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Abstract:

What would happen if, hypothetically, the highly successful Cassini mission were to end prematurely
due to lack of propellant or sudden subsystem failure? A solid plan to quickly produce a solution for
any given scenario, regardless of where the spacecraft is along its reference path, must be in place
to safely dispose of the spacecraft and meet all planetary protection requirements. As a contingency
plan for this hypothetical situation, a method to design viable high-fidelity terminating trajectories
based on a hybrid approach that exploits two-body and three-body flyby transfers combined with a
numerical optimization scheme is detailed in this paper.

1. Introduction

Although the majority of the times a mission is terminated in a planned fashion, sometimes the
degradation of subsystems (solar arrays or thrusters) and onboard components or the lack of fuel
in the tanks can force a premature disposal of the spacecraft. Planetary protection and organic
contamination control requirements dictate how spacecraft disposal must be carried out at the end
of the mission. These requirements, which are usually specific to the mission, are one of the driving
factors in the design of controlled end-of-life trajectories. Consider the highly successful Cassini
mission, which continues to explore and collect valuable scientific data with unprecedented details
of the Saturnian system for over a decade now. It is known that the spacecraft will be running
low on propellant in mid-to-late 2017. Several studies were carried out to design the most optimal
– in terms of science return and fuel consumption – end-of-mission (EOM) scenario. Currently,
the Cassini mission is proposed to end nominally with a series of 22 highly inclined (62o), short
period (6.5 days), ballistic orbits each passing within a few thousand kilometers of the cloud
tops of Saturn, ultimately impacting the planet on September 15, 2017 [1]. The nominal EOM
trajectory, encompassing the F-ring orbits (green), the Grand Finale orbits (blue), and the final orbit
(red) culminating with Saturn atmospheric entry, is depicted in Figure 1. This end trajectory was
incorporated in the final phase of the Solstice Mission after multiple tradeoff studies were carried
out to ensure that, per planetary quarantine requirements and before the spacecraft runs out of
propellant, the possibility of future impact with any of the icy moons was precluded. This particular
design was selected by the different science disciplines because of its attractive geometry, which
offers scientists an opportunity – otherwise unavailable – to study the intricacies of the planet’s
thermosphere as well as its complex ring system. However, this was certainly not the only available
spacecraft disposal option. Several other end-of-life options were considered; the spacecraft could
i) impact Saturn on a different path (short or long impact orbits with various inclinations) [2], ii)
∗Copyright 2015 California Institute of Technology. U.S. Government sponsorship acknowledged.
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remain in the Saturnian system (long-term stable orbits) [3], or iii) entirely escape the Saturnian
system (large heliocentric orbits). In any case, the design of such orbits is constrained by the
requirement to prevent contamination of a pristine environment and the desire to avoid collisions
with any moons, particularly Titan and Enceladus. Additionally, these orbits must be accessible
from the Cassini reference trajectory with minimal ∆V usage and maintain their characteristics over
long-term propagation under gravitational perturbations of the Sun, Jupiter, Titan, and other moons
of Saturn.

Figure 1. Representation of Cassini’s end of mission encompassing the F-ring orbits (green), the
Grand Finale orbits (blue), and the final orbit (red) culminating with Saturn atmospheric entry on
September 15, 2017 [1].

What would happen if, hypothetically, the mission were to be ended prematurely? The current
nominal EOM plan is tied to a particular future flyby geometry, initial state and time epoch and,
thus, cannot be attached to the reference path at an earlier state and epoch. As the end-of-mission
date approaches, both the uncertainty in usable propellant margins and the probability of spacecraft
systems failure increase. If the spacecraft were to run low on propellant, or one of the propulsion
subsystems were to suddenly fail, such that the engines became inoperable and control of the
spacecraft was lost, a solid plan ought to be in place to safely dispose of the vehicle and meet
the planetary protection requirements. This hypothetical ‘emergency’ situation is different from
the nominal design scenario in the sense that i) no input from the science teams is taken into
consideration (the priority is to safely dispose of the vehicle, not to collect science), ii) there are
severe restrictions on the ∆V usage (not necessarily because of the availability of propellant, but
because of the limited ability of maneuvering the spacecraft), and iii) a point solution must be
quickly produced for any possible scenario, regardless of the selected initial state or the epoch along
the reference trajectory. Thus, a robust method to efficiently design alternate EOM trajectories must
be readily available.

A design method to produce viable terminating trajectories is detailed in this paper. The methodology
is primarily based on a hybrid approach that exploits two-body and three-body resonant and non-
resonant flyby transfers combined with a numerical optimization scheme within a high-fidelity
simulation environment. Emphasis is given to the design process along with the differential
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corrections algorithms and several end-of-mission scenarios are illustrated to demonstrate the
capability of quickly computing a feasible – and hypothetical – end-of-life trajectory from a selected
point along the current reference trajectory.

2. General Methodology: Dynamical Models and Assumptions

A hybrid approach is adopted to solve the problem of designing suitable, yet hypothetical, alternate
impact trajectories for Cassini. This approach relies on an initial assessment of the design space in
a lower-fidelity model and a subsequent refined search in a full ephemeris dynamical model. Each
phase of the trajectory design process is detailed and the assumptions, constraints, and dynamical
model definitions are explained in this section.

2.1. Hypothetical Problem Definition: Assumptions and Constraints

In a hypothetical scenario, the spacecraft is flying the current reference trajectory when an unex-
pected event (degradation of power subsystems and onboard components or the lack of fuel in the
tanks) forces a premature end-of-mission. To meet planetary protection requirements, a disposal
trajectory that branches off the reference trajectory must be quickly designed and the mission ended
within six months of the initial detection of the problem. The following particular hypothetical
scenario is specified for illustration purposes:

• A subsystem failure is detected and the starting point for the alternate end-of-life trajectory is
assumed to be a few days before the Titan-115 flyby (3,817.4 km flyby altitude) on January
16, 2016. During this time period, the reference path is almost equatorial with an average
orbital inclination (with respect to the ring plane) of 1.3o.
• One maneuver is designed to modify the nominal aimpoint coordinates of the Titan-115

flyby and alter the spacecraft path from the current reference trajectory to an alternate impact
trajectory.
• Per planetary protection requirements, impact with selected icy moons must be avoided. In

this study, impact trajectories with only Saturn, Mimas, and Tethys are considered as viable
options.
• After the maneuver is performed, the new impact trajectory is ballistic and no further maneu-

vers are required to guarantee safe disposal of the spacecraft.
• A minimum flyby altitude of 1,300 km is imposed to avoid transitions to RCS control during

any subsequent flybys.
• The time-of-flight of the new impact trajectory must not exceed six months. This constraint is

based on the fact that the spacecraft may be inoperable shortly after a subsystem failure is
detected.
• Any ring crossings must be avoided as well as crossings with the moons orbital planes at the

satellites’s radial distance from Saturn.
• Due to limitations in the ∆V budget, the maneuver magnitude must be optimized.

The leg along the current reference trajectory being considered in this hypothetical scenario is
represented in Figure 2. The time frame considered spans eight days before the Titan-115 flyby
up to the Titan-116 flyby. Note that the reference path features an Enceladus flyby (E-22) prior to
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the Titan-115 flyby, and the spacecraft is in a 1:1 orbital resonance with Titan from Titan-115 to
T-116 [4], as illustrated in Figure 2(d). The objective is to perform a maneuver a few days before the
Titan-115 flyby to modify the nominal aimpoint parameters and place the spacecraft on an impact
trajectory (with Saturn or a non-icy moon) within six months.

(a) Inertial EME2000 Frame (b) Saturn-Titan Rotating Frame

(c) Orbital Inclination vs. Time (d) Orbital Period vs. Time

Figure 2. Cassini reference trajectory from January 8, 2016 (8 days prior to Titan-115) to February
1, 2016 (Titan-116). The orbital path is plotted in an inertial EME2000 coordinate frame in (a) and
in a Saturn-Titan barycenter centered rotating frame in (b). The osculating orbital inclination with
respect to the ring plane and orbital period values as a function of time are represented in (c) and (d)
respectively. The dotted lines in (d) illustrate different resonant periods with Titan.

2.2. Analysis in Different Fidelity Models

Two dynamical models are considered in this study: the Saturn-Titan Circular Restricted Three-
Body (CR3BP) model and the full ephemeris model. The lower-fidelity model serves as a platform
to gain insight into the design space via the application of mapping techniques and a differential
corrections algorithm. Integration in the full ephemeris model is needed to refine the search and
produce realistic impact trajectories that could, eventually, be flown by the spacecraft. A nonlinear
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optimizer is also tied to the full gravitational force model propagation to produce ∆V -optimal
trajectories. A basic definition of each dynamical model and differential corrections algorithms is
provided in this section.

2.2.1. The Circular Restricted Three-Body Model

The Circular Restricted Three-Body Problem serves as the basis for the initial problem formulation.
In the restricted problem, the motion of an infinitesimal third particle, P3 (spacecraft), is modeled
in the presence of two gravitationally-attracting bodies of significantly larger mass, P1 (Saturn)
and P2 (Titan). The motion of P3 is governed by the well-known scalar, second-order differential
equations of motion in standard form [5]. The state vector is defined as the six-element state vector
[x y z ẋ ẏ ż]T , where the dot indicates a derivative with respect to the nondimensional time, τ , and
relative to an observer in a rotating reference frame. The mass fraction µ is associated with the
two system primaries, µ = m2

m1+m2
, where m1 and m2 are the masses of P1 and P2, respectively. For

reference, in this analysis, the value of the mass ratio in the Saturn-Titan system is assumed to be
µ = 2.3664×10−4.

The computation of continuous multi-body impact trajectories with different itineraries and con-
straints in the nonlinear system involves the use of a multi-dimensional version of a Newton-Raphson
differential corrections process implemented as a shooting method; in a multiple shooting algorithm,
the trajectory is discretized into a series of “patch points” and multiple integrated segments are
employed to satisfy the trajectory constraints. The general scheme appears in Figure 3 with the
representation of an initial guess in Figure 3(a) and a converged solution in Figure 3(b). The
initial path, represented via a series of intermediate arcs, is discontinuous in position and velocity.
The goal is to employ the corrections algorithm to enforce continuity in all seven states, that is,
position, velocity, and time. Many different formulations exist to implement a multiple shooting
process. In this investigation, a straightforward free variables and constraints implementation is
selected [6, 7, 8]. This approach employs a single vector update within each iteration and a single
scalar criteria for convergence. It is not the only, nor the best, implementation for all applications.
But, the method is quite robust and performs well for all of the demonstrations and examples in
this study. Consider a free variable vector X̄ comprised of a n number of state vectors and n−1
integration times, i.e., X̄ = [x̄1 ... x̄n τ1 ... τn−1]

T . To ensure that the trajectory possesses some
desired characteristics, the free variable vector is subject to m scalar constraint equations satisfying
F̄(X̄) = [x̄τ

2− x̄2 .. x̄τ
n− x̄n]

T = 0̄, where the vectors x̄τ
n are the final integrated states along each

trajectory arc after any propagation step. To construct a smooth, continuous path, the discontinuities
represented in F̄(X̄) must be removed. In the design of impact trajectories, likely quantities to
be constrained include position and velocity as well as end-point constraints, such as distances or
angles.

Given this problem formulation, the goal is the numerical computation of a solution X̄∗ that satisfies
the constraint equations, that is, F̄(X̄∗) = 0̄, within a specified tolerance. Through this iterative
process, the design vector X̄ is updated using the Jacobian matrix, that is, DF̄(X̄), which requires
partial derivatives relating the variations in the constraints to the changes in the free variables.
Along each arc, the partials of the end states with respect to the initial states are, in fact, simply
the elements of the state transition matrix (STM). The time derivatives are evaluated at the final
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Figure 3. Schematic of a General Multiple Shooting Algorithm [8]

state along each integrated arc. If the number of free variables equals the number of constraints, a
unique solution is obtained via a simple multi-variable Newton’s Method. If more free variables
exist than constraints, infinitely many solutions exist. The selection of a single solution among all
possible solutions requires the specification of some selection criteria. In this study, a solution is
obtained by employing an iterative first-order minimum-norm update equation; a minimum-norm
solution is selected because the difference between one iteration and the next is minimized to ensure
that the converged solution remains close to the initial guess and, therefore, retains most of the
characteristics of the initial guess.

2.2.2. The Restricted n-Body Problem

The n-body model, frequently formulated as an ephemeris model, is fundamental in the analysis
of trajectories that support missions since it is higher-fidelity and allows for the incorporation
of perturbations and additional gravitational forces that exist in the true dynamical environment.
Suitable approximations for the relative locations of the celestial bodies are obtained directly from
a NASA Jet Propulsion Laboratory (JPL) planetary ephemeris data file. In this study, the mutual
gravity between the n point masses is assumed to be the only force acting within the system. Then,
from Newton’s Second Law, the equation of motion that describes the relative motion of m1 and m2
within a system of n bodies is derived assuming that the masses in the system are constant and all
derivatives are evaluated relative to an (unaccelerated) inertial observer [9], i.e.,

d2r̄
dt2 +G (m1+m2)

r3 r̄ =−G
∑n

j=3 m j

(
d̄ j

d3
j
− ρ̄ j

ρ3
j

)
where r̄ = r̄2− r̄1, ρ̄ j = r̄ j− r̄1, and d̄ j = r̄− ρ̄ j. In the two-body problem, all the perturbing terms
on the right-hand side of the equation are removed and a closed-form analytical solution is available.
However, this analytical result no longer exists if even one more body is added to the system. But,
the dynamical system of equations can be certainly numerically simulated.
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3. Application to the Design of Cassini End-of-Life Trajectories

An initial assessment of the design space is done in the Saturn-Titan CR3B model via various map
generation techniques combined with the application of a robust differential corrections algorithm to
produce impact trajectories that meet a subset of requirements. This process involves the propagation
of a very large number of trajectories that end impacting Saturn after one, two, or three flybys with
Titan. However, because of the simplicity of the model, the propagations can be done quickly and
efficiently and without having any a priori knowledge of the solution space. These numerically
integrated trajectories in the nonlinear system are then visualized on a two-dimensional map to
aid in making general observations about the design trade space. Because these trajectories do not
meet the full set of requirements, such as ring plane crossing constraints, a more refined search is
performed in the higher-fidelity dynamical model to produce feasible, flyable trajectories.

3.1. Maps: Initial Assessment of the Design Space

Various types of maps are useful to aid in the interpretation of the phase space in this problem. In
general, maps reduce the dimensionality of the problem and are a valuable tool in the study of many
different types of orbits and their natural flow in the vicinity [10, 11, 12, 13]. The concept for the
construction of a general map is illustrated in Figure 4. To construct a map, a surface Σ that is
transverse to the flow and may be higher-dimensional and not necessarily defined in physical space,
is defined at a particular point along the flow. In Figure 4, a periodic orbit, defined in terms of the
state x, is initiated in the plane Σ and returns to intersect exactly the same point on the plane after
one period. Such a point is denoted a ’fixed point’. Then, for any point x ∈ Σ sufficiently close to
the fixed point, a propagation of the nonlinear differential equations through x, intersects the plane
Σ again at the first return point xi+1, generally near the original fixed point. Similarly, a propagation
in negative time intersects the plane Σ at xi−1.

Figure 4. General Map Diagram

Maps are most insightful when the appro-
priate set of initial conditions is selected.
For instance, if the flow in the vicinity of
a periodic orbit is to be explored, then a se-
ries of small perturbations in position and
velocity are added to the state associated
with the periodic orbit and the resulting ini-
tial conditions are propagated forward and
the returns to the map recorded and visu-
alized on the 2D surface of section to gain
insight into the quasi-periodic flow in the
vicinity of the periodic orbit. In this study,
it is of interest to analyze trajectories with
a very particular itinerary, that is, trajecto-
ries that end on impact with Saturn after at least one Titan flyby. At the very least, a Titan flyby
is needed to achieve the end goal of impacting Saturn for a reasonable propellant cost. Therefore,
a randomly selected set of initial conditions will not provide meaningful insight into the problem
since only trajectories that impact the planet within six months are to be considered. There are
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different ways to construct a meaningful set of initial conditions for this particular problem, but
pseudo-state theory [14] is exploited in this study.

3.1.1. Quick Generation of Impacting Flyby Trajectories via Pseudo-State Theory

Given that at least one Titan flyby is to be performed before Saturn impact, a set of initial conditions
for the map can be generated based either on the conditions at Saturn impact itself or the conditions
at the last Titan flyby (which inevitably ends in Saturn impact as well). The problem with defining
initial conditions for the map at Saturn impact (and propagating these states in negative time) is
that there is no control over any of Titan flybys associated with these impact trajectories. The only
efficient way to reduce the ∆V is to exploit Titan’s gravitational effect on the spacecraft. If there’s no
control on the flyby altitude, then we end up integrating many useless trajectories that require very
large amounts of propellant to impact the planet. The alternative is to produce a set of flyby initial
conditions at Titan that are guaranteed to end on Saturn impact when propagated forward in time.
This is done by imposing bounds on orbital parameters such as minimum altitude, outgoing V∞

vector magnitude, and orbital inclination before and after the flyby. These constraints are necessary
to avoid ring and icy moons plane crossings as well as to maintain the orbital inclination of the
incoming trajectory near the orbital plane of the reference trajectory and, thus, reduce the size of
the required maneuver. The initial conditions at the Titan flyby are parameterized as,

v∞, α, β Magnitude, right ascension and declination of the outgoing V∞ vector
(bounded values).

φ = 0 True anomaly (fixed value).
rpmin = 3,875 km Minimum flyby radius (minimum flyby altitude of 1,300 km, fixed

value).
θ ∈ [0, 2π] Signed angle between the B-Plane coordinates T and B (bounded

values).

Then, the appropriate set of initial conditions is generated by uniformly sampling the ranges of the
free flyby parameters, that is, magnitude, right ascension and declination of the outgoing V∞ vector
and θ . Additionally, the resulting trajectories are filtered based on additional constraints:

• The radius of periapsis after the flyby (r+p ) in Saturn-centered coordinates must be less than
the minimum impact radius.
• The orbital inclination after the flyby (i+) must be limited such that the incoming trajectory

does not intersect the rings or impact any icy moons.
• The orbital inclination before the flyby (i−) must be limited to remain in a plane close to that

of the spacecraft’s reference trajectory orbital plane.

The constrained parameters i+, r+p and i− can be estimated using the flyby state propagated in a
two-body model at the sphere of influence of Titan. However, third body effects are not considered
in this conic propagation and the resulting states are no longer accurate when propagated in a
three-body model including Titan’s gravitational effect. That is, a two-body flyby state that ends on
Saturn impact may no longer impact the planet when propagated in the Saturn-Titan CR3B model.
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This effect is illustrated in Figure 5, where the trajectories in red and black represent the conic and
three-body paths, respectively. The key in this process is to quickly generate a suitable set of initial
conditions without relaying on any numerical integration for the map generation. To be able to
exploit conic approximations without the loss of fidelity when transitioning from one model to the
other, pseudo-state theory [14] is applied to the computation of a conic path that approximates a
three-body trajectory at the pseudo-sphere of influence (blue trajectory in Figure 5).

Based on pseudo-state theory mapping principles, for a given Titan-centered flyby state defined by
[tI, rI, vI], there are two associated pseudo-states, before and after the flyby: r∗+I , v∗+I and r∗−I , v∗−I ,
where the negative and positive upper scripts represent states before and after the flyby, respectively.
These states can be computed using the pseudo-state mapping as follows1,

Secondary conic pseudo-state Primary conic pseudo-state
r∗+I = r+s +(tI− t+s )v+s R∗+I = RTitan + r∗+I

v∗+I = v+s V∗+I =VTitan +v∗+I

where,

t+−s , r+−s , v+−s Titan-centered state at the pseudo-sphere of influence after (+) or
before (-) the flyby

tI, rI, vI saturn-centered flyby state
tI, r∗+−I , v∗+−I Titan-centered pseudo-state after (+) or before (-) the flyby

tI, R∗+−I , V∗+−I Saturn-centered pseudo-state after (+) or before (-) the flyby
RTitan,VTitan Saturn-centered Titan’s state at the flyby time

allowing for the straightforward computation of i+ and r+p from tI, R∗+I , V∗+I and i− from tI, R∗−I , V∗−I .
Once the set of initial conditions is selected, the next step in the process is the construction of the
hyperplane Σ that defines the map. In this study, Σ is located such that y = 0, which is a common
and widely used definition. Once the surface of section is defined and the set of appropriate initial
states constructed, then states are integrated backward in time and the returns to the map of each
trajectory are recorded and plotted using a combination of position and velocity states, i.e., x− ẋ.
The resulting one-sided maps appear in Figure 6: Figure 6(a) represents the ’positive’ map (ẏ > 0)
and Figure 6(b) corresponds to trajectory crossings with ẏ < 0. Every colored dot on the map, except
for the gray-dots, represents a return of an impact trajectory to the map, that is, the six-dimensional
state associated with each one of these dots, when propagated forward in time, results in an impact
trajectory with Saturn and contains at the very least one Titan flyby. Any other Titan flyby can
certainly occur but is not controlled by the selection of the initial conditions. Further insight into
the solution space can be gained by coloring the returns to the map based on the number of flybys
associated with each individual impact trajectory. That is, the blue dots correspond to impact
trajectories with at least one flyby, the magenta dots represent trajectories that impact Saturn after
at least two Titan flybys, and the green dots, which are very few and, although hard to spot, only
appear in Figure 6(a), are associated with impact trajectories with three Titan flybys. Since the end

1The same expressions can be used to calculate the pseudo-states before the flyby.
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(a) Positive One-Sided Map (ẏ > 0)

(b) Negative One-Sided Map (ẏ < 0)

Figure 6. Impact Maps with Saturn located at (−µ,0) and Titan at (1−µ,0): the cyan dots represent
the returns of the nominal reference trajectory to the map, the gray dots display general periodic
and quasi-periodic bounded behavior at this particular energy level, and the colored dot represent
impact trajectory with one, two, and three Titan flybys.
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in the process, allowing the designer to quickly evaluate different impact trajectories by exploring
various regions on the maps. Once a suitable impact trajectory is identified, a differential corrector
is employed to produce a trajectory that is continuous in position and velocity except at a connecting
patch point between the reference path and the impact trajectory, where a ∆V to join the two arcs is
applied. Although these maps offer a wide variety of impact trajectories ranging in time-of-flight
and ∆V , only a small but representative subset is presented in Figure 7.

The time-of-flights associated with these sample impact trajectories are relatively short and well
below the six month time-of-flight constraint: 10.9 days, 71.8 days, and 125.1 days for the impact
trajectories with one, two, and three Titan flybys, respectively. Recall that the objective of this part
of the analysis is not to produce ∆V -optimal nor feasible trajectories, but rather to quickly gain
insight into the design space and the availability of possible solutions. Nevertheless, it is worth
noting that the ∆V magnitude associated with all three trajectories is below 75 m/s. The one and
two Titan flyby solutions illustrated in Figures 7(a)-7(b) and Figures 7(c)-7(d) are obtained from the
map in Figure 6(b), whereas the three Titan flyby solution in Figures 7(e)-7(f) is computed from
the map in Figure 6(a). Note that other solutions with different resonant and non-resonant arcs are
available from the map but these three impact trajectories serve as illustrating examples; however,
no solutions with more than three Titan flybys are identified due to TOF and flyby altitude control
restrictions.

Of course, there are limitations to the use of these maps. The biggest drawback is the lack of control
over the second and third Titan flybys, which limits the leverage on the reduction of the ∆V . As
expected, any single flyby trajectory, such as the one illustrated in Figures 7(a)-7(b), will meet the
full set of constraints, but the associated propellant cost exceeds the limit. It is clear that more than
one Titan flyby is needed to reduce the ∆V , but since there is no control over any subsequent flyby,
many of the resulting multi-flyby trajectories violate the ring-plane crossing constraint. Selecting
initial conditions that yield multiple targeted flyby trajectories is a topic for future investigation. Yet,
the maps, as constructed in this study, are useful and insightful, allowing the designer to quickly
assess the solution space from a qualitatively perspective. Inevitably, a refined search is needed to
fine-tune these impact trajectories.

3.2. Refined Search: Feasible, Optimal, Multi-Flyby Impact Trajectories

The next step in the design process consists of 1) approximating a multi-flyby solution by series
of patched-conic flybys and 2) using this solution as an initial guess to the multiple-shooting
optimization problem. While the generation of patched-conic solutions is computationally cheap,
the use of high-fidelity gravity models and the application of the full set of constraints make the
second step in the refined search process computationally expensive.

3.2.1. Generation of Patched-Conic Solutions

A directed graph (a set of nodes connected by edges with a specific direction) serves as a method to
represent patched-conic solutions: each node on the graph contains the incoming V∞ vector and the
epoch of closest approach of the flyby and each edge contains the outgoing V∞ vectors connecting
two nodes. The first node (root) in the graph consists of a set of initial conditions: incoming V∞
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(a) One Titan Flyby – Rotating Frame (b) One Titan Flyby – Inertial Frame

(c) Two Titan Flybys – Rotating Frame (d) Two Titan Flybys – Inertial Frame

(e) Three Titan Flybys – Rotating Frame (f) Three Titan Flybys – Inertial Frame

Figure 7. Sample impact trajectories with one, two and three Titan flybys plotted in the rotating and
inertial frames. The red dot indicates the maneuver location and the blue dot represents the initial
state on the reference trajectory. Titan’s orbit is plotted in magenta and Saturn rings appear in gray.
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vector, v−∞ , and flyby epoch, t f b. The initial conditions are obtained from the spacecraft reference
trajectory at a particular flyby. Then, from the initial conditions, new nodes are generated by using
three basic, well-known, numerically stable algorithms that produce non resonant, resonant, and
π-transfer arcs [15]. New nodes are further expanded using the same algorithms and a sequence is
obtained by traversing the graph until a controlled impact is achieved with Saturn or one of Saturn’s
non-icy moons . Without any additional constraints, the directed graph grows exponentially and
traversing all the possible solutions becomes an impossible task. Consequently, it is important
to impose constraints when generating the graph. For instance, the number of maximum flybys
in the sequence, the maximum time-of-flight or the minimum flyby altitude are parameters to
be limited. The number of new nodes generated by each algorithm must also be constrained.
While the non-resonant and π-transfer algorithms produce a finite number of nodes (solutions), the
resonant transfer algorithm generates a bounded set of infinite solutions. These solutions can be
parameterized by a single variable: the delta-crank angle (−∆kmax ≤ ∆k ≤ ∆kmax) or flyby altitude
(hmin ≤ h≤ hmax). These parameters are then used to search for solutions that minimize the radius
of periapsis of the trajectory after a flyby while avoiding any ring-plane crossing, reducing the
number of solutions generated by the resonant strategy and, hence, reducing the size of the solution
graph.

3.2.2. Solving the Multiple-Shooting Optimization Problem

A candidate solution sequence, found by traversing the graph generated in the previous step, is
composed of an ordered list of flyby epochs and incoming and outgoing V∞ vectors. Each element
of the list is employed to create a control point in the multiple-shooting optimization problem
previously defined. Additionally, it is necessary to define an arc that connects the reference
trajectory to the candidate solution. To do so, the spacecraft reference trajectory is propagated to a
given future epoch – prior to the nominal flyby epoch – where a correction maneuver is applied. At
this state, the spacecraft trajectory transitions from the reference to the new impact trajectory. For
reference, the variables associated with the initial leg (up to the point where the correction maneuver
is applied) and the variables associated with each subsequent flyby are displayed in Table 1. Once an
initial guess is constructed, continuity in time, position, and velocity are enforced between control
points as defined in Section 2.2.1. Additional constraints are applied to ensure that the trajectory
ends on Saturn (or a selected moon) impact.

The simulation environment in which the problem is solved needs to be accurately defined. In
this study, the gravity field is composed of the Sun, Saturn (including J2 and J4 terms), Mimas,
Rhea, and Titan, and the Copernicus software tool [16] with the SnOpt optimizer [17] serves as the
platform for the problem formulation. Due to the simplified gravity model used in the patched-conic
approximation, not all the candidate sequences generated in step 1 can be converged in the high-
fidelity environment. As expected, when the trajectory approaches Saturn, the J2 and J4 coefficients
in Saturn’s gravity model make the flyby epochs predicted by the patched-conic solution off by
several hours. This difference results in either a large correction maneuver or non-convergence by
the optimizer.
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Table 1. Variables in multiple-shooting optimization problem
Initial leg guess variable bounds

Initial epoch t0 fixed
Coast time 0 free 0≤ ∆t < t f b1− t0

Correction maneuver ∆v free
Flyby legs

Flyby epoch t f b i free
Outgoing V∞ vector v+∞ i free

Flyby altitude hi free hmin ≤ hi
Signed angle between

B-Plane coordinates, T and B
θi free θ ∈ [0, 2π]

True anomaly 0 fixed
Impact leg

Coast to impact ∆timpact = 1day free ∆tmin ≤ ∆timpact ≤ ∆tmax

Sample Saturn Impact Trajectory A representative feasible solution for a Saturn impact tra-
jectory appears in Figure 8 plotted in a Saturn-centered inertial frame. This particular solution
consists of four Titan flybys – three resonant and one non-resonant flyby transfers – culminating
in Saturn impact. By definition, in a Titan-to-Titan n:m resonant transfer, the time-of-flight is an
integer multiple of Titan’s period, where m represents the number of spacecraft orbits around Saturn
and n is the number of Titan revolutions [18]. Consequently, the flybys at the beginning and end
of a resonant transfer occur at approximately the same place in Titan’s orbit. The longitude of the
encounters occurs on a fixed line passing from Saturn to Titan and the resonant transfer may be
inclined. In a non-resonant transfer, the time-of-flight is not an integer multiple of the gravity-assist
body’s orbit. Non-resonant flybys, therefore, occur at different longitudes in Titan’s orbit. Because
the flybys of a non-resonant transfer do not occur at the same longitude, the spacecraft’s orbit plane
is constrained to be the same as the gravity-assist body’s orbit plane. The change in orbital period
along the impact trajectory in Figure 8 is illustrated in Figure 9(b). After the first Titan flyby, T-1,
the spacecraft’s trajectory is in a 1:1 resonance with Titan; the second flyby, T-2, changes the orbital
period to a 4:3 resonance, and the third flyby, T-3, transitions it to a 3:2 resonance. After the fourth
flyby, T-4, the spacecraft is in a non-resonant path to Saturn impact. Note that the orbital elements
before the time of the ∆V correspond to that of Cassini’s reference trajectory.

The selected Saturn impact trajectory meets the full set of requirements: 1) it does not intersect
the rings, i.e., the inclination of the final leg (impact arc after the last targeted Titan flyby) at the
time of impact, with respect to the ring-plane inclination, is 6.48o)2, as illustrated in Figure 9(a),
2) it does not intersect the the path of any of the considered moons (those included in the gravity
field, i.e., Rhea, Mimas, and Titan), and 3) it is ∆V -optimal. The change in radius of periapsis is
shown in Figure 9(c). For reference, the dotted blue line highlights the impact radius considered in
this study. The first flyby raises the radius of periapsis to avoid undesired ring-plane crossings, but
subsequent flybys are exploited to reduce the impact trajectory’s rp down to the desired radius. For
completeness, the table provided in Figure 8 details the radius and epoch associated with each of
the seven ring-plane crossings of the impact trajectory, and it is apparent that none of them are close

2The distance to the F-ring – 140,000 km – drives the ring-plane crossing constraint.
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(a) Orbital Inclination vs. Time (b) Orbital Period vs. Time

(c) Radius of Periapsis vs. Time (d) Ring-Plane Crossings Radii and Epochs

Figure 9. Osculating orbital elements as a function of time associated with the Saturn impact
trajectory illustrated in Figure 8. For reference, the epochs associated with the correction maneuver
and each of the four Titan flybys are represented by solid black lines.

to the F-ring radius of 140,000 km. The size of the correction maneuver is 3.998 m/s and the total
time-of-flight is 88.66 days.

Sample Moon Impact Trajectory A representative feasible solution for a Mimas impact trajec-
tory appears in Figure 10. This particular trajectory consists of only one non-resonant Titan flyby at
an altitude of 2,206 km, as shown in Figure 11(b). The size of the required correction maneuver is
11.763 m/s and the total time-of-flight to impact is 18.32 days. Figure 11(a) shows the change in
orbital inclination with respect to the ring plane; at the time of impact, the inclination is 0.7o. Other
one-flyby solutions with the other moons are available but omitted for brevity.
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(a) Orbital Inclination vs. Time (b) Orbital Period vs. Time

Figure 11. Osculating orbital elements as a function of time associated with the Mimas impact
trajectory illustrated in Figure 10. For reference, the epochs associated with the correction maneuver
and the Titan flyby are represented by solid black lines.

4. Summary of Findings and Conclusions

The possibility of a premature end-of-mission is a common concern amongst mission designers,
especially in mission scenarios involving pristine environments with strict planetary protection
requirements. A robust and efficient design method to quickly produce viable terminating trajec-
tories is presented in this paper. The proposed design process involves two separate, independent
approaches: an initial assessment of the global solution space by exploiting mapping techniques
combined with pseudo-state theory in the Saturn-Titan Circular Restricted Three-Body Problem
and a highly refined search method to produce individual, feasible point solutions that meet the
full set of requirements and constraints for each specific mission scenario. Although the global
method, as currently developed, does not produce flyable impact trajectories, it certainly offers
much more insight into the general type of available solutions and allows the designer to quickly
make general observations about the available trade space in terms of number of flybys, required
∆V , and estimated time-of-flight to impact. The application of various mapping techniques to
this problem is also advantageous allowing the dimensionality of the problem to be reduced and
thousands of potential impact trajectories to be visualized on a condensed 2D surface of section.
The highly successful Cassini mission serves as working platform to illustrate the design process,
but the proposed techniques can be easily applied to other spacecraft missions.
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