
© 2016 California Institute of Technology.
Government sponsorship acknowledged. 1

Automated Commanding of the SMAP Spacecraft Enables
Efficient, Reliable, and Responsive Operations

Christopher Swan
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-4133
Christopher.A.Swan@jpl.nasa.gov

Abstract- The Soil Moisture Active Passive (SMAP) mission
developed and deployed a system to autonomously handle most
routine commanding of the observatory. This system of ground
software is able to build commands, validate them, and radiate
the commands to the spacecraft, all without human interaction.
In the case of an off-nominal scenario, the system will abort
gracefully and notify the mission operations team of the problem.
The system was phased into operations during the first three
months of the SMAP mission and handles over 90% of the
weekly commanding of the vehicle. The gradual introduction of
the automation in flight, along with an extensive test campaign,
was instrumental in the success of the software. The automation
has enabled substantial efficiencies in operations team staffing
and has improved reliability by removing the potential for human
error. The system also allows the SMAP project to be more
responsive which has shown significant benefits in areas of data
latency and science accuracy.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. SMAP AUTOMATION ARCHITECTURE 1
3. HERITAGE TO TEST SCRIPTING............................. 1
4. AUTOMATION DESIGN: REQUIREMENTS 2
5. AUTOMATION DESIGN: IMPLEMENTED 4
5. TEST PROGRAM .. 6
6. FLIGHT PERFORMANCE ... 6
7. BEYOND SMAP ... 7
8. CONCLUSION... 8
ACKNOWLEDGEMENTS .. 8
REFERENCES... 8
BIOGRAPHY .. 8

1. INTRODUCTION

The Soil Moisture Active Passive (SMAP) mission is a
NASA Earth satellite mission that provides global surface
soil moisture measurements on a frequent basis [1]. The
observatory is equipped with two instruments, radar1 and a
radiometer, which share a spinning six meter antenna. The
spinning antenna allows for a measurement swath width of

1 On July 7th, 2015 SMAP experienced an anomaly with the radar’s high-
power amplifier and was unable to recover it [2]. The mission continues to
operate and produce valuable data using the radiometer and the anomaly
did not impact the routine operations of the spacecraft.

1000km which allows SMAP to make complete soil
moisture maps of the Earth every 2-3 days. This data is
downlinked via frequent communication opportunities with
the NASA Near Earth Network (NEN) and operated out of
the Jet Propulsion Laboratory (JPL).

2. SMAP AUTOMATION ARCHITECTURE
The automation of various aspects of operating a spacecraft
is not a new concept for JPL [3][5]. The advances that the
SMAP project has implemented relate to the level and scope
of automation. To put this into context, it is useful to
categorize the three different levels of automation: DWN,
UP, CMD. (Figure 1)

Downlink (DWN) automation primarily acts to process and
transfer data throughout the ground data system. Once the
ground data is available, the Uplink (UP) automation can
use it to build command products for uplink. The capability
SMAP has implemented goes one step further with the
creation of Commands (CMD), the ability to command
observatory without a flight controller on console. Most JPL
missions utilize a combination of systems that perform some
amount of the “DWN” and “UP” level automation; the
“CMD” automation is a new development in autonomous
ground software and the focus of this paper.

3. HERITAGE TO TEST SCRIPTING
The SMAP approach to in-flight CMD automation was
based, in large part, on experience with automated testing
methods used in the ground test campaigns of JPL
spacecraft. Both the Flight Software and the Flight Systems
team utilized Python based test scripts, which allows for
efficient regression and tabulation of test results. This is
enabled by a Python library which interfaces to both the
command and the telemetry portions of the JPL ground data
system. Using the library, test engineers are able to send
commands to and query telemetry from both the hardware
testbed and the spacecraft simulator. Over multiple JPL
Missions, additional libraries have been developed that
build on that basic capability. These libraries incorporate
features such as automated telemetry checking for every
command sent, or the capability to record and report the
pass and fail status of requirements within the script. Unlike
the initial library, which is multi-mission, these augmented
libraries are adapted and modified for a given project.

mailto:Christopher.A.Swan@jpl.nasa.gov

© 2016 California Institute of Technology.
Government sponsorship acknowledged. 3

 The individual automation functions are identified by
decomposing the actions the flight operations team performs
to execute each activity [5]. These actions are augmented

with additional verification steps to ensure any off-nominal
scenario is detected. An example of this decomposition and
how it mirrors the manual process is shown in Table 1.

Table 1 SMAP ephemeris activity decomposed by function
Manual Process SMAP AUTO step Functional Decomposition
Process starts at least 24-48 hours
before uplink

Process starts at the beginning of the uplink
pass.

Engineer locates latest ephemeris SMAP AUTO locates the latest delivered
ephemeris

smap_find_bsp()

Engineer queries telemetry to locate
currently executing on board
ephemeris

SMAP AUTO queries telemetry for currently
executing on board ephemeris

Smap_cheby_check()

Engineer builds binary files and
command products
Ephemeris command product is a
“template” or sequence block
SMAP manual process generates
this via script (or UP Automation)

SMAP AUTO builds binary files and
command products.

Smap_build_cheby()
Smap_make_ephem_seq()

Engineer tests products SMAP AUTO tests new ephemeris file against
currently executing ephemeris file

Smap_cheby_diff()

Other engineers review products
Not required due to extensive testing and review of SMAP AUTO codebase.

Command approval meeting held
Time scheduled to uplink products
(minimum two engineers required)
Uplink established, engineers review
telemetry

SMAP AUTO waits for uplink lock, then
checks spacecraft health, time remaining in the
pass

Smap_go_for_command()
Smap_health_check()
Smap_pass_time_left()

Binary products radiated and receipt
confirmed.

SMAP AUTO then radiates each product
• Prior to radiating each product SMAP

AUTO reconfirms spacecraft health,
uplink lock, sufficient time remaining

• Telemetry is collected before and
after each uplink and SMAP AUTO
compares them to confirm uplink
receipt.

• Uses 5-10 telemetry types depending
on the product2

• Uplinks are ordered so that the
command to start loading the binary
products occurs last.

Smap_bulk_scmf_upload()

Command products radiated and
receipt confirmed.
Typically based on one or two
pieces of telemetry

Smap_send_fsw_cmd()
Smap_health_check()
Smap_pass_time_left()
Smap_uplink_telem()

Engineer delivers ephemeris
products and logs to archive location

SMAP AUTO then delivers ephemeris
products and logs to archive location

2 A human operator would not reconfirm basic telemetry between each uplink or check so many telemetry channels because they have a deeper
understanding of what they are seeing. These are examples of areas where telemetry checks were augmented to ensure off-nominal scenarios were detected.

© 2016 California Institute of Technology.
Government sponsorship acknowledged. 4

5. AUTOMATION DESIGN: IMPLEMENTED
The implementation of SMAP AUTO evolved into three separate pieces: A library of functions for performing each activity
(smap_auto.py), a set of templates which group the functions together to perform a given activity, and a configuration file
used for fine tuning performance and adapting to changes in execution venue.

SMAP AUTO

smap_auto.py auto_config.py

AMPCS Auto

Pass Automation
Daemon (PAD)

SMAP AUTO
Activity Templates

Queries Real Time Telemetry

Q
ue

rie
s

C
om

m
un

ic
at

io
n

Pa
ss

 In
fo

rm
at

io
n

Radiates Command Products

External
Applications

Launches AUTO Templates
Figure 2 SMAP AUTO design

The SMAP AUTO functions query telemetry via the
AMPCS AUTO interface and sends commands by placing
command products in a protected directory that PAD
monitors and then radiates (also using the AMPCS AUTO
interface). SMAP AUTO activities are launched by PAD at
the beginning of a communication pass based on activity
templates files placed in a monitored directory and named
according to the communication pass in question. In certain
instances, the functionality required in SMAP AUTO is
performed by other applications in the ground data system.
Rather than reinvent that capability, SMAP AUTO utilizes
the external applications but validates or tests the output to
detect any off-nominal results. During development several
external applications were modified in order to provide
more explicit feedback to SMAP AUTO regarding off-
nominal conditions.

In order to meet the design requirements regarding testing
the SMAP AUTO library and activity templates, which
contain all logic and functions to perform automation, does
not change from test to flight venues. The configuration file,
which is limited to defining a set of variables, is allowed to
change to accommodate both changes in venue and
operation performance tuning. To accommodate inflight
testing, any activity template (and the underlying library
functions) that autonomously builds commands products has

a “no uplink” variant that produces all the commands,
checks all the telemetry, but stops short of radiating them to
the spacecraft.

As of October 2015, SMAP has sixteen defined activity
templates which all follow the same pattern for
implementation:

• Confirm that only a single instance of SMAP
AUTO is running

• Monitor spacecraft telemetry until S-Band receiver
reports uplink carrier and bit lock

• Check spacecraft telemetry to verify the health of
the spacecraft

• Check spacecraft telemetry to determine the uplink
data rate detected by the S-Band receiver

• Execute the activity
• Check spacecraft telemetry to verify the health of

the spacecraft

Each action is implemented by one or more functions in the
SMAP AUTO library depending on their complexity. These
functions fall into either a generic category used by all
activities or activity specific functions designed to support a
single activity.

© 2016 California Institute of Technology.
Government sponsorship acknowledged. 5

Table 2 SMAP AUTO functions by category

Category Number of
Functions

Description of functions

Generic 20 Logging and Performance Monitoring
Query of Real Time Telemetry
Query of Recorded Telemetry
Build Command products
Send Command products (individually or a list)
Telemetry Checks (health, uplink rate, command receipt)

Activity Master 3 Queries currently executing command sequences
Finds current trajectory
Executes external application to build command sequence with routine
maintenance commanding

Bad Block 7 Builds memory mask file
Queries memory address pointers and determines if masking memory block
would corrupt onboard science data (aborts if true)
Builds command sequence to apply memory mask file after communication pass
is complete (cannot apply mask while downlinking)

Ephemeris 8 Finds current trajectory
Executes external application to build onboard ephemeris file
Checks for discontinuity between new and executing ephemeris files
Builds command sequence to apply ephemeris file

Instrument Look
Up Table (LUT)
Synchronization

4 Finds current trajectory
Executes external application to produce sync command sequence based on
current trajectory

Command Loss 1 Updates and logs command loss timer
Data
Management

5 Executes external application to produce list of products to delete or retransmit
Build command sequence(s) to perform actions

Science
Retransmit

7 Executes external application which tracks gaps in science data
Builds commands to execute retransmission

Table 3 SMAP AUTO activity templates

Activity Template Description
smap_auto_lut_sync.py
smap_auto_lut_sync_no_uplink.py

Updates onboard instrument commanding (based on reference
trajectory) account for actual trajectory

smap_auto_activity_master.py
smap_auto_activity_master_no_uplink.py

Command sequence that performs routine maintenance of the
spacecraft and schedules preplanned activities

smap_auto_data_mgmt.py
smap_auto_data_mgmt_no_uplink.py

Deletes and retransmits engineering products based on what has
been received on the ground

smap_auto_ephem.py
smap_auto_ephem_no_uplink.py

Updates onboard trajectory based on ground prediction

smap_auto_sci_rexmit.py
smap_auto_sci_rexmit_no_uplink.py

Commands retransmission of science data based on gaps
identified

smap_auto_bad_block_mask.py
smap_auto_bad_block_mask_no_uplink.py

Masks the use of blocks of memory in a manner that does not
corrupt existing data

smap_auto_file_upload.py Uplinks a list of approved, manually produced command
products.

smap_auto_set_clt.py Updates the command loss timer
smap_auto_no_op.py Sends a “NO OP” Command (for testing)
smap_auto_health_check.py Checks the spacecraft telemetry for spacecraft health (for testing)

© 2016 California Institute of Technology.
Government sponsorship acknowledged. 7

As shown in Figure 3 the use of SMAP AUTO allowed
manual commanding of the spacecraft to drop rapidly, to
below 10% of the total commanding, increasing only to
support non-routine operations (anomalies and a flight
software installation). In addition to the fully automated
commanding capability of SMAP AUTO, the SMAP Flight
Operations team used it to radiate manually built and tested
products (via smap_auto_file_upload.py). This was
especially useful for transmitting large binary files (e.g.
Instrument Look up Tables), which would take multiple
communication passes to complete. The SMAP AUTO
infrastructure allowed the flight operations team to queue the
files for overnight radiation without needing operations staff
on console. Once the non-routine operations had passed, the
manual commanding dropped below 10% of total
commanding.

Table 4 Percent manual vs. automated commanding

 Manual
Commands

Manual
Commands,

Auto
Radiated

Auto
Generated

and Radiated
Commands

Start of
Science
Phase

15% (394) 8% (218) 76% (1984)

August,
2015 –
September,
2015

7% (59) 6% (53) 87% (752)

During the first nine months of operations, SMAP AUTO
detected off-nominal scenarios and aborted its activity a total
of seventy six times. The primary source of these scenarios
was related to problems detected in the ground software or
the source files that SMAP AUTO used to build command
products. Issues related to station outages from offline Near
Earth Network (NEN) stations or delayed initial lock up with
the spacecraft and the NEN sites were also detected (as a
failure to receive initial telemetry). SMAP AUTO also
detected problems via the interaction with the spacecraft.
These were primarily related to command products that
failed to be successfully uplinked and successful command
receipt could not be confirmed. In all cases, AUTO detected
the anomaly, aborted all actions and notified the flight
operations team via email and SMS messaging.

Table 5 Off-Nominal sources of SMAP Automation
aborts

Ground Software 43
Station/Communication Outage 16
Spacecraft Detected 17
Total 76

The use of SMAP AUTO allowed the SMAP operations
team to become both more flexible and more responsive to
the requirements driving the routine operations. Since
SMAP AUTO runs without a human in the loop, increased
usage does not impact staffing plans - so the functions could
be run much more frequently than specified in the original
operations plan (Table 6). This improved performance in the

areas of data latency via more frequent retransmissions. Also
attitude control from daily updates (vs. semi-weekly)
provided an order of magnitude improvement in pointing
accuracy. SMAP AUTO also made operational
retransmission of science data possible. While the spacecraft
and ground software supported science retransmission, the
flight operations team could not support it because of the
timeframe (12-24 hours) before the onboard data was
overwritten. SMAP AUTO provided the capability to
respond to missing science data with 4-6 hours, enabling
science data retransmission. The increase in frequency of the
activities also provided the flight operations team with
flexibility and extra margin against operations requirements.
The failure of any individual activity to complete is not in
itself an issue, as SMAP AUTO will execute it again, well
before violating any operations requirements. If a failed
activity does need to be executed immediately, the SMAP
AUTO infrastructure allows rapid scheduling of a “make-
up” activity in the required time frame.

The use of SMAP AUTO enhanced operational efficiency
and reduced the effort needed to manually operate the
SMAP spacecraft. Considering the man-hours needed to
manually perform the routine actions at the required
frequency, the SMAP AUTO realized a savings of
approximately one fulltime engineer of effort. This would
be dramatically higher, considering the workforce required
to manually command the vehicle at the frequency that was
actually implemented. In order to meet the current
(September 2015) cadence of commanding the SMAP
operation team would need to expand from a regular
workweek schedule (5/40) to a constant presence on console
(24/7). This would require at least 8-10 additional full time
engineers. SMAP AUTO was able to effortlessly scale the
frequency of commanding with no additional workforce.

Table 6 Implemented vs. Required Frequency of
Automated Activities

Automation
Activity

Required
Frequency

Implemented
Frequency

Data Management Weekly 6hrs
Command Loss Semi-weekly Daily
Instrument
Command Table
Sync

Semi-weekly Daily

Activity Master Weekly Weekly
Ephemeris Update Semi-weekly Daily
Bad Block Mask Weekly Weekly
Science
Retransmission

Every 4-6 hours Every 4-6 hours

7. BEYOND SMAP
As with test scripting infrastructure it was based on, the
SMAP AUTO capability is specific to the SMAP mission,
but the underlying approach and interfaces are applicable to
all missions. The capability of interfacing with the command
and telemetry system would remain but details regarding
which commands are sent and which telemetry items are
checked would change from mission to mission. Other

© 2016 California Institute of Technology.
Government sponsorship acknowledged. 8

differences could include communication pass duration, one
way light time, external applications used, and the specific
routine activities for that mission. These differences also
exist in the manual processes and procedures from mission
to mission. Once the activities are identified and the
processes are outlined they can be considered for
automation.

8. CONCLUSION
The SMAP AUTO infrastructure is an effective method to
take care of routine flight operations in a reliable and
responsive way. The combination of focused requirements
and robust test campaign, including an on orbit test program,
resulted in a reliable system trusted to safely perform a
discrete and routine set of operations. This capability has
demonstrated, in-flight, measurable improvements in the
areas of mission operations efficiency, reliability, and
performance of data latency/loss and attitude control. While
the SMAP automation infrastructure was explicitly designed
for the SMAP operations scenario, the same methods could
be applied to other missions.

ACKNOWLEDGEMENTS
The research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

I would like to acknowledge Antonio Sanders, the developer
of PAD, for all his help in supporting the design and test of
SMAP AUTO.

I would like to acknowledge Eric Rigor, Lavin Zhang, Rob
Puncel, Duane Morgan, Reynaldo Lopez-Roig, Stuart
Gibson, and Bob Wing for all their help support in testing
SMAP AUTO.

Lastly, I would like to acknowledge Tracy Drain and Lisa
Swan for their excellent feedback and critic of this paper.

REFERENCES
[1] SMAP Project Website. Jet Propulsion Laboratory, n.d.

Web. 12 Dec. 2015. <http://smap.jpl.nasa.gov/>.

[2] "NASA Soil Moisture Radar Ends Operations, Mission
Science Continues." SMAP Project Website. N.p., 2 Sept.
2015.Web.14Dec.2015.
<http://smap.jpl.nasa.gov/news/1247/>.

[3] Pack, M., and S. Laubach (2014), “Evolution of the scope
and capabilities of uplink support software for mars
surface operations”, paper presented at 13th International
Conference on Space Operations, SpaceOps 2014, May 5,
2014 - May 9, 2014, Pasadena, CA, American Institute of
Aeronautics and Astronautics Inc.

[4] Sanders, A. (2014). “Automating the SMAP Ground Data
System to Support Lights-Out Operations”, paper
presented at 13th International Conference on Space
Operations, SpaceOps 2014, May 5, 2014 - May 9, 2014,
Pasadena, CA, American Institute of Aeronautics and
Astronautics Inc.

[5] (in publication) Tung, Ramona (2016). “Development of
Effective and Efficient Operations for NASA’s Soil
Moisture Active Passive Mission”, 37th IEEE Aerospace
Conference 2016.

BIOGRAPHY
Christopher Swan received a
B.S. in Aerospace Engineering
from Illinois Institute of
Technology in 2002 and a M.S.
in Astronautical Engineering
from USC in 2007. He is
currently the Science Phase Lead
for the SMAP project. Previously
he worked as flight systems
engineer for the SMAP

spacecraft with a focus on system operability. Prior to
SMAP, he was a surface and payload system engineer on
the Phoenix Mars mission, supporting both System I&T
and surface operations.

