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A5 Low Temperature Li-lon, Supercapacitor  Northridge
semeaes. Hybrid Energy Storage System

Challenge: Small spacecraft and in situ instruments
require energy storage technology that can operate
at low temperatures and provide power for high
power payloads such as communication and
propulsion.

Solution: JPL Hybrid Energy Storage System
consisting of a new JPL electrolyte Li-ion chemistry
coupled with high power super-capacitors to enable
high discharge rate at low temperatures.

(OF:111:10)1113% Current SOP Proposed Tech

Operating Temperature -20C to 20C -50C to 20C
Discharge Rate <1C >10C
Battery Can Seal Welded (expensive) Crimped (COTYS) 4
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* Benefits
* Cold temperature operation eliminates energy for battery heating
* High discharge rate enables high power operations such as
communication and instrument operation normally not possible

* Relevance & Impact

* Enables 3 classes of Missions:
* Landers & in situ instruments
* Europa Lander
* Mars Sample Return
e Sensor networks
* Deep Space small spacecraft
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o ... CSUNSAT1: A CSUN/JPL Collaboration ™

* Funded by NASA’s 2013 Small Spacecraft Technology Program
(1 FTE/yr for 2 yrs)

* Time frame: 11/1/2013 -9/27/2015

JPL Energy Storage Payload

CSUNSatl: 2U CubeSat
Processor
Communications
Power System
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Student Energy Storage

Management/Training Payload
I

Cell Chemistry
Design/Selection

Systems Integration/Testing

Environmental Testing
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CSUNSAT1: Overview
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Communications Power System Processor Power System
9.6Kbps transceiver f| Provides 3.3, 5, dsPIC33 Hot SRB
CW Beacon |PAY/ No RTOS
Antenna Switch Exp. control Command Dict.
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* Problem
**Energy storage payload requires operational temperatures
below -10°C.
* Solution

*»*Divide shunt regulator into two boards so that heat is
dissipated into space.

<€— Hot Shunt Regulator Board

Keep majority of
heat dissipation €= Cold Shunt Regulator Board
away from
payload | <€ Payload
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* The payload consists of an electronics board, 2 supercapacitors and one
low temperature Li-lon Battery

 All interfaces with the CubeSat are through the cubesat connector

510.0
| Width(em) 9.0
9.6
4.7
483.8

Payload Components:
1. Battery cell

2. Super-capacitors Payload EM2 integrated testing
3. Payload electronics 10 10
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* Battery
e 2.00V to 3.60V nominal operation.
e~ 2.20 Ah

* [-40C - +20C] operating temperature
range

e Supercapacitor (2 per payload)
* 350F each
 [-40C - +20C] TBR temperature range

11 11
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* Simple 12C Interface
* Local ADC and port expander

* Telemetry
* Battery and Capacitor Voltages and Currents
* Battery Temperature
* Charger and load currents

* Load Circuit
e 1-15A in 1A increments

e Hardware Fault Protection

13
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FP type
Battery over voltage >3.7V

Battery voltage

Battery

Temperature

Supercap cell

voltage

Supercap cell <0V
voltage

Deploy Switch <0.5V

Fault Condition

Clamp Battery string

Disconnect discharge
FET but not charge FET
so battery can charge
Switch Off Battery —
Switch off both charge
and discharge FET

Bypass charge current

Supercap offline

Ensure that payload
battery and Super-
capacitor are
completely
disconnected

Detection

unclamps

Software Software

<38°Cno

safety issue

Comments

Battery is
overcharged

Not a safety issue.

Battery below min.

capacity.
Potential shorted
battery

Charge current
bypasses the cell

Vented?!

This signal is to be
kept low during
launch.

14
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Ground Support Equipment
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15

Test
Connector

Optional
DAQ

Payload

BOARD

15
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* Performance capabilities down to -40°C.
1. Baseline Battery Testing.

2. Low Temperature Battery Cell Testing.
3. Super-capacitor Cell Testing.

4. Hybrid Testing.

5. Environmental Testing.

16 16
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Baseline Li-ion Battery Performance

California State University

Northridge

9.0
Test Conditions
Temperature = 20°C =T =20C
Dischargerate =0.2A(C/5) |
8.5 Discharge voltage cut-off = 6.0 —T=-10C
Room Temperautre Charge Conditions: C/5 (0.2A) —T =-15C
| with C/10 Taper
30 &% ~T=-20C
—T=-25C
" --T=-30C
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Percent Maximum Discharge Capacity, %

Test Conditions

Temperature = 20°C
Discharge rate = 0.2A (C/5)
Discharge voltage cut-off=6.0
Room Temperautre Charge Conditions: C/5 (0.2A)

with C/10 Taper

-40

-30

-20

-10 0 10 20

Temperature, °C

» Sharp decrease in usable capacity below -15°C.
* Less than 20% capacity retention at -30°C.
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Low Temperature Electrolyte Li-ion Cell Northridge

Jet Propulsion Laboratory NGV/tOS/A123 Li-lon Cell (L/FEPO4)
Colfornianstte ofechnolosy JPL Electrolyte: 1.20M LiPF in EC+EMC+MB (20:20:60 vol %) + 2% VC

4.50

Test Conditions
Charge conditions: 0.44 A (C/5 rate) with Taper at room

404 temperature
Discharge Rate = 2.2 A (C rate)

Temperature = 20°C & -40°C

Cell Voltage

+ Discharge at -40C

L R Discharge at 20C

1-00 T T T T T T T T T
000 025 050 075 100 125 1350 175 200 225 250

Discharge Capacity, Ah

Reference: M. C. Smart, B. V. Ratnakumar, K. B. Chin, L. D. Whitcanack, and S. Surampudi,
“Performance Characteristics of Lithium-lon Technology Under Extreme Environmental Conditions,” /st
International Energy Conversion Engineering Conference, IECEC, Portsmouth, VA, Aug. 17-21 2003.
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Hybrid Performance
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Voltage

4.00

3.50

2.50

2.00

1.50

Test Conditions
Discharge rate (Hybrid) = C/2 (1.1A)
Charge rate =CC (C/2) with C/20 taper
Discharge Voltage Cut-off = 2.0V
Temperature = 20°C & -40°C
..................... —=—Li-lon Cell
——Hybrid (T = 20C)
1 ——Hybrid (T = -40C)
2.18 Ahr
\ e \'\
K_ | 2.30Ahr
1.44 Ahr
0.00 1.00 2.00 3.00

Capacity, Ah

4.0

3.5

——Li-lon Cell Only

——Hybrid Battery

F

Test Conditions

Discharge Pulse Rate = 15A
Duty cycle = 1 Sec Pulse, 5 Sec Rest

Temperature = -40°C

50

10.0

15.0

20.0

Elapse Time, sec

20

25.0
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JPL Environmental Testing

Pressure < 107 torr
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Tvac cham er

Voltages & Current
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In Flight Sequences

22 22
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Spacecraft Checkout
.
.

Primary Experiment

Nominal Temp Intermediate Temp Cold Temp

Battery, SuperCap and Hybrid Characterization
.

23
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10.2.4 Phase IV: Pavload Checkout (nominal temperature)

*Payload battery capacity check.

— Conduct at least 1 full charge/discharge cycle on the payload battery using on-board
CC/CV charge algorithm followed by C/10 (or similar) discharge down to 2.0V.

*Payload Super-capacitor functional check (if possible).
— Conduct at least 1 full charge/discharge cycle on the Super-capacitor
bank using on-board CC/CV charge algorithm followed discharge
(max-rate) down to 2.0V.
Full payload functional check
— Ensure Super-capacitor voltage “matches” (+/- 0.2) the payload
battery voltage.
— Connect both battery and Super-capacitor payloads to the power bus
— Monitor all cell voltages and permit voltages to equilibrate to ~2.0V.
— Conduct at least 1 full charge/discharge cycle on the hybrid energy
system using on-board CC/CV charge algorithm (max-rate)
followed discharge (any rate) down to 2.0V.
*Success Criteria:
— Both battery and Super-capacitor functional.
— Hybrid system i1s functional.
— Capacity loss on the battery is < 10%.

24
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10.2.5 Phase V & VI: Payload Experimentation - Nominal Temp. (T > 0C)

*Test 1: Payload battery characterization at 100% SOC
Step 1: CC/CV charge at max-rate up to 3.7V with taper down to C/50.
—  Step 2: At 100% SOC, three 1-sec discharge pulse cycles (1 min rest between each cycle) at 15A.
—  Repeat steps 1 & 2 for 5-sec discharge pulse rates 10A.
Repeat steps 1 & 2 for 10-sec discharge pulse rates SA.

*Test 2: Payload battery characterization at 50% SOC
Step 1: CC charge up to 100% SOC based on charge duration.
—  Step la: Discharge to 50% SOC
—  Step 2: Three 1-sec discharge pulse cycles (1 min rest between each cycle) at 15A.
—  Repeat steps 1 & 2 for 5-sec discharge pulse rates 10A.
Repeat steps 1 & 2 for 10-sec discharge pulse rates SA.

*Test 3: Payload hybrid characterization at 100% SOC
Step 1: CC/CV charge at max-rate up to 3.7V with taper down to C/50.
—  Step 2: At 100% SOC, three 1-sec discharge pulse cycles (1 min rest between each cycle) at 15A.
—  Repeat steps 1 & 2 for 5-sec discharge pulse rates 10A.
Repeat steps 1 & 2 for 10-sec discharge pulse rates SA.

*Test 4: Payload hybrid characterization at 50% SOC
Step 1: CC charge up to 50% SOC based on charge duration.
—  Step 2: Three 1-sec discharge pulse cycles (1 min rest between each cycle) at 15A.
—  Repeat steps 1 & 2 for 5-sec discharge pulse rates 10A.
—  Repeat steps 1 & 2 for 10-sec discharge pulse rates SA.

*Success Criteria:
—  All tests completed successfully.

—  Experiments “minimally” substantiates improved performance (e.g., lower polarization and/or impedance)
by hybrid system over stand-alone battery.

California State University

Northridge
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10.2.6 Phase V & VI: Payload Experimentation — As cold as possible — goal
(T =-40°C)
*Test 1: Payload battery characterization at 100% SOC
Step 1: CC/CV charge at max-rate up to 3.7V with taper down to C/50.
—  Step 2: At 100% SOC, three 1-sec discharge pulse cycles (1 min rest between each cycle) at 15A.

—  Repeat steps 1 & 2 for 5-sec discharge pulse rates 10A.
Repeat steps 1 & 2 for 10-sec discharge pulse rates SA.

*Test 2: Payload battery characterization at 50% SOC
Step 1: CC charge up to 100% SOC based on charge duration.
—  Step la: Discharge to 50% SOC
—  Step 2: Three 1-sec discharge pulse cycles (1 min rest between each cycle) at 15A.
—  Repeat steps 1 & 2 for 5-sec discharge pulse rates 10A.
Repeat steps 1 & 2 for 10-sec discharge pulse rates SA.

*Test 3: Payload hybrid characterization at 100% SOC
Step 1: CC/CV charge at max-rate up to 3.7V with taper down to C/50.
—  Step 2: At 100% SOC, three 1-sec discharge pulse cycles (1 min rest between each cycle) at 15A.
—  Repeat steps 1 & 2 for 5-sec discharge pulse rates 10A.
Repeat steps 1 & 2 for 10-sec discharge pulse rates SA.

*Test 4: Payload hybrid characterization at 50% SOC
Step 1: CC charge up to 50% SOC based on charge duration.
—  Step 2: Three 1-sec discharge pulse cycles (1 min rest between each cycle) at 15A.
—  Repeat steps 1 & 2 for 5-sec discharge pulse rates 10A.
—  Repeat steps 1 & 2 for 10-sec discharge pulse rates SA.

*Success Criteria:
—  All tests completed successfully.

—  Experiments “significantly” substantiates improved performance (e.g., lower polarization and/or impedance)
by hybrid system over stand-alone battery.

26
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10.2.8 Phase VII: Extended mission (Optional) — Life testing of battery hybrid

*Test 1 — Life testing of battery hybrid
—  Step 1: Connect hybrid system to main S/C power bus.
—  Step 2: Perform eclipse cycling of the hybrid system (nominal S/C rates).
—  Step 3: Perform intermittent high pulse discharges (three cycles 1-sec 15A) of the hybrid battery over

variable temperature range.
— Step4: Repeat2 & 3

*Success Criteria:
—  Demonstrate life and high power capabilities over 200 eclipse cycles.

27



California State University

Northridge

wweesee Flight Payload Testing - Successful

Case E - 14A pulse
CHO -PL_BATT TLM 15 1. 48743 volts - Actual 1s 2 95958 volts
CHI1 -PL_BATT CURE_TLM 1s 069763 volts - Actual iz -6.96005 amps
CHZ - PL. BATT TEMNP 15 033875 volts - Actualis 1960039 C
CH3 - SUPERCAP 1 TILM 18 1.50574 volts - Actual 13 2. 98971 volts
CH4 - SUPERCAP 2 TIM 1 0.59265 volts - Actual 1z 1.10180 volts
CHS5 - SUPERCAP CURE _TLM 1 0.62927 volts - Actual 1s -7.87281 amps
CH6 - CHARGE CURR TLM 15 0.00000 volts - Actual 15 -0.00260 amps
CH7 - LOAD CURE TLM  1s2.07458 volts - Actual 15 14.85834 amps

Command Vs Actual

12 . *

- ™ ? .

=

e * L R

L ] : o ¢ 1!
2 : L
. ' o 2 4 & B 10 12 14 16
Payload FM Integrated Testing Command (4

®EMI1-3 eFMI-1-Bat we»FMI1-1Cap
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* JPL Hybrid energy storage system exhibited
excellent energy storage (>2x) and power (8C-

rate) capabilities down to -400C.

* Capacity retention >70%.

* Capacity retention for baseline battery < 20%.

e Supports >15A pulse current down to -400C.

e COTS cell design is functional in space environment.

e Future work

* Integrate payload to CSUNSat1.
* Conduct experiments in the space environment.

29
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| Total Mass (gm) | 125.0
| Width (cm)  [SRRREX
9.5
2.0
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