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Abstract- The Soil Moisture Active Passive (SMAP) mission 
developed and deployed a system to autonomously handle most 
routine commanding of the observatory. This system of ground 
software is able to build commands, validate them, and radiate 
the commands to the spacecraft, all without human interaction. 
In the case of an off-nominal scenario, the system will abort 
gracefully and notify the mission operations team of the problem. 
The system was phased into operations during the first three 
months of the SMAP mission and handles over 90% of the 
weekly commanding of the vehicle. The gradual introduction of 
the automation in flight, along with an extensive test campaign, 
was instrumental in the success of the software. The automation 
has enabled substantial efficiencies in operations team staffing 
and has improved reliability by removing the potential for human 
error. The system also allows the SMAP project to be more 
responsive which has shown significant benefits in areas of data 
latency and science accuracy.  
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1. INTRODUCTION 

The Soil Moisture Active Passive (SMAP) mission is a 
NASA Earth satellite mission that provides global surface 
soil moisture measurements on a frequent basis [1]. The 
observatory is equipped with two instruments, radar1 and a 
radiometer, which share a spinning six meter antenna. The 
spinning antenna allows for a measurement swath width of 
 
1 On July 7th, 2015 SMAP experienced an anomaly with the radar’s high-
power amplifier and was unable to recover it [2]. The mission continues to 
operate and produce valuable data using the radiometer and the anomaly 
did not impact the routine operations of the spacecraft. 

1000km which allows SMAP to make complete soil 
moisture maps of the Earth every 2-3 days. This data is 
downlinked via frequent communication opportunities with 
the NASA Near Earth Network (NEN) and operated out of 
the Jet Propulsion Laboratory (JPL). 

2. SMAP AUTOMATION ARCHITECTURE 
The automation of various aspects of operating a spacecraft 
is not a new concept for JPL [3][5]. The advances that the 
SMAP project has implemented relate to the level and scope 
of automation. To put this into context, it is useful to 
categorize the three different levels of automation: DWN, 
UP, CMD. (Figure 1) 

Downlink (DWN) automation primarily acts to process and 
transfer data throughout the ground data system. Once the 
ground data is available, the Uplink (UP) automation can 
use it to build command products for uplink. The capability 
SMAP has implemented goes one step further with the 
creation of Commands (CMD), the ability to command 
observatory without a flight controller on console. Most JPL 
missions utilize a combination of systems that perform some 
amount of the “DWN” and “UP” level automation; the 
“CMD” automation is a new development in autonomous 
ground software and the focus of this paper.  

3. HERITAGE TO TEST SCRIPTING 
The SMAP approach to in-flight CMD automation was 
based, in large part, on experience with automated testing 
methods used in the ground test campaigns of JPL 
spacecraft. Both the Flight Software and the Flight Systems 
team utilized Python based test scripts, which allows for 
efficient regression and tabulation of test results. This is 
enabled by a Python library which interfaces to both the 
command and the telemetry portions of the JPL ground data 
system. Using the library, test engineers are able to send 
commands to and query telemetry from both the hardware 
testbed and the spacecraft simulator.  Over multiple JPL 
Missions, additional libraries have been developed that 
build on that basic capability. These libraries incorporate 
features such as automated telemetry checking for every 
command sent, or the capability to record and report the 
pass and fail status of requirements within the script. Unlike 
the initial library, which is multi-mission, these augmented 
libraries are adapted and modified for a given project.  
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  The individual automation functions are identified by 
decomposing the actions the flight operations team performs 
to execute each activity [5]. These actions are augmented 

with additional verification steps to ensure any off-nominal 
scenario is detected. An example of this decomposition and 
how it mirrors the manual process is shown in Table 1.

Table 1 SMAP ephemeris activity decomposed by function 
Manual Process SMAP AUTO step Functional Decomposition 
Process starts at least 24-48 hours 
before uplink 

Process starts at the beginning of the uplink 
pass. 

 

Engineer locates latest ephemeris SMAP AUTO locates the latest delivered 
ephemeris 

smap_find_bsp() 

Engineer queries telemetry to locate 
currently executing on board 
ephemeris 

SMAP AUTO queries telemetry for currently 
executing on board ephemeris 

Smap_cheby_check() 

Engineer builds binary files and 
command products 
Ephemeris command product is a 
“template” or sequence block 
SMAP manual process generates 
this via script (or UP Automation) 

SMAP AUTO builds binary files and 
command products. 

Smap_build_cheby() 
Smap_make_ephem_seq() 

Engineer tests products SMAP AUTO tests new ephemeris file against 
currently executing ephemeris file 

Smap_cheby_diff() 

Other engineers review products 
Not required due to extensive testing and review of SMAP AUTO codebase. 
 

Command approval meeting held 
Time scheduled to uplink products 
(minimum two engineers required) 
Uplink established, engineers review 
telemetry 

SMAP AUTO waits for uplink lock, then 
checks spacecraft health, time remaining in the 
pass 

Smap_go_for_command() 
Smap_health_check() 
Smap_pass_time_left() 

Binary products radiated and receipt 
confirmed. 

SMAP AUTO then radiates each product 
• Prior to radiating each product SMAP 

AUTO reconfirms spacecraft health, 
uplink lock, sufficient time remaining 

• Telemetry is collected before and 
after each uplink and SMAP AUTO 
compares them to confirm uplink 
receipt. 

• Uses 5-10 telemetry types depending 
on the product2 

• Uplinks are ordered so that the 
command to start loading the binary 
products occurs last. 

Smap_bulk_scmf_upload() 
 

Command products radiated and 
receipt confirmed. 
Typically based on one or two 
pieces of telemetry 

Smap_send_fsw_cmd() 
Smap_health_check() 
Smap_pass_time_left() 
Smap_uplink_telem() 

Engineer delivers ephemeris 
products and logs to archive location 

SMAP AUTO then delivers ephemeris 
products and logs to archive location 

 

 

 
2 A human operator would not reconfirm basic telemetry between each uplink or check so many telemetry channels because they have a deeper 
understanding of what they are seeing. These are examples of areas where telemetry checks were augmented to ensure off-nominal scenarios were detected. 
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5. AUTOMATION DESIGN: IMPLEMENTED 
The implementation of SMAP AUTO evolved into three separate pieces: A library of functions for performing each activity 
(smap_auto.py), a set of templates which group the functions together to perform a given activity, and a configuration file 
used for fine tuning performance and adapting to changes in execution venue.  

SMAP AUTO

smap_auto.py auto_config.py

AMPCS Auto

Pass Automation 
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Figure 2 SMAP AUTO design 

The SMAP AUTO functions query telemetry via the 
AMPCS AUTO interface and sends commands by placing 
command products in a protected directory that PAD 
monitors and then radiates (also using the AMPCS AUTO 
interface). SMAP AUTO activities are launched by PAD at 
the beginning of a communication pass based on activity 
templates files placed in a monitored directory and named 
according to the communication pass in question. In certain 
instances, the functionality required in SMAP AUTO is 
performed by other applications in the ground data system. 
Rather than reinvent that capability, SMAP AUTO utilizes 
the external applications but validates or tests the output to 
detect any off-nominal results. During development several 
external applications were modified in order to provide 
more explicit feedback to SMAP AUTO regarding off-
nominal conditions. 
 
In order to meet the design requirements regarding testing 
the SMAP AUTO library and activity templates, which 
contain all logic and functions to perform automation, does 
not change from test to flight venues. The configuration file, 
which is limited to defining a set of variables, is allowed to 
change to accommodate both changes in venue and 
operation performance tuning. To accommodate inflight 
testing, any activity template (and the underlying library 
functions) that autonomously builds commands products has 

a “no uplink” variant that produces all the commands, 
checks all the telemetry, but stops short of radiating them to 
the spacecraft. 
 
As of October 2015, SMAP has sixteen defined activity 
templates which all follow the same pattern for 
implementation: 

• Confirm that only a single instance of SMAP 
AUTO is running 

• Monitor spacecraft telemetry until S-Band receiver 
reports uplink carrier and bit lock 

• Check spacecraft telemetry to verify the health of 
the spacecraft 

• Check spacecraft telemetry to determine the uplink 
data rate detected by the S-Band receiver  

• Execute the activity 
• Check spacecraft telemetry to verify the health of 

the spacecraft 
 

Each action is implemented by one or more functions in the 
SMAP AUTO library depending on their complexity. These 
functions fall into either a generic category used by all 
activities or activity specific functions designed to support a 
single activity. 

  



© 2016 California Institute of Technology.  
Government sponsorship acknowledged. 5 

 

Table 2 SMAP AUTO functions by category 

Category Number of 
Functions 

Description of functions 

Generic 20 Logging and Performance Monitoring 
Query of Real Time Telemetry 
Query of Recorded Telemetry 
Build Command products 
Send Command products (individually or a list) 
Telemetry Checks (health, uplink rate, command receipt) 

Activity Master 3 Queries currently executing command sequences 
Finds current trajectory 
Executes external application to build command sequence with routine 
maintenance commanding 

Bad Block 7 Builds memory mask file 
Queries memory address pointers and determines if masking memory block 
would corrupt onboard science data (aborts if true) 
Builds command sequence to apply memory mask file after communication pass 
is complete (cannot apply mask while downlinking) 

Ephemeris 8 Finds current trajectory 
Executes external application to build onboard ephemeris file 
Checks for discontinuity between new and executing ephemeris files 
Builds command sequence to apply ephemeris file 

Instrument Look 
Up Table (LUT) 
Synchronization 

4 Finds current trajectory 
Executes external application to produce sync command sequence based on 
current trajectory 

Command Loss 1 Updates and logs command loss timer 
Data 
Management 

5 Executes external application to produce list of products to delete or retransmit 
Build command sequence(s) to perform actions 

Science 
Retransmit 

7 Executes external application which tracks gaps in science data 
Builds commands to execute retransmission 

 

Table 3 SMAP AUTO activity templates 

Activity Template Description 
smap_auto_lut_sync.py  
smap_auto_lut_sync_no_uplink.py 

Updates onboard instrument commanding (based on reference 
trajectory) account for actual trajectory 

smap_auto_activity_master.py  
smap_auto_activity_master_no_uplink.py 

Command sequence that performs routine maintenance of the 
spacecraft and schedules preplanned activities 

smap_auto_data_mgmt.py  
smap_auto_data_mgmt_no_uplink.py 

Deletes and retransmits engineering products based on what has 
been received on the ground 

smap_auto_ephem.py  
smap_auto_ephem_no_uplink.py 

Updates onboard trajectory based on ground prediction 

smap_auto_sci_rexmit.py 
smap_auto_sci_rexmit_no_uplink.py 

Commands retransmission of science data based on gaps 
identified  

smap_auto_bad_block_mask.py 
smap_auto_bad_block_mask_no_uplink.py 

Masks the use of blocks of memory in a manner that does not 
corrupt existing data 

smap_auto_file_upload.py Uplinks a list of approved, manually produced command 
products. 

smap_auto_set_clt.py Updates the command loss timer 
smap_auto_no_op.py Sends a “NO OP” Command (for testing) 
smap_auto_health_check.py Checks the spacecraft telemetry for spacecraft health (for testing) 
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As shown in Figure 3 the use of SMAP AUTO allowed 
manual commanding of the spacecraft to drop rapidly, to 
below 10% of the total commanding, increasing only to 
support non-routine operations (anomalies and a flight 
software installation). In addition to the fully automated 
commanding capability of SMAP AUTO, the SMAP Flight 
Operations team used it to radiate manually built and tested 
products (via smap_auto_file_upload.py). This was 
especially useful for transmitting large binary files (e.g. 
Instrument Look up Tables), which would take multiple 
communication passes to complete. The SMAP AUTO 
infrastructure allowed the flight operations team to queue the 
files for overnight radiation without needing operations staff 
on console. Once the non-routine operations had passed, the 
manual commanding dropped below 10% of total 
commanding.   

Table 4 Percent manual vs. automated commanding 

 Manual 
Commands 

Manual 
Commands, 

Auto 
Radiated 

Auto 
Generated 

and Radiated 
Commands 

Start of 
Science 
Phase  

15% (394) 8% (218) 76% (1984) 

August, 
2015 –
September, 
2015 

7% (59) 6% (53) 87% (752) 

 

During the first nine months of operations, SMAP AUTO 
detected off-nominal scenarios and aborted its activity a total 
of seventy six times. The primary source of these scenarios 
was related to problems detected in the ground software or 
the source files that SMAP AUTO used to build command 
products. Issues related to station outages from offline Near 
Earth Network (NEN) stations or delayed initial lock up with 
the spacecraft and the NEN sites were also detected (as a 
failure to receive initial telemetry). SMAP AUTO also 
detected problems via the interaction with the spacecraft. 
These were primarily related to command products that 
failed to be successfully uplinked and successful command 
receipt could not be confirmed. In all cases, AUTO detected 
the anomaly, aborted all actions and notified the flight 
operations team via email and SMS messaging.   

Table 5 Off-Nominal sources of SMAP Automation 
aborts 

Ground Software 43 
Station/Communication Outage 16 
Spacecraft Detected 17 
Total 76 

The use of SMAP AUTO allowed the SMAP operations 
team to become both more flexible and more responsive to 
the requirements driving the routine operations. Since 
SMAP AUTO runs without a human in the loop, increased 
usage does not impact staffing plans - so the functions could 
be run much more frequently than specified in the original 
operations plan (Table 6). This improved performance in the 

areas of data latency via more frequent retransmissions. Also 
attitude control from daily updates (vs. semi-weekly) 
provided an order of magnitude improvement in pointing 
accuracy. SMAP AUTO also made operational 
retransmission of science data possible. While the spacecraft 
and ground software supported science retransmission, the 
flight operations team could not support it because of the 
timeframe (12-24 hours) before the onboard data was 
overwritten. SMAP AUTO provided the capability to 
respond to missing science data with 4-6 hours, enabling 
science data retransmission. The increase in frequency of the 
activities also provided the flight operations team with 
flexibility and extra margin against operations requirements. 
The failure of any individual activity to complete is not in 
itself an issue, as SMAP AUTO will execute it again, well 
before violating any operations requirements. If a failed 
activity does need to be executed immediately, the SMAP 
AUTO infrastructure allows rapid scheduling of a “make-
up” activity in the required time frame.   

The use of SMAP AUTO enhanced operational efficiency 
and reduced the effort needed to manually operate the 
SMAP spacecraft. Considering the man-hours needed to 
manually perform the routine actions at the required 
frequency, the SMAP AUTO realized a savings of 
approximately one fulltime engineer of effort.  This would 
be dramatically higher, considering the workforce required 
to manually command the vehicle at the frequency that was 
actually implemented. In order to meet the current 
(September 2015) cadence of commanding the SMAP 
operation team would need to expand from a regular 
workweek schedule (5/40) to a constant presence on console 
(24/7). This would require at least 8-10 additional full time 
engineers. SMAP AUTO was able to effortlessly scale the 
frequency of commanding with no additional workforce.  

Table 6 Implemented vs. Required Frequency of 
Automated Activities 

Automation 
Activity 

Required 
Frequency 

Implemented 
Frequency 

Data Management Weekly 6hrs 
Command Loss Semi-weekly Daily 
Instrument 
Command Table 
Sync 

Semi-weekly Daily 

Activity Master Weekly Weekly 
Ephemeris Update Semi-weekly Daily 
Bad Block Mask Weekly Weekly 
Science 
Retransmission 

Every 4-6 hours Every 4-6 hours 

 

7. BEYOND SMAP 
As with test scripting infrastructure it was based on, the 
SMAP AUTO capability is specific to the SMAP mission, 
but the underlying approach and interfaces are applicable to 
all missions. The capability of interfacing with the command 
and telemetry system would remain but details regarding 
which commands are sent and which telemetry items are 
checked would change from mission to mission. Other 
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differences could include communication pass duration, one 
way light time, external applications used, and the specific 
routine activities for that mission. These differences also 
exist in the manual processes and procedures from mission 
to mission. Once the activities are identified and the 
processes are outlined they can be considered for 
automation. 
 

8. CONCLUSION 
The SMAP AUTO infrastructure is an effective method to 
take care of routine flight operations in a reliable and 
responsive way. The combination of focused requirements 
and robust test campaign, including an on orbit test program, 
resulted in a reliable system trusted to safely perform a 
discrete and routine set of operations. This capability has 
demonstrated, in-flight, measurable improvements in the 
areas of mission operations efficiency, reliability, and 
performance of data latency/loss and attitude control. While 
the SMAP automation infrastructure was explicitly designed 
for the SMAP operations scenario, the same methods could 
be applied to other missions. 
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