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Abstract— In NASA’s Discovery 2014 AO, the opportunity to 
propose a Technology Demonstration Opportunity (TDO) to 
enhance the primary mission was specified. For the Venus 
Emissivity, Radio Science, InSAR, Topography, and 
Spectroscopy (VERITAS) mission, we elected to include the 
Cupid’s Arrow nanosat TDO to sample and measure the 
abundances of noble gases and their isotopic ratios in Venus’s 
upper atmosphere below the homopause.  

This paper will provide a basic overview of the VERITAS 
mission, with a focus on the Cupid’s Arrow concept including a 
description of the mission, spacecraft design, and JPL's 
quadrupole ion trap mass spectrometer (QITMS) instrument 
specifications and design. In previous planetary entry probe 
mission designs, particularly at Venus, engineers were focused 
on entry and descent. A landed probe was also proposed for the 
New Frontiers SAGE mission. For Cupid’s Arrow, the nanosat 
is designed to skim through the upper atmosphere, just below 
the homopause, in order to sample the atmosphere, perform the 
analysis, and then exit the atmosphere to transmit its data to the 
orbiting VERITAS spacecraft.  

Cupid’s Arrow is a compelling addition to the VERITAS 
geology mission. A key missing link in our understanding of 
Venus’ evolution is the noble gas abundances and their isotopic 
ratios. Not since Pioneer Venus have these measurements been 
made in the Venus atmosphere and never in the upper 
atmosphere, just below the homopause, to the degree of 
accuracy that will be accomplished by VERITAS’ Cupid’s 
Arrow nanosat.Such measurements were ranked as the number 
1 investigation of the number 1 objective of the goal 
“Atmospheric Formation, Evolution, and Climate History”.  
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1. INTRODUCTION 
In November 2014, NASA released the Discovery 2014 
Announcement of Opportunity (AO). NASA's Discovery 
Program gives scientists the opportunity to dig deep into their 

imaginations and find innovative ways to unlock the 
mysteries of the solar system. Beginning in 1992, this 
program represented a breakthrough in the way NASA 
explores space. For the first time, scientists and engineers 
were called on to assemble teams and design exciting, 
focused planetary science investigations that would deepen 
the knowledge about our solar system. 

As a complement to NASA's larger “flagship” planetary 
science explorations, Discovery’s main objective is to 
enhance our understanding of the solar system by exploring 
the planets, their moons, and small bodies such as comets and 
asteroids. The program also seeks to improve performance 
through the use of new technology and broaden university 
and industry participation in NASA missions. As stated in the 
AO, the goals and objectives were to: 

• Advance scientific knowledge and exploration of the 
elements of our Solar System 

• Add scientific data, maps, and other products to the 
Planetary Data System archive for all scientists to access 

• Announce scientific progress and results in the peer-
reviewed literature, popular media, scholastic curricula, 
and materials that can be used to inspire and motivate 
students to pursue careers in science, technology, 
engineering, and mathematics 

• Expand the pool of well-qualified Principal Investigators 
and Program Managers for implementation of future 
missions in Discovery and other programs, through 
current involvement as Co-Investigators and other team 
members 

• Implement technology advancements proven in related 
programs 

It was the last point that was particularly emphasized in the 
Discovery AO with the description of a Technology 
Description Option (TDO): The basic description of the TDO 
was as follows: 

• It would be desirable for Discovery missions to introduce 
new technologies in order to enable new scientific 
investigations or enhance the investigation's science 
return 

• Investigation could be a non-NASA developed 
instrument, investigation, new technology, hardware or 
software that could be demonstrated on either the flight 
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QITMS Instrument 
Inventorying Venus’s noble gases is the highest-priority 
investigation for Goal I/Objective A identified by the 
VEXAG. Specifically, to sample the Venus atmosphere and 
measure the noble gases (4He, 20Ne, 36Ar, 40Ar, 84Kr, 130Xe) 
abundances and their isotopic ratios with precision <1-5%.  

Noble gases are tracers of planetary evolution, illuminating 
processes such as the original supply of volatiles from the 
solar nebula, delivery of volatiles by asteroids and comets, 
escape rate of planetary atmospheres, degassing of a planet’s 
interior, and its timing. For Venus a major observational 
missing link in understanding the evolution of its atmosphere 
is the elementary and isotopic pattern of noble gases and 
stable isotopes, which remain poorly known [Chassefiere et 
al. 2012]. These measurements strongly complement 
VERITAS’s science goals, which seek to understand another 
key aspect of the history of volatiles on Venus: how they are 
cycled between Venus’s atmosphere and interior, through 
evidence of past tectonic activity at the surface, and present-
day volcanic outgassing. 

The performance and accommodation specifications for the 
Cupid’s Arrow QITMS are summarized in Table 2. Meeting 
the science objectives for Cupid’s Arrow relies heavily on the 
QITMS’ high sensitivity and peer-reviewed noble-gas 
isotope-ratio performance, which is better than 0.1% 
precision and 0.3% accuracy [Madzunkov and Nikolic, 
2014]. The QITMS has been under continuous development 

at JPL for the last 15 years. As VCAM 
(Vehicle Cabin Atmosphere Monitor), it 
attained TRL 9 on the ISS in 2009 
[Darrach et al. 2012].  The successor flight 
instrument to VCAM, the Spacecraft 
Atmosphere Monitor (S.A.M), was 
awarded in October 2014.  The S.A.M 
instrument, based on the QITMS, will be 
delivered to the International Space 
Station and ORION in 2017 to monitor the 
astronaut atmosphere on all future crewed 
spaceflight missions.   

In 2013 the QITMS received an ICEE 
(Instrument Concepts for Europa 
Exploration) grant and was proposed to the 

Europa Instruments competition where it was evaluated as 
Category-II.  Also in 2015 it received the NASA New 
Frontiers Homesteader award for maturation into an 
atmospheric probe instrument for both Venus and Saturn.  
Obviously the Homesteader award enables significant 
leveraged development of the Cupid’s Arrow QITMS.   

The QITMS technology offer key benefits for planetary flight 
applications: 

a. Today’s smallest flight MS. Instrument size is an 
unusually critical parameter for atmosphere probe 
missions since the size of the probe vessel is determined 
by the volume of enclosed instruments and minimization 
of pressure-vessel structural mass. Probe size is 
especially sensitive to instruments’ longest irreducible 
dimension. For Cupid’s Arrow, the largest QITMS 
subassembly is 21 cm long, only 16% and 40% of size 
of a time-of-flight or and linear-quadrupole MS, 
respectively.  

b. Acquires full-range mass spectra at full sensitivity.  
Unlike linear-quadrupole mass spectrometers that must 
measure individual mass lines sequentially, the QITMS 
measures the entire mass range with full sensitivity and 
resolution. The Cupid’s Arrow performance model, even 
with a de-rating factor of 5 in both operating pressure and 
sensitivity, indicates that 1% (for ppm) and 20% (for 
ppb) accuracies can be determined every 40 seconds. 
This high-speed, full-range measurement ensures that no 

 

Figure 2. Cupid’s Arrow flight system configuration. 

Table 2. QITMS Performance and Accommodation Specifications. 
Performance  QITMS Value 

Sensitivity  1014 counts/torr/sec (axial ionization mode) 
Mass range 3-140 amu 
Mass resolution1 m/∆m (full width half maximum) = 700 @ 130 Dalton 
Isotopic precision  Major isotope abundances – 4He, 20Ne, 36Ar, 40Ar, 84Kr, 130Xe: <5% 

Isotope ratios – 3He/4He, 20Ne/22Ne, 36Ar/38Ar, 82,83,86Kr/84Kr, 129,136Xe/ 130Xe:  <1 – 3% 
(Values are for Cupid’s Arrow Instrument; Ion Trap MS Alone is <0.1%2) 

Mass 4 kg, including 30% contingency 
Power  31W, including 30% contingency 
Volume 20 cm x 20 cm x 10 cm, including 15% cont. (equivalent to 4U CubeSat form factor)  
1Mass instability mode, no cooling or buffer gas; 
2Madzunkov & Nikolić 2014. 
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species are missed from having to anticipate which mass 
channels are important to monitor. 

c. Highest native partial-pressure sensitivity of any flight 
MS. The QITMS does not require special-trapping ion 
sources or cryotrapping of trace noble gases, both of 
which can introduce measurement error and bias. 
Cupid’s Arrow will measure the noble gases directly 
without cryotrap pre-processing, enabling real-time and 
altitude-profile measurements. 

The QITMS and its electronics are shown in Figures 3 and 4, 
respectively. The “wireless” QITMS configuration 
accommodates the high G-load environments experienced 
during atmospheric entry and landing. Shown in Figure 5 are 
high-resolution spectra obtained using the QITMS. 

 
Figure 3. “Wireless” QITMS All electrical contacts are 
made through support rods, without any discrete wires. 
The QITMS is held in compression between two vacuum 

flanges enabling a robust, compact, flight instrument. 
 

 
Figure 4. QITMS Electronics for Cupid’s Arrow 

 
Figure 5. QITMS mass resolution allows unambiguous 

identification.  Left: QITMS spectrum of oxygen 
isotopes demonstrates m/∆m = 4000 FWHM. Right: 

QITMS spectrum demonstrating mass resolution at low 
mass.  The black curve represents theoretical model 

developed at JPL for the mass spectral lineshapes, which 
has excellent agreement with the experimental data 

(green curve). 
 

3. CONCLUSIONS  
Cupid’s Arrow is a TDO proposed to fly on the VERITAS 
spacecraft. While most solid body in-situ atmospheric 
missions descend well into the increasingly dense 
atmosphere, Cupid’s Arrow skims through the upper Venus 
atmosphere to an altitude of 125 km, where its QITMS 
instrument ingests a sample and measures noble gases and 
key isotropic ratios. This economical investigation provides 
valuable Venus atmospheric data at a fraction of the cost of a 
dedicated atmospheric probe mission. 
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