agency,
Eumetsat, as well as software engineer for the Dresdner Bank
in Frankfurt, Germany. He holds BS and MS degrees in
mathematics from The Ohio State University

Ken Clark graduated with a B.S. in
Computer Science from California State
University Northridge in 1984. He is a
senior member of the Small Scall Flight
Software group at JPL, where he has
worked for 15 years. Clark was pre-
viously a member of the Mars Science
Laboratory (MSL) flight software team,
where he developed flight software for
the power and tele-communications sub-

systems. He is currently leading the development of the
GRACE Follow On LRI instrument’s flight software.

9

