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Abstract— The Large Synoptic Survey Telescope (LSST) is a
large-aperture, wide-field survey that has the potential to detect
millions of asteroids. LSST is under construction with survey
operations slated to begin in 2022. We describe an independent
study to assess the performance of LSST for detecting and
cataloging near-Earth objects (NEOs). A significant component
of the study will be to assess the survey’s ability to link ob-
servations of a single object from among the large numbers of
false detections and detections of other objects. We also will
explore the survey’s basic performance in terms of fraction of
NEOs discovered and cataloged, both for the planned baseline
survey, but also for enhanced surveys that are more carefully
tuned for NEO search, generally at the expense of other science
drivers. Preliminary results indicate that with successful linkage
under the current baseline survey LSST would discover ∼65%
of NEOs with absolute magnitude H < 22, which corresponds
approximately to 140 m diameter.

TABLE OF CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 KEY STUDY ELEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 BASELINE PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . 6
4 MOPS TESTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1. INTRODUCTION
The Large Synoptic Survey Telescope (LSST) is an ambitious
project that has the potential to make significant contributions
to Near-Earth Object (NEO) search efforts. LSST is jointly
funded by the National Science Foundation and the Depart-
ment of Energy, with significant enabling contributions from
private donors. Construction is already underway and major
optical elements are complete. Figure 1 depicts the telescope
and dome design in cutaway. LSST first light is set for
2020, followed by two years of commissioning. Once regular
survey operations begin in 2022, LSST will systematically
survey the observable sky over a ten-year period from its site
on Cerro Pachon, Chile.

With an 8.4 m aperture (6.7 m effective), 9.6 square degree
field of view, and a 3.2-Gigapixel camera, LSST has the
potential to become the world’s most capable asteroid survey
instrument. LSST will be able to cover over 6000 square
degrees of sky per clear night with single visit exposures of
30 s, reaching a faint limit of 24.5 mag in the r band [1]. The
survey’s search cadence, however, is a critical factor for NEO
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Figure 1. A computer rendering of the baseline design of
the LSST dome with a cutaway to show the telescope within.
Image Credit: LSST.

discovery performance, and there are multiple science drivers
whose different cadence needs are being discussed and will
eventually be balanced to shape the final survey strategy.

We are conducting a study to examine the NEO search
performance of various LSST search strategies, paying par-
ticular attention to the challenges of linking large numbers of
asteroid detections in the presence of false detections. Our
approach is to derive lists of synthetic detections for a given
instantiation of the LSST survey, based on an assumed model
for the populations of solar system objects from the main
asteroid belt inwards to the near-Earth population. These
detection lists are combined with false detection lists that
model both random noise and non-random artifacts resulting
from image differencing algorithms. These voluminous de-
tection lists are fed to the Moving Object Processing System
(MOPS) [2], which attempts to link the synthetic detections
correctly without becoming confused or overwhelmed by the
false detections.

The LSST baseline survey cadence relies primarily on single
night pairs of detections, with roughly 30 minutes between
the elements of a detection pair. These pairs form what are
known in MOPS parlance as tracklets, and sets of tracklets are
linked across multiple nights to form tracks, which can then
be sent to the final step, which is orbit determination. The
strategy of using pairs is an aggressive and potentially fragile
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approach, but theoretically represents the most productive
NEO search with the minimum impact on other LSST science
drivers. An alternative to visit each field three times per night
to form tracklets from triplets of detections may prove more
robust, but likely with a penalty of reduced performance. One
of our study objectives is to understand the tradeoffs between
these two approaches.

While we strive for an independent study, we do intend to
collaborate with LSST and other organizations, e.g., IPAC
(Caltech’s Infrared Processing and Analysis Center), to the
extent that cooperation will improve the study results and
ensure their broad acceptance by stakeholders and the com-
munity at large. In particular, we intend to rely on LSST for
certain key inputs that would be inappropriate or impractical
to derive independently. Similarly, we must ensure that
our study uses assumptions and inputs that are in accord
with those used by the LSST project. Moreover, as LSST
progresses with their own validation efforts, we plan to ensure
that our respective results are directly comparable, e.g., by
using the same input data streams. This “semi-collaborative”
footing will allow the JPL-led study to progress more quickly
and afford independent validation of key results. Addition-
ally, any identified discrepancies can be cleared more readily
through open communication and sharing of inputs.

2. KEY STUDY ELEMENTS
The two major questions to be addressed by our study can
be informally stated as “Will MOPS work?” and “If MOPS
works what fraction of NEOs will LSST discover?” The
first question revolves on the linkage problem and the risk of
confusion and an ensuing combinatoric crisis in computation.
Indeed, the central challenge for the LSST NEO survey is
the linking problem, where putative detections of individual
moving objects are combined, first within each night, and
then across multiple nights, thereby confirming with high
confidence that a moving object has been detected and allow-
ing the associated orbit to be computed and cataloged.

The second question is addressed by quantifying the com-
pleteness of the NEO catalog produced by LSST, i.e., the
fraction of solar system objects in a given population and
size range that LSST would find. Completeness comes in
two types, differential completeness, which refers to a given
(presumably narrow) size bin, and integral completeness,
referring to all objects larger than some given size. Our
primary metric for LSST NEO performance is the integral
NEO discovery completeness for absolute magnitude H <
22, though there are a number of other metrics related to, for
example, the quality of the orbits of the discovered objects.

Both questions require a high-fidelity asteroid detection
model to reach an answer, but the actual approach is markedly
different between the two. For the linkage problem we must
test MOPS in the presence of confusion due to NEOs, Main-
Belt Asteroids (MBAs) and false detections. Thus we must
generate full-density detection lists and then feed these lists
to the linking engine. The number of detections entering
the pipeline must match the expected data load of the real
LSST, and subtle details in the detection model are less
important than assuring the anticipated volume of detections.
Thus MOPS testing entails the most computational stressing
part of the study, but fortunately the full-density simulations
need only take place over ∼3 observing cycles (also called
lunations or dark runs) to understand the MOPS performance.
This means that only a tiny fraction of the 10-year survey

need be simulated to understand whether MOPS will perform
successfully.

In contrast, to obtain the end-of-survey NEO completeness
we must run the entire 10-year survey. However, we can
assume that MOPS will be tested elsewhere, and so we do not
need a full-density detection list, nor do we even need to run
MOPS. In fact, only the NEO population need be included in
the simulation; noise and MBAs can be neglected. Moreover,
a sampling of only a few thousand NEOs is adequate to
answer the question. But while the computational load for
completeness testing is quite manageable, the fidelity of the
detection model becomes crucial.

With this background in mind, we now turn to a discussion of
the key simulation elements that form the framework of the
study.

Operational Simulator

LSST’s Operational Simulator (OpSim) tool [3] uses project
scheduling tools to compute all of the field pointings and
ancillary information for a full-length, high-fidelity survey,
comprising ∼2.5 million individual field visits over ten years.
OpSim models include realistic weather, seeing, sky back-
ground noise, etc. For our purposes, the essential OpSim out-
put is a field-by-field listing of the pointings, camera rotation
angles, filter selections and the SNR=5 limiting magnitudes
M5.

We will use the outputs of OpSim runs as inputs to our
study, and we do not envision generating our own OpSim
runs. Our initial focus is the current LSST baseline OpSim
run, designated “enigma_1189”, although we expect that
the project will continue to revise its baseline during the
course of the study. We anticipate that special purpose (e.g.,
NEO-optimized) OpSim runs will be run by LSST for its
own needs, and indeed some of these have already been
completed. We also anticipate that the LSST project will
produce any additional OpSim runs that are judged critical for
our study, though the details of any such runs will need to be
negotiated once their purpose and parameters are understood.

Solar System Model

For NEOs we are using the Bottke population model [4],
as published by Grav et al. [5]. The model includes a full
population of 270,000 NEOs down to H = 25 (∼35 m
diameter for a 14% albedo sphere). Note that objects fainter
than H = 25 will be detected by LSST, but the sky-plane
rates of motion will often be too high and the areal density
of such objects is expected to be low. We will revisit the
question of the appropriate lower size bound on the NEO
model as our study progresses, although the primary reason
for doing so would be to understand completeness at very
small sizes (<50 m), which we do not consider as a crucial
performance metric. We intend to test NEO completeness
with the NEO model developed by Granvik et al. [6] after it
becomes publicly available.

For the main-belt asteroids (MBAs) we use the model pub-
lished by Grav et al. [5], which includes 14 million MBAs
with apparent magnitude V < 24.5 when at both perihelion
and opposition. We recognize that LSST should be able to
detect some MBAs somewhat fainter than this, and we will
evaluate the impact of this gap as our study progresses. The
primary reason for including the MBAs is to properly model
the confusion problem, and if we find that it is necessary from
this perspective to extend the Grav MBA model to fainter
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limits then we will do so.

For completeness estimates, we need only run ∼2000 model
NEOs, all with a single absolute magnitude value, through the
simulated survey. Post-processing will allow us to accurately
derive key metrics, such as completeness and the distribution
of arc length, at a range of sizes and from there obtain, e.g.,
integral completeness for H < 22.

Focal Plane Model

An accurate model of the LSST focal plane is required as a
first step in developing high-fidelity detection lists. Figure 2
is a schematic diagram of the LSST focal plane, which
consists of 21 CCD rafts with each raft comprising a 3 × 3
array of 4k×4k CCDs. Thus there are a total of 21×9 = 189
CCDs. There are also guide and wavefront sensor CCDs in
the corners of the focal plane, but we assume they are not
useable for NEO detections. Our modeling approach for the
focal plane leverages existing the MOPS formulation, which
allows either a square or circular field and allows masking
of square sub-regions within the field. We model LSST as a
square focal plane with a 5 × 5 array of rafts and mask the
four corner rafts. The LSST focal plane will take different
orientations and so we rotate this partially masked focal plane
as shown in Fig. 3.

We also need to account for the raft gaps and the smaller
chip gaps within each raft. While the exact dimensional
specifications for LSST focal plane are not yet finalized,
our approach assumes each raft occupies a focal plane area
of (2500 arcsec)2 and within each raft area the CCD area
is (2400 arcsec)2, which is in accordance with the current
baseline focal plane design. With these assumptions we
find a focal plane fill factor of Ffill = 92%, which is the
fraction of focal plane area that is covered with active CCD
pixels. Our current study approach is to statistically under-
sample detections, both synthetic and false, according to the
fill factor.

Figure 4 depicts a full LSST field with a full-density NEO
and MBA model plus random noise. This field is near the
ecliptic plane and near opposition in good conditions and so it
represents the highest density of real objects likely to be seen
by LSST. For this reason the figure shows an unusually low
fraction of false detections: 14% of the 4800 total detections
in this field are random noise and the rest are from synthetic
detections. Fields far from the ecliptic will be dominated by
noise because of the low density of detections. However,
as discussed in Sec. 4, in the mean across the full range of
observing circumstances the number of false detections from
random noise should be roughly similar to the number of
detections from solar system objects.

Synthetic Detections

We simulate detections of moving objects by joining a given
OpSim run, which is a detailed image-by-image instantiation
of a ten-year LSST survey, with a synthetic Solar System
Model (SSM) of NEOs and MBAs. Given the observing
circumstances of each field visit, we ascertain which SSM
objects in the field are bright enough to be detected. This
allows us to assemble a list of synthetic detections of moving
objects over the duration of the survey. The following mod-
eling details are relevant for generating the detection lists.

a) Trailing losses. Moving objects trail across multiple pixels,
which makes them harder to detect than stationary objects. In
the best case one can implement a trail or streak detection

Figure 2. Schematic of the LSST focal plane. The heavy
green lines indicate the boundaries of the detection area.
The red squares represent the CCD rafts and the small blue
squares represent individual CCDs

Figure 3. Depiction of detections and masking for a rotated
field. Position Angle (PA) in this example is 20◦ (angle of
rotation from North towards East).

algorithm that sums the signal along the whole streak to com-
pute the SNR and decide if the detection is significant. LSST
does not plan to identify sources through trail detection, but
rather will use a circular PSF detection kernel, which will
only capture the signal within the seeing disk. Thus long trails
will only be detected when they have a high enough signal in
a seeing disk, which may cover only a short subsegment of
the trail. Figure 5 depicts the rate of motion of NEOs seen
in the baseline LSST survey. For a 2◦/day rate of motion,
a moving object will move 2.5 arcsec in a single 30 s visit,
which is ∼3 seeing disks under typical conditions.

Streak detection entails an SNR loss due to the fact that the
asteroid signal is spread across more pixels, thus picking up
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Figure 7. Validation of focal plane loss model for 907
fields in a single night. The detection model calls for a
smooth fading across the SNR=5 limiting magnitude, where
we have 50% probability of detection, convolved with a 92%
fill factor.

Figure 8. Depiction of our detection model. Initially all
detections up to 0.5 mag fainter than the SNR=5 limiting
magnitude are retained. Then fading and fill factor losses are
removed (blue), leaving the simulated detections (green).

has upon the survey performance is presumed small, but has
yet to be determined. We expect to include this refinement to
our detection model in the course of the study.

Among the foregoing detection modeling aspects, trailing
losses clearly have a significant effect on the detectability
of moving objects, NEOs in particular, and this is a vital
element for both completeness estimates and for MOPS test-
ing. Preliminary tests indicate that fading has only a minor
effect on completeness and is irrelevant for MOPS testing.
We anticipate that light curves and color corrections will also
have a minor effect on completeness estimates, and are likely
to be irrelevant for MOPS testing.

False Detections

Spurious detections are an unavoidable element of any as-
teroid search program. For LSST there will be two distinct

sources of false detections, namely random noise and image
differencing artifacts. The easiest to model are those arising
from random noise in the detectors, which are randomly
distributed with an areal density depending on the Signal-to-
Noise Ratio (SNR) of the detection threshold.

The other type of false detection arises from artifacts in the
image differencing technique that LSST will use to detect
moving objects. LSST will build up a deep-stack, fiducial
image of the sky, known as a “template sky,” by combin-
ing numerous images of the same field. Individual images
are then compared to the template sky and sources that
are present only in the single visit are considered potential
moving objects. This process readily reveals variable but
stationary objects (e.g., variable stars) and these will be
effectively removed from the detection stream. The process
also generates “Difference Image Artifacts” (DIAs) that arise
from any number of quirks in the differencing process, e.g.,
diffraction spikes and imperfect image alignment, to name
but two. These can be screened to some extent by machine-
learning algorithms, but their areal density in the LSST data
stream has not yet been fully characterized. It is important
to note that DIAs can be correlated, both within individual
images and between pairs of images, and thus their positions
can shift between images in a way that can mimic the motion
of real solar system objects.

For false detections stemming from random noise we will
generate our own lists with an agreed model [7] and collab-
orators may share or exchange lists to facilitate comparison.
For DIAs, we will initially generate lists assuming a random
distribution with a range of areal densities to understand the
noise loading that causes the linkage engine to falter. The
LSST Project is currently using real data, e.g., Dark Energy
Camera images, to refine estimates of the rate of DIA creation
and understand the effectiveness of DIA rejection techniques.
We expect that this effort will provide a more refined model
for injecting DIAs, including correlation rules. As our study
progresses, we expect that LSST will provide DIA lists for
a given OpSim run, which could be directly merged with
synthetic and random false detection lists and fed to the
linking engine.

We will introduce false detections at a variable rate. Initially
we will use only the expected rate of Gaussian noise, but
then we will increase this to 2×, 5×, and perhaps even 10×
the Gaussian noise rate. The point of increasing the random
noise level beyond what is expected is to crudely model the
presence of DIAs and to understand where noise starts to
compromise MOPS performance.

Linkage

Linking the stream of potential moving object detections
generated by LSST is one of the more computationally stress-
ing elements, both for the LSST project and for the current
study. The image-by-image, night-by-night data stream of
synthetic and false detections is fed to the linking engine,
known as the Moving Object Processing System (MOPS),
which was jointly developed by Pan-STARRS and LSST,
with significant NASA support [2]. MOPS development
forked a number of years ago and now there are at least three
incarnations that are relevant to our study, namely those in
use by Pan-STARRS, LSST and NEO-WISE. For the study
we describe here, these are the MOPS versions to be run at
JPL, Univ. Washington and IPAC, respectively.

NEO surveys have historically been conducted by search-
ing through nightly sets of 3-5 images, with each image
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separated by 30-60 minutes, and looking for objects that
show consistent rates of motion in all (or all but one) of
the images. Ensuring at least three mutually compatible
detections allows a high confidence that the detections are
associated with moving objects and are not spurious. In some
cases a preliminary orbit estimate can be derived from such a
single-night string of detections.

In a marked departure from this traditional approach, LSST
plans to capture moving objects from pairs of images taken in
a single night (both differenced from a long-duration template
sky). They intend to link potential detection pairs (the
majority of which may be spurious due to confusion and false
detections) over a series of three or more nights to identify
real objects and eliminate false detections. This strategy
has been shown to work in simulations [2], but has never
been operationally demonstrated, increasing the importance
of high-fidelity tests and simulations that demonstrate that the
approach will indeed perform as intended.

Our approach to the linkage problem will be to use the
Pan-STARRS version of MOPS, which is presently the only
version with a validated orbit determination process, where
the final screening step takes place for computing and cat-
aloging moving objects. This MOPS version uses the JPL
orbit determination software package, with which we are
well acquainted. Where appropriate, we intend to collaborate
closely with both LSST and IPAC to unify MOPS settings
and inputs and to compare outputs.

3. BASELINE PERFORMANCE
The enigma_1189 survey, which is currently designated
as the baseline survey, is a strawman survey intended for
detailed understanding of the resulting science performance
for LSST’s numerous science drivers. Here we first describe
the key characteristics of the survey and then we present a
preliminary analysis of the NEO survey performance.

Survey description

For enigma_1189 the available sky is divided into 3339
unique field pointings, or footprints. The baseline survey
covers a time span of 10 years, although some nights are re-
moved due to simulated weather patterns. There are 2 469 307
individual field visits from 3062 nights with data. Mean
seeing in the survey is 0.80 ± 0.20 arcsec and median seeing
is 0.76 arcsec. Mean limiting magnitude per filter is tabulated
in Table 1. The total time spent on a visit, including exposure
time, CCD read time and slewing, is typically 39–44 seconds.
The survey returns to the same part of the sky roughly every
3 or 4 nights.

Table 1. Mean (with standard deviation) and maximum
limiting magnitude M5 of the enigma_1189 survey in the

various LSST filters.

Filter Mean M5 Max. M5 Time spent (%)
u 23.75 ± 0.37 23.75 8
g 24.67 ± 0.37 25.53 10
r 24.38 ± 0.36 25.21 22
i 23.66 ± 0.38 24.57 22
z 22.44 ± 0.42 23.89 20
y 21.49 ± 0.25 22.11 18

The enigma_1189 survey contains 5 distinct “proposals,”
i.e., individual surveys with different objectives and cadences

Figure 9. The fraction of LSST survey time in the baseline
(enigma_1189), according to the number of visits per night
(within 2 hours).

that guide the overall survey schedule and design. These
proposals receive different fractions of the total survey time
as indicated in Table 2. Over 90% of the survey is dedicated
to the most productive NEO proposals, namely Universal
Survey and Northern Ecliptic Spur.

Figure 9 depicts the fraction of enigma_1189 time (and
fraction of fields) that form a nightly n-tuple for 1 ≤ n ≤ 8.
More than half of survey time is spent on single-night pairs.
The mean time span between first and last visit of an n-tuple
is 42 minutes, but ∼7% of tuples are longer than 2 hours.
Approximately 17% of time is spent on single visit fields
that are of no value for NEO discovery. Among these, 64%
are in the u and y filters, which have poor performance for
detecting NEOs and thus are not scheduled to be executed
in nightly pairs. And so only 6% of fields are singletons
shot in a filter suitable for NEO discovery. About 4% of the
time is spent on Deep Drilling, which is also not suitable for
NEO search because it continuously visits one individual field
for an extended period (n-tuples with very large n), often for
cosmological studies with a purpose of deep stacking.

Table 2. Time spent on various observing “Proposals” for
the LSST enigma_1189 survey.

Proposal Time spent (%)
Universal Survey 86
North Ecliptic Spur 6
Deep Drilling 4
Galactic Plane 2
South Celestial Pole 2

NEO performance

Figures 10 and 11 provide a preliminary assessment of the
NEO search performance with enigma_1189. Figure 10
depicts completeness as a function of absolute magnitude
for the complete ten-year survey, while Fig. 11 depicts
completeness as a function of time for NEOs brighter than
H = 22. Both plots have five curves representing different
completeness metric. These are the fraction of objects with

• at least one detection
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Figure 10. Preliminary results for NEO integral complete-
ness for enigma_1189 as a function of absolute magnitude
H .

• at least one tracklet (two or more detections in a single
night with maximum separation two hours)
• at least three tracklets (with no time constraints)
• at least one “3-15” track (three tracklets where a pair of
tracklets are separated by ≤3 days and a third tracklet is ≤15
days from the pair)
• at least one 5-25 track (a pair of tracklets separated by ≤5
days with a third tracklet within 25 days of the pair).

The completeness curves reveal the progressive losses as we
step from detections to tracklets to tracks, and finally to
constrained tracks that we expect MOPS will be able to link
and catalog as objects with orbits. We note that the strict 3-15
track requirement leads to only a small degradation in perfor-
mance relative to the more relaxed (i.e., more challenging for
MOPS) 5-25 track requirement. Completeness for H < 22 is
59% and 62% for 3-15 and 5-25, respectively. For H < 25,
about a third of the population is detected, although about half
of these are detected only once.

We emphasize that the foregoing discussion and related fig-
ures are preliminary and are presented as examples of the kind
of results anticipated for the study. We continue to vet and
refine the model assumptions and fidelity and as a result the
final performance assessment may be different.

4. MOPS TESTING
We intend to move gradually to full-scale MOPS runs. All
MOPS tests will use a full NEO population with a rate of
motion cutoff at 2.0◦/day as a baseline and add additional
detections by including MBAs, noise and faster objects.
Table 3 provides a notional list of parameter values to be
tested:

Table 3. Range of parameters panned for MOPS testing.

Parameter Values to be tested
MBA model 0%, 10%, 30%, 100%
Gaussian Noise 0×, 1×, 2×, 5×
Rate limits (◦/day) 0.5, 1, 2, 5, 10

Figure 11. Preliminary results for NEO integral complete-
ness for H < 22 for enigma_1189 as a function of survey
duration.

Initially we will focus on run times for single-night tracklet
generation, which will guide us in selecting several cases to
be run for a whole lunation. The full detection lists for these
single lunation runs will be a common input for MOPS runs
across the study.

The MOPS runs have three key steps to build a catalog of
orbits:

Tracklets: The single lunation detection lists will first be
run through the tracklet generation stage to verify scaling
of run times as a function of the varied inputs and MOPS
tuning parameters. The accuracy and efficiency of tracklet
generation will be computed and verified. MOPS tuning
parameters are a key element of this comparison.

Tracks: We will next start exploring track generation.
Tracks are three tracklets in distinct nights within 15 nights
that comply with simple curve fitting requirements. This
stage is the most computationally intensive and is highly
sensitive to numerous MOPS tuning parameters. This is
where the runs must be designed with care. An understanding
of the run time scaling is key for selecting the sequence
of track generation tests to be run. The first runs will be
with only NEOs to ensure that tuning parameters are set
correctly to avoid losing NEOs in the simplest case. This
will provide a good starting point for optimizing MOPS
parameters. Track generation performance and lists will be
compared with external study participants.

Orbit Determination: The final step in cataloging an ob-
ject’s orbit is orbit determination (OD). Here orbits are fit to
all candidate tracks and the χ2 of observation residuals is used
as a quality metric to screen false tracks. After this final stage
we derive the cataloging accuracy and efficiency metrics. The
key performance statistic at this stage is the accuracy (fraction
of false orbits) and efficiency (fraction of potential orbits that
were cataloged).

As of this writing we have some progress along the path
outlined here. In particular, we have completed a full ob-
serving cycle (i.e., lunation) with NEOs + 100% MBAs with
different levels of random noise. Table 4 lists the statistics
for detections and tracklets in this preliminary simulation,
which will be refined as our models continue to improve
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over the course of the study. This simulation produced ∼14
million detections and a similar number of false detections
with 1× noise, with the real-to-false detection ratio following
naturally according to the multiplier applied for the random
noise. Tracklet counts, however show a surprising pattern
in that for all three noise levels there are approximately 0.3
tracklets per detection. The implication is that the addition
of random noise beyond a certain level only leads to a linear
increase in the number of tracklets, despite the combinatorial
potential for the number of tracklets to grow much faster than
linear. This limit in the rate of growth of the number of
tracklets is presumably related to the 2◦/day rate of motion
limit applied in the tracklet formation.

While the number of real tracklets present in the simulation
is obviously constant, the total number of tracklets formed
grows with the noise level, and so the real-to-false tracklet
ratio falls, but for the cases in Table 4 the ratio falls more
slowly than linear in the inverse of the noise level, suggesting
that high levels of noise do not pose a problem for tracklet
generation. The CPU times for tracklet generation were quite
manageable in these tests, as shown by the table. Our next
major step in the study is to turn to track generation, which is
the most computationally expensive.

Table 4. Detections and tracklet statistics for one
observing cycle (lunation) of enigma_1189 with full

density NEOs and main belt, with varying levels of
random noise.

Noise Level 1× 2× 5×
Synthetic detections (×106) 14.1 14.1 14.1
False detections (×106) 14.7 29.4 73.7
Det. ratio (Real/False) 0.96 0.48 0.19
Total tracklets (×106) 8.1 11.2 28.2
Tracklet Ratio (Real/False) 2.1 1.0 0.25
Tracklet CPU (hrs, w/8 cores) 4.3 5.2 12.1

5. SUMMARY
We have described the motivation and approach for our study
to quantify and validate LSST’s NEO search performance.
Our key study results will be

• Quantification of the rate of false detections that causes
MOPS to falter in linking real objects and compare this with
the false detection rate that can be reasonably anticipated,
based on estimates from the study collaborators.
• Quantification of LSST’s NEO search and discovery per-
formance, both with the evolving baseline cadence and mod-
est adjustments to that baseline, as well as with hypothetical
NEO-optimized search cadences.
• Based on the foregoing results, provide an overall assess-
ment of the likely performance of LSST in terms of NEO
search and discovery.
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