== —
-

-
Y, — —~ — - —~ Py —_— - —_— . o~ — - - — o~ — ¥ = — ~ '_\
'_‘— — — — — N /

- . A A A A 1A A RRLT A - = .. A B A B A A A A B B 1 = v

— p— ~
— ~ 5 - i —~ —~ - — N~ - \ A
— R '—\--\ \ ¥ \“\

Alan S. Mazer

Instrument Flight Software Group
Instruments Division

Jet Propulsion Laboratory, California Institute of Technology

E-mail: alan@judy.jpl.nasa.qgov

© 2015 California Institute of Technology. Government sponsorship acknowledged.

mailto:alan@judy.jpl.nasa.gov

Trends in instrument flight software

Instrument budgets are going down, schedules are getting
shorter.

Developers with real-time embedded experience are getting
harder to find.

Besides these...

Most science instruments are “one-offs”: different instruments
require different software, making reusability elusive.

Many proposal and instrument managers see software as a
risk.

At the same time, FSW designs are becoming more
featured, more complex, more risky, more expensive
Many classes
Many tasks
And often, many interrupts

Architecture can rapidly spin out of control

Extra resources are often in short supply
Experienced people
Budget
Schedule

A number of JPL instruments, including new ISS
instruments OCO-3 and ECOSTRESS, address complexity
concerns by going “retro”...

Single thread
Single interrupt

This gives us an architecture which...

is simpler, with easier definition, fewer synchronization
mechanisms, fewer potential race conditions, no task
prioritization

requires less experience from developers
decomposes nicely across a development team

has very predictable execution behavior and margins
is easily understandable by project management

First we define the tasks that need to be performed, and
the rates at which they need to be completed, e.qg.,
Command processing (1 Hz)
Instrument sampling (5 Hz)
Mechanism control (10 Hz)

Then we define a schedule to fit, and execute the schedule
through a reqgularly-executing loop

Frame
start

+ 100 ms

+ 200 ms Unused (margin)

+ 300 ms

+ 400 ms Unused (margin}

+ 500 ms

+ 600 ms Unused (margin}

+ 700 ms

+ 800 ms

+ 900 ms

o] (o= B [) =
Example (generic) schedule

Our loop executes one iteration per minor
frame, performing the work of one 10-
millisecond "“slot”

The entire schedule executes every second

The loop can be synchronized to

S/C bus (e.qg., 1553)

- GALEX

Internal clock

- OCO-3, ECOSTRESS

Instrument clock

- Microwave Radiometer (Juno), Mars

Climate Sounder (MRO)

Iteration enable can be semaphore or
simple flag variable

Init

*

—#

Wait for =tart of
10 m= minor
frame.

-

Execute work
defined ©r next
10 m==lot.

Each slot is typically implemented with a lower-level state
machine.

Coding requires care to ensure that each slot’s work

completes on time.
In some applications FSW should assert on an overrunning slot.

Long operations (e.g., image compression) typically need
to be decomposed into small chunks of work.

“Taking turns” can delay work, and some time is typically
wasted.

Minimizing the use of interrupts
helps to keep timing (and
margins) deterministic

Interrupts may still be useful,
especially if ISR is small, leaving
most work to scheduled slots

Worst-case ISR execution time
must be measured and taken
into account when planning non-
ISR work

Serial buffers larger than the
maximum transaction size
enable polling rather than
interrupt-based I/0

ISR

1553
RT int?

BAD data ™.y
available?
M

Sawve to BAD-
data ring buffer.

Command ™7
available?
M

Save to
command ring
buffer.

|

Telem W
sent?
N

Queue up more
data fom telem
ring buffer.

Done

Some variations on the basic architecture provide flexibility

Some applications allow soft limits on slot start and stop

Idle time within each slot can be used to perform a
background task if the background task can monitor the start
of the next slot, and if the application isn’t sensitive to minor
variations in slot start time

Sometimes it’s useful for a slot to start a background
task temporarily, e.g., to position a mechanism

Any variation must be carefully characterized to make sure
that required work gets done on time

Some embedded applications are best coded using simple

single-threaded slot execution
Fewer synchronization mechanisms, potential race conditions
Predictable and consistent execution
Scalability: any processor can execute a slot-oriented
architecture
Reduced need for an OS
Less skill required from development staff
Easily understood by non-technical management

The slot-based approach has been used on a number of JPL

instruments
GALEX, Mars Climate Sounder (MRO), Diviner (LRO),
Microwave Radiometer (Juno)
Upcoming ISS instruments OCO-3 and ECOSTRESS

	Reductionist architectures for instrument FSW
	Introduction
	Introduction
	A reductionist alternative
	Basic approach
	Example (generic) schedule
	Example loop
	Implementation
	Using interrupts
	Variations on the basic approach
	Summary

