NASA Software Cost Estimation Model:
An Analogy Based Estimation Method

Jairus Hihn
Leora Juster
Jet Propulsion Laboratory/California Institute of Technology

Tim Menzies
George Mathew
North Carolina State University

James Johnson
National Aeronautics and Space Administration

Abstract

The cost estimation of software development activities is increasingly critical for large scale
integrated projects such as those at DOD and NASA especially as the software systems become
larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet
Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic
spacecraft ever flown (Based on the size of the software). Software development activities are also
notorious for their cost growth, with NASA flight software averaging over 50% cost growth[1]. All
across the agency, estimators and analysts are increasingly being tasked to develop reliable cost
estimates in support of program planning and execution. While there has been extensive work on
improving parametric methods there is very little focus on the use of models based on analogy and
clustering algorithms. In this paper we summarize our findings on effort/cost model estimation
and model development based on ten years of software effort estimation research using data
mining and machine learning methods to develop estimation models based on analogy and
clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II,
linear regression, and K-nearest neighbor prediction model performance on the same data set.

12
Background

This work is part of the NASA Software CER Development Task; a collaboration between JPL and
West Virginia University that is funded by the NASA Cost Analysis Division (CAD). The main
objective of the task is to provide one or more software CER(s) that can be used in the early stages
of the lifecycle and can be used at various levels of the organization including IPAO, Center level
costing offices, and the software implementation organizations. The task is also taking advantage
of the ability to integrate activities being conducted between the NASA software engineering
working group under the NASA OCE and tasks funded by the NASA CAD, as well as getting members
of the cost and software communities to work together in developing cost databases, models and
other supporting work aids.

! Copyright 2015. All rights reserved
? The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

Introduction

Accurately estimating software development effort is of vital importance. Under-estimation can
cause schedule and budget overruns as well as project cancellation [2] while over-estimation delays
funding to other promising ideas and reduces organizational competitiveness [3]. Because
improving our ability to estimate, especially early in the lifecycle is critical, there continues to be a
great deal of energy put into the improvement of our current methods as well as developing new
methods of estimation. The development of formalized estimation models began in the late 1950’s
with the PERT scheduling models. For years, the backbone of our estimation methods were
parametric models and detailed bottom up methods. Today, the cutting edge in cost model
development focuses on improving how we incorporate risk and uncertainty and the
implementation of Bayesian, clustering, and analogy methods.

Looking back over the last 50 years a question that arises is - What does it mean to be a good cost
model? First and foremost, a model as well as its predictions should not violate the laws of physics or
the “laws of estimation”. Other considerations of a good model include minimizing information needs
and minimizing the occurrence of large estimation errors. The last two are often at odds with one
another as a reason an outlier appear to exist is a missing explanatory variable. It is frequently
observed that many of our models have too many inputs, causing an increase in user input error. In this
paper we will analyze the performance of five estimation model types that span the set of typical
estimation models using flight software metrics primarily from the NASA CADRe (Cost Analysis Data
Requirements Repository).

The main questions being addressed are

* Is one model better than another?
* Can a model using system data be used to estimate software costs?

The paper is divide into the following sections: History and Evolution of Cost Modeling, Data
Summary, Methodology Summary, Results, Conclusions (of course)

History of the Evolution of Estimation Models

The primary questions or issues being addressed by our cost models and methods has evolved over
time, from “is this even possible” to how to use cutting edge methods for addressing small, noisy,
sparse data sets. Figure 1 (below) provides one way to look at of how our models and methods
have evolved over time, organized by the primary issues or questions that were being addressed.

The 1960’s is a period dominated by estimation methods based on simple analogies and rules of
thumb based on limited or no recorded data. There are even many apocryphal stories of people
constructing a cost model by taking two to three points and just drawing a line with a pencil and
ruler. The first formal models appear in the sixties funded by the US Air Force and Navy. In many
ways, this period can be thought of as the Pre-historic era because finding the original documents is
very difficult. Also, many of the ideas have passed into extinction or evolved into other forms.

Evolution of Model Based Estimation Methods
o 1960s 1970s 1980s 1990s 2000s Today
Is it possible

to model
cost? PERT, LSR I

1
4‘ Draw line between 2 points | Infusion

What Idea maturation
parameters & i Validated Robust Models
functional Parametric Models ..
form? Certification, Handbooks, Text Bo

Multivariate Regression

How deal with . L
uncertainty? Probabilistic Estlm-

Can we do Cost and Schedule -]

cost and

schedule? JcL .l
How do we deal with sparse Bayesian

and noisy data?

Analogy/Clustering

Figure 1: Evolution of Estimation Methods and Models

The first formal method was actually PERT, which was introduced in 1959[4] as a method to
analyze the scheduling of tasks required to complete a given project to make the planning of large
and complex projects feasible. While it focuses on schedule, it does introduce the concepts of
schedule slack (corresponds to cost reserves) and the use of uncertainty or probabilistic methods
which would not get incorporated into the standard cost models until decades later.

The earliest regression based models were developed in the early sixties in work conducted for the
US Air Force [5-7]. The formal models were multivariable linear regressions. They started by
interviewing software project managers to identify how they were estimating software effort in
order to identify the parameters that should be incorporated into their model. The parameter space
included many of the model inputs we recognize today though they were defined differently in the
past. Some examples of these parameters include; number of instructions, or today what is known
as physical source line of code, design heritage, reused instructions, and requirements stability.
During the early days of regression based model development, use of the computer was a
constrained resource and expensive, therefore requiring an estimate of the number of actual
computer hours. This is clearly no longer a concern.

In the seventies, the first general purpose models that had the capability of being embodied in tools
were developed. However, there were many ways in which the models were secondary to the first
attempts to identify the parameters or cost drivers that best described the dimensions of the cost
estimation problem. A number of models were developed and started to be used during the
seventies as demonstrated by the formation of professional societies and working groups such as
the International Society of Parametric Analysts3.

3 See http://www.iceaaonline.com/about/origins-of-iceaa/ for a short history of the societies that have evolved into
ICEAA.

Frank Freiman, who was working for the Radio Corporation of America (RCA) at the time, is
credited with developing the first parametric cost tool for industry wide use. Known as “Price H”, it
estimates cost for the acquisition and development of hardware systems. This was spun off as a
separate division called Price Systems in 1976. The model was initially developed in 1969 for
internal use at RCA. A software version (Price S) of the Price tool was completed in 1977 [8-9]. Its
novel feature is the use of software volume as its size input. Software volume is derived from the
number of Source lines of code (SLOC) adjusted for language and a complexity factor.

In the 1970s and 1980s, cost modeling research was focused on parametric estimation as done by
Putnam and others [10-15]. Putnam introduced the SLIM (Software lifecycle Management) model
[16] in the 1970’s. SLIM depends on an SLOC estimate for the project's general size, then modifies
this through the use of the Rayleigh curve model to produce its effort estimates. To our knowledge,
this was the first model to estimate cost, schedule, and size in an integrated manner [16, 17].

Industry “best practice” continues to rely upon a combination of bottom-up and regression-based
models. Qur standard models (SEER, Price, etc.) necessarily take a one size fits all approach. This
results in models with either large estimation variance or the need for a large number of inputs that
are frequently not known in the early stages of the software lifecycle. While there have been many
refinements there have been few major changes in how we estimate cost over the last thirty years.
One of the more significant advances in cost estimation has been the development of the Joint
Confidence Level (JCL) methods and models [21]. JCL works well at PDR but there are issues with
applying this method in the early lifecycle. The JCL approach is also becoming less parametric
model based and more of an extension of network scheduling and earned value (EVM) methods
making them even more difficult to use effectively early in the lifecycle.

There also exists an extensive academic literature on a wide spectrum of software size and cost
estimation techniques which has had very limited impact on real practitioners. Hence, there is a
long history of researchers exploring software effort estimation; e.g. [8, 10, 12-15, 18, 22-28]. In
2007, Jorgensen and Shepperd reported on hundreds of research papers dating back to the 1970s
devoted to the topic, over half of which propose some innovation for developing new estimation
models [24]. Since then, many more such papers have been published; e.g. [29-40]. Many academic
researchers have innovated other methods based on regression trees [27] case-based reasoning
[27], spectral clustering [41], genetic algorithms [42, 43], etc. These methods can be augmented
with “meta-level” techniques like tabu search [29], feature selection [44], instance selection [33],
feature synthesis [39], active learning [34], transfer learning [35], temporal learning [40, 45], and
many more besides

Unfortunately, none of the standard approaches and few of the academic methods really address
the fundamental issue of cost estimation, which is that the vast majority of our data sets are small,
noisy, and sparse. For example, even after all the effort to build the NASA CADRe and the large
number of records that have been entered, it still has many empty cells and many pieces of data
that are questionable. Fortunately, there are two methods that are designed to help us address
these issues and also show promise; Bayesian methods [56] and clustering methods (especially
spectral clustering). In this paper we will summarize our research and results in working with
spectral clustering methods.

Data Summary

The data was collected from various sources.

* Primary source is the NASA CADRe (Cost Analysis Data Requirements) repository Parts A, B and

C

(0]

* System descriptor data was supplemented with data from NASA project websites, project

Data was updated last on March 4, 2015
When available missing data items were obtained from other sources including
contacting project software managers
When verifiable CADRe data was revised with information/data from other sources

reports and Wikipedia articles.

* Software metrics for older missions that predated the were supplemented with data records
from a data collection conducted for the International Space Station that was completed in 1990.
A subset of these records can be found at the PROMISE (Predictor Models in Software

Engineering) website® under the COCOMO directory.

* Contributed Center level data

Table 1 contains a list of the data used in the study including the total number of records for each
variable, which took on various values. For a detailed description of the data collected see Appendices A
(COCOMO Model Inputs) and B (System Parameters). Tables 2 through 7 below summarize the data be

median, average and spread metrics as appropriate to the data.

Number of
Data ltem Projects
Total development effort in work months 28
Logical Lines of code (LOC)
o Delivered LOC 36
o Equivalent LOC 36
0 Inherited LOC (Reused plus Modified reused
lines) 36
o Reused LOC (0-10% modified) 36
COCOMO model inputs (See Appendix A for the
parameter definitions) - Translated from CADRE which
has SEER model inputs because the SEER data items
are very sparse in CADRe 19
System parameters (See Appendix B parameter
definitions)
o Mission Type (deep-space, earth-moon, rover-
lander, observatory) 39
o Multiple element (probe, etc.) 39
o Number of instruments 39
o Number of deployables 39
o Flight Computer Redundancy (Dual Warm, Dual
Cold, Single String) 39
o Software Reuse (Low, Medium, High) 36
o Software Size (Small, Medium, Large, Very
Large) 36

Table 1: Data Summary with Number of Records

4 hittp://openscience.us/repo/

Table 2 shows the number of records found in each mission category, along with median and standard
deviation values for Effort, Lines of Code, and Productivity. Lines of Code and Productivity information is
shown both in Equivalent and Delivered form as Equivalent LOC values are influenced by software
inheritance and Delivered LOC values are not. There are 5 or less data points for both Observatory and
In Situ missions, and at least 11 for Earth/Lunar and Deep Space missions. There appears to be a
threshold in which productivity numbers are no longer significantly affected by increases in effort. It is
seen that Observatory missions show a median effort of 492 and a productivity value of 75, while all
other mission categories have at least 579 work-months worth of effort and productivity values no less
than 149.

Mission Type | # Records | EFFORT (months) | Logical Delivered LOC | Logical Equivalent LOC {m;:;d;:;::t:nthj {Logi::::::v';:;mh}
Median s.D Median s.D Median S.D Median S.D Median S.D
gar'::i 'r'“"a’ 19 579 418 92,050 | 40,104 | 56940 | 41,010 265 1,366 150 71
Observatory 5 492 1,054 | 107,100 | 59,143 | 76,800 | 61,411 74 977 75 698
Deep Space 11 670 866 121,000 | 54,191 | 122,000 | 47,034 179 114 149 9
In Situ 4 1,408 551 246,700 | 164,844 | 199,500 | 220,139 215 80 178 93

Table 2: Effort, Lines of Code and Productivity by Mission Type

Table 3 shows productivity derived from equivalent LOC by mission type and inheritance level; low
(<20%), medium (<80%), and high (>=80%). Inherited code includes code reuse with minor to no
modifications and code that is inherited with <= 50% modifications. All mission categories clearly show
that increases in inheritance result in improved productivity, with observations of at least 150%
increases in productivity rates across all mission categories. Because Equivalent LOC has been adjusted
for inheritance the increase in productivity most likely indicates that for high levels of inheritance the
start-up costs are greatly reduced due to the architecture and development environments also being
reused’.

Low Inheritance (<20%) Medium Inheritance (<80%) High Inheritance (>=80%)
Mission Type Avg. Prod ",'frdo':" RANGE | Avg. Prod M,frgﬁ’" RANGE |Avg. Prod M;rgﬁ’" RANGE
[Earth/Lunar Orbiter 65 65 6565 136 120 | 60245 150 150 | 138-161
Observatory 58 58 4275 95 95 46-144 - - -
Deep Space 66 37 | 37125 | 208 169 | 103321 183 183 | 144221
Tn Situ 187 141 | 105316 215 215 | 215215 - -

Table 3: Equivalent Productivity by Mission Type and Level of Inheritance

Table 4 shows productivity derived from delivered LOC by mission type and inheritance level; low
(<20%), medium (<80%), and high (>=80%). As before, inherited code includes code reuse with minor to
no modifications and code that is inherited with <= 50% modifications. As expected, all mission
categories clearly show that increases in inheritance result in improved productivity. Note that the
projects included in the mission types are different between Tables 3 and 4 because in some cases not
all LOC metrics were available.

3 It could also indicate that the formula used to derive equivalent LOC under estimate the savings.

Low Inheritance (<20%) Medium Inheritance (<80%) High Inheritance (>=80%)
Mission Type Avg. Prod Mperdo':“ RANGE | Avg. Prod MF?F‘;':" RANGE | Avg. Prod MF?F‘;"?" RANGE
Earth/Lunar Orbiter 65 65 65-65 177 160 | 76313 542 542 | 439-644
Observatory 60 60 46-74 145 145 46-244 - N -
[Deep Space 74 37 | 37147 240 183 | 157-360 285 285 245324
Tn STty 172 178 | 87-252 258 258 | 258258 - -

Table 4: Delivered Productivity by Mission type and Inheritance Level

Tables 5, 6 and 7 provide a data summary for other key parameters used in the study. While actual code
counts or estimated percent existed for software size and inheritance, these values were converted to
categories for two reasons. Most notably, the model under development is designed to be used in pre-
Phase A and estimators would only have very approximate idea as to the number of delivered and
inherited LOC.

o Deployables Instruments
Mission Type POy
Median | Range | Median| Range
Earth/Lunar Orbiter 2 0-7 3 1-10
Observatory 2 0-4 4 1-6
Deep Space 2 1-8 3 2-12
In Situ 7 3-10 5 3-10
Table 5: Number of Deployables and Instruments by Mission Type
) Flight Computer Redundancy Inheritance
Mission Type Single String D"a‘l_:::"g' D"';',:::'"s' Median ve':::‘:m Low Medium High Very High Median
Earth/Lunar Orbiter 12 7 0 String 2 2 5 5 High
Observatory 1 4 0 Cold 1 1 2 Low
Deep Space 1 8 2 Cold 2 1 2 3 3 High
In Situ 1 0 3 Warm 2 1 1 Very Low/None

Table 6: Flight Computer Redundancy and Inheritance Category by Mission Type

. Size (Delivered LOC)
Mission Type
Very Small Small Medium Large VeryLarge | Extralarge Median
Earth/Lunar Orbiter 1 6 4 4 Medium
Observatory 1 1 2 1 Medium
Deep Space 2 1 3 3 2 Medium
In Situ 1 1 2 Very lLarge |

Table 7: Software Size Categories by Mission Type

Methodology

Two teams were formed in order to compare traditional cost model development approaches using
regression analysis (JPL) with data mining or machine learning modeling methods (North Carolina State
University). All analysis was performed on the same data set constructed from the CADRe with
supplemental sources summarized above.

Method 1 - At NC State, all methods were evaluated based on leave one out validation and performance
was compared based on the Magnitude of Relative Error (MRE) median and distribution. The only
formal test available is a non-parametric test. The methods evaluated are:

1. COCOMO Il - a parametric model used with the provided parameter settings (Out of the box)

2. COCONUT - a calibration or tuning rig for COCOMO I

3. Knn_1 - a K-nearest neighbor model

4. delLOC - a regression of total development effort on LOC

5. MED_MISSION - a simple summary by mission types using the median as the predicted
effort.

6. PEEKING2 - constructs clusters of projects using spectral clustering algorithms and

estimates by finding the nearest cluster and computing the median between the two nearest
neighbors within that cluster using high level system data

Each of the data mining learners is constructed to meet the requirements of the model being evaluated.
For a detailed discussion of the various learners see [3, 25, 33, 34, 35]. The method that is new in this
study is called PEEKING2 and is a combination of spectral clustering, Principle Components
Analysis (PCA), and nearest neighbor, see Figure 2.

e PEEKING2's featwe weighting scheme changes w; in Equation 3
according to how much an attribute can divide and reduce the vari-
ance of the effort data (the greater the reduction, the larger the w;
score).

o PEEKING2's PCA tool used an accelerated principle component
analysis that synthesises new attributes e;, e, ... that extends across
the dimension of greatest variance in the data with attributes d. PCA
combines redundant variables into a smaller set of variables (so
e < d) since those redundancies become (approximately) parallel
lines in e space. For all such redundancies i, j € d, we can ignore j
since effects that change over j also change in the same way over i.
PCA is also useful for skipping over noisy variables from d- these
variables are effectively ignored since they do not contribute to the
variance in the data.

o PEEKING2's prototype generator clusters the data along the dimen-
sions found by accelerated PCA. Each cluster is then replaced with a
“prototype” generated from the median value of all attributes in that
cluster. Prototype generation is a useful tool for handling outliers:
large groups of outliers get their own cluster; small sets of outliers
get ignored via median prototype generation.

o PEEKING2 generates estimates for a test case by finding its near-
est cluster, then the two nearest neighbors within that cluster (where
“pear” is computed using Equation 3 plus feature weighting). If these
neighbors are found at distance ny, ng,np < ng and have effort
values Ey, E3 then the final estimate is an extrapolation favoring the
closest one: ng -

n = n; + ng; estimate = [o | 527

Figure 2: Summary of PEEKING2 Algorithm

Method 2 - At JPL we used standard statistical tests to evaluate the models, F-Test and t-Test results
supplemented with R? and Pred (30).

1. Manually Calibrated COCOMO II - Good old fashioned way
2. Linear and Ln-Linear regressions to evaluate linear and multiplicative models.
Results

Method 1

Method 1 consisted of deriving a local calibration of the COCOMO II model and evaluating all
various combinations of the COCOMO model inputs and the system descriptors.

It was not possible to derive a basic general purpose effort = f(LOC) model even though we had 26
records with both LOC and effort. We have been able to do this for decades on in-house JPL data
but when combining the data with data from other centers and from contractors as reported in the
CADRe the new records appear to have added more noise than information. The models we were
able to derive either violated the laws of logic or were so specialized that they had limited value.
For example, one acceptable model from a statistical basis was effort as a function of LOCew and

LOCinnerited, but only for software that had >10% reuse and excluded rovers and landers. Adding
system descriptors did not improve the explanatory power of the model. Thus, we were not able to
derive a model for software systems that was reliant on the LOC,ew parameter with an R2 above 0.2
or made sense. Regressions on LOCgeliverea were abject failures no matter how many other variables
we introduced.

Local calibration of the original COCOMO Il model was possible. Data use spanned all relevant
spacecraft software data, except for Rovers and NUSTAR. Rovers are fundamentally different from
orbiters and the NUSTAR data always appeared as an outlier in all analysis and we suspect the data
was too flawed to be usable.

The effort multipliers, pvol and acap effort multipliers were excluded in order to maximize the
sample size at 19 records. In order to calibrate A and By, the original effort value, PM was divided
by the product of the 15 remaining effort multipliers and Size0-01x¥5F, These variables were treated
as known values and not observations from a distribution. This simplified the original COCOMO II
model to the following equation: PM_adjusted = A x SizeB

Once the above equation was converted into log space, regression analysis was used to test if
Size(Equivalent Lines of Code), significantly predicted PM_adjusted(adjusted software effort
values). The results of the regression indicated Size explained 62.3% of the variance and
significantly predicted Effort (R* =.63, F(1,14)=25.88, p<0.001). A was estimated as 1.6873, with a
standard error of 0.7981, t-value = 2.114, and Pr(>|t|) = 0.052917. B was estimated to have a value
0f 0.8933 with a standard error of 0.1756, t-value = 5.087, and Pr(>|t|) = 0.000166.

y = DL BI3295% + 1 BE7AD

[B < 0.0001 [
Ri= 62

n=16

LN Adjusted Effort

0 1 2 3 4 5
LN Equivalent Lines of Code (KLOC)

However, the calibrated parameters while significantly different form zero, are within two standard
deviations of the standard values or the out-of-the-box COCOMO equation. This result was
confirmed in previous studies [57] and in the data mining analysis reported here as well. Hence, we
can safely conclude that for estimating NASA spacecraft flight software, the standard model as
calibrated by the USC team is the best tuning for the COCOMO model. Based on personal experience
with both COCOMO and SEER-SEM at JPL this also implies that the out of box settings for SEER-SEM
also are suitable for estimating NASA flight software costs. However, this needs to be verified with
further studies.

Method 2

The first experiment compared the performance of COCOMO to non-parametric estimation methods.
It only used the 19 records that had data for COCOMO effort multipliers coupled with the systems
parameters for those same records. This is the smallest version of the data set we evaluated. The
nearest neighbor and clustering methods used the system parameters: Mission Type, Secondary
Element, Number of Instruments, Flight Computer Redundancy, Number of Deployables,
Inheritance Category, Reuse Category, and Size categories. Other combinations and forms of the
system parameters were evaluated in earlier runs but this set performed either the best or required
a much simpler set of inputs. For example, models using the actual delivered lines of code were
evaluated and performed better but using delivered lines in a categorical form (small, medium, etc.)
only reduce Median MRE by 2%. It was concluded from this finding that the increased simplicity in
user input greatly offset the small gain in accuracy.

The Experiment 1 results are summarized in Table 8 and Figures 9 and 10. Based on MMRE,
Experiment 1 confirmed the results that “out-of-the-box” COCOMO out performed a local
calibration (COCONUT). The basic summary table even out performed local calibration in the small
data set. The non-parametric models performed as well if not slightly better than COCOMO.

Median
Estimation Model MRE 25th . 75th .

(MMRE) Percentile Percentile
knn_1 (Nearest Neighbor) 32% 14% 80%
PEEKING?2 (Spectral Clustering) 32% 16% 97%
COCOMO2 36% 22% 55%
Mission Type Summary Table 38% 14% 106%
COCONUT A4% 32% 62%

Table 8: Median and Interquartile Range for Parametric vs Non-Parametric Models (N=19)

In Figures 9 and 10 the results appear slightly different. Here it can be seen that the COCOMO
models handle outliers much better than nearest neighbor and spectral clustering. So, while the
non-parametric models do better overall, when they are inaccurate they tend to be extremely
inaccurate, which is a concern.

1»l| — cocomoz / f |
— COCONUT / J
— PEEKER f
1o} MED_MISSION]
knn_1
08+ d
06
04

ozl — __,,-"'-f 7# |

o —

o.oé/"'

T 2 3 4 5 6 7 8 9 10 112 13 14 15 16 17 16 19

Figure 9: Experiment 1 MRE Results

10

— COCOMO2 .
— COCONUT
— PEEKER

MED_MISSION
5 knn_1 /

—

0 —

1 2 3 45 6 7 8 9 10111213 14 1516 17 18 19

Figure 10: Experiment 1 MRE Results in Log Scale

The second experiment compared the performance of simple regression models to the non-
parametric estimation methods. It used the 26 records that had data for LOC of effort along with
the systems parameters for those same records. As before, the nearest neighbor and clustering
methods used the system parameters: Mission Type, Secondary Element, Number of Instruments,
Flight Computer Redundancy, Number of Deployables, Inheritance Category, Reuse Category, Size

Categories.

The Experiment 2 results are summarized in Table 9 and Figure 11. Based on MMRE Experiment 2
again indicates that the non-parametric models performed as well as traditional methods and in
some cases better. The LSR results reconfirmed the Method 1 results by performing comparably
but producing similar illogical results that violate common sense. The LSR results either indicate all
we need to know is the new LOC even if there is large percentage of reused code or that we can
actually make money by reusing code, not just reduce costs. Thus, the LSR models are rejected on
first principles. Based on MMRE Nearest Neighbor does appear to outperform Spectral Clustering.
However, Figure 13 and the percent error at the 75t percentile (shown in Table 9) shows that
Nearest Neighbor has much more significant outliers than Spectral Clustering. Another advantage
of Spectral Clustering is that by deriving clusters of similar projects it provides structure that can be
documented, analyzed, and evolved as more and better data becomes available.

Median
Estimation Model {MMI\::E} Perzcset:tile Per71:5et:tile
knn_1 (Nearest Neighbor) 33% 12% 112%
LSR on LOC new 37% 28% 66%
PEEKING?2 (Spectral Clustering) 38% 16% 76%
Mission Type Summary Table 46% 25% 116%
LSR on LOC new and reused 48% 23% 72%

Table 9: Median and Interquartile Range for LSR vs Non-Parametric Models (N=26)

— MED_MISSION
— delLOC_2

— PEEKER

10+ knn_1

—— delLOC_1

08

06

04

02+

00

1234567 891011121314151617181920212223242526
Figure 13: Experiment 2 MRE Results

The clusters produced in Experiment 2 on 26 records are
1-['Maven', 'MRO', 'JUNOQ']
2-['GRO', 'Kepler', 'HST']
3-['MER FSW R9.0 (includes post launch development)’, 'MSL', 'MPF']
4-['SIRTF', 'Deep Impact FSW', 'Stardust’, 'Genesis']
5-['Cassini', 'GLL', 'LRO"]
6-['Grail', 'GPM Core', 'SMAP']
7-['SDO', 'NUSTAR', 'OCO', 'DS1 total']
8-['TDRS K/L', 'Mars Odyssey', 'Phoenix']

The final model will be built on all 39 currently available records. However, despite working with a
reduced data set, it can be seem that many of the clusters make sense intuitively. Cluster 1 are all
orbiters built by Lockheed Martin and both Maven and Juno have high heritage from MRO. Cluster
2 are all observatories. Cluster 3 are NASA's three Mars rovers. The other clusters have members
that are related, like Stardust and Genesis, but the reason for other members in the cluster is less
obvious. These are driven by commonalities of other system parameters but this has not been
analyzed yet.

Conclusions and Next Steps

The purpose of the task is to develop a software cost model that can be used early in the lifecycle
when knowledge of the system being built is immature. In this paper we are addressing key
questions that are stepping stones in building this model:

* [s one model better than another?

¢ Can amodel using system data be used to estimate software costs?

A major lesson learned was that the data mining method was very advantageous in adding the
ability to evaluate a large number of methods simultaneously. The disadvantage is that it is easy to
lose sight of the logic of the models and what is being estimated.

12

The primary conclusions are

1. There are a variety of models whose performance are hard to distinguish (given currently
available data) but some models are better than others

2. If one has sufficient data to run COCOMO or a comparable parametric model then the best
model is the parametric model

3. When insufficient information exists then a model using system parameters only be used to
estimate software costs with only a small reduction in accuracy. The main weakness is the
possibility of occasional very large estimation errors which the parametric model does not
exhibit.

4. While a nearest neighbor model performs as well as spectral clustering based on MMRE,
spectral clustering handles outliers better and provides a structured model with more
capability

5. A major strength of the nearest neighbor and spectral clustering methods is the ability to
work with a combination of symbolic and numerical data

The next step is to develop a tool that embodies the spectral clustering model built on all 39 records.
References

[1]1 J. Hihn, “Identification and Estimation of Flight Software Cost Risk Growth”, ISPA, 2000

[2] Spareref.com. NASA to shut down checkout & launch control system, August 26, 2002.
http://www _.spaceref.com/news/viewnews.html?id=475.

[3] E. Kocaguneli, T. Menzies, and J.W. Keung. On the value of ensemble effort estimation.
Software Engineering, IEEE Transactions on, 38(6):1403-1416, Nov 2012.

[4] Willard Fazar. Program evaluation and review technique. The American
Statistician, 13(2):10, 1959.

[5] Farr, L. Nanus, B. "Factors that affect the cost of computer programming”. 1964, AD-603707,
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0648750

[6] Nelson, E. A. (1966). Management Handbook for the Estimation of Computer Programming
Costs. AD-A648750, Systems Development Corp.
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD0648750

[71V. LaBolle, Statistical analysis of computer programming costs. SIGCPR '66 Proceedings of
the fourth SIGCPR conference on Computer personnel research, Pages 29 - 38

[8] Park, Robert E. The Central Equations of the PRICE-Software Cost Model, PRICE-Systems,
1988.

[9] Arlene Minkiewicz and Anthony DeMarco, The PRICE-Software Model, Lockheed Martin
PRICE-Systems, 1995.

[10] R. Black, R. Curnow, R. Katz, and M. Bray. Bcs software production data, final technical
report radc-tr-77-116. Technical report, Boeing Computer Services, Inc., March 1977.

13

[11] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.

[12] F. Freiman and R. Park. Price software model - version 3: An overview. In Proceedings,
IEEE-PINY Workshop on Quantitative Software Models, IEEE Catalog Number TH 0067-9,
pages 32—41, October 1979.

[13] J. Herd, J. Postak, W. Russell, and J. Stewart. Software cost estimation study-study results,
final technical report, radc-tr-77-220. Technical report, Doty Associates, June 1977.

[14] C. Walston and C. Felix. A method of programming measurement and estimation. IBM
Systems Journal, (1):54-77, 1977.

[15] R. Wolverton. The cost of developing large-scale software. IEEE Trans. Computers, pages
615-636, June 1974.

[16] Lawrence H. Putnam, “A General Empirical Solution to the Macro Software Sizing and
Estimating Problem,” IEEE Transactions on Software Engineering, Col. SE-4, July 1978, pp.
345-361.

[17] Kemerer, C. (1987), “An Empirical Validation of Software Cost Estimation Models,”
Communications of the ACM, May 1987, pp. 416-429.

[18] B. Boehm. Software Engineering Economics. Prentice Hall, 1981.
[19] Tim Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes. Validation methods for calibrating

software effort models. In Proceedings, ICSE, 2005. Available from
http://menzies.us/pdf/04coconut.pdf.

[20] Halstead, Maurice H. (1977). Elements of Software Science. Amsterdam: Elsevier North-
Holland, Inc. ISBN 0-444-00205-7.

[21] Elliott, D., & Hunt, C. (2014). Cost and Schedule Uncertainty: Analysis of Growth in Support
of JCL. NASA Cost Symposium.

http://www.nasa.gov/sites/default/files/files/10and11 NASA Cost Symposium 2014 CostSche
duleUncertainty Final TAGGED.pdf

[22] C.J. Burgess and Martin Lefley. Can genetic programming improve software effort
estimation? A comparative evaluation. Information and Software Technology, 43(14).:863-873,
December 2001.

[23] R. Jensen. An improved macrolevel software development resource estimation model. In
5th ISPA Conference, pages 88-92, April 1983.

[24] M. Jgrgensen and M. Shepperd. A systematic review of software development cost
estimation studies, January 2007. Available from
http://www.simula.no/departments/engineering/publications/J{\o}rgensen.2005.12.

[25] Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best practices for effort
estimation. IEEE Transactions on Software Engineering, November 2006. Available from
http://menzies.us/pdf/06coseekmo.pdf.

14

[26] L. Putnam. A macro-estimating methodology for software development. In Proceedings,
IEEE COMPCONY76 Fall, pages 38—43, September 1976.

[27]1 M. Shepperd and C. Schofield. Estimating software project effort using analogies. IEEE
Transactions on Software Engineering, 23(12), November 1997. Available from
http://www .utdallas.edu/~rbanker/SE_XIl.pdf.

[28] Fiona Walkerden and Ross Jeffery. An empirical study of analogy-based software effort
estimation. Empirical Softw. Eng., 4(2):135-158, 1999.

[29] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes. How effective
is tabu search to configure support vector regression for effort estimation? In Proceedings of the
6™ International Conference on Predictive Models in Software Engineering, PROMISE *10,
pages 4:1—4:10, 2010.

[30] Jacky Wai Keung. Empirical evaluation of analogy-x for software cost estimation. In
ESEM '08: International Symposium on Empirical Software Engineering and Measurement,
pages 294-296, New York, NY, USA, 2008. ACM.

[31] Jacky Wai Keung and Barbara Kitchenham. Experiments with analogy-x for software cost
estimation. In ASWEC '08: Proceedings of the 19th Australian Conference on Software
Engineering, pages 229-238, Washington, DC, USA, 2008. IEEE Computer Society.

[32] Jacky Wai Keung, Barbara A. Kitchenham, and David Ross Jeffery. Analogy-x: Providing
statistical inference to analogy-based software cost estimation. IJEEE Trans. Softw. Eng.,
34(4):471-484, 2008.

[33] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung. Exploiting the essential assumptions of
analogy-based effort estimation. /[EEE Transactions on Software Engineering, 28:425-438,
2012. Available

from http://menzies.us/pdf/11teak.pdf.

[34] Ekrem Kocaguneli, Tim Menzies, Jacky Keung, David Cok, and Ray Madachy. Active
learning and effort estimation: Finding the essential content of software effort estimation data.
IEEE Transactions on Software Engineering, 39(8):1040-1053, 2013.

[35] Ekrem Kocaguneli, Tim Menzies, and Emilia Mendes. Transfer learning in effort estimation.
Empirical Software Engineering, pages 1-31, 2014.

[36] Jingzhou Li and Guenther Ruhe. Decision support analysis for software effort estimation by
analogy. In PROMISE '07: Proceedings of the Third International Workshop on Predictor
Models in Software Engineering, page 6, 2007.

[371Y. Li, M. Xie, and Goh T. A study of the non-linear adjustment for analogy based software
cost estimation. Empirical Software Engineering, pages 603—-643, 2009.

[38] C. Lokan and E. Mendes. Cross-company and single-company effort models using the
isbsg database: a further replicated study. In The ACM-IEEE International Symposium on
Empirical Software Engineering, November 21-22, Rio de Janeiro, 2006.

[39] Tim Menzies and Martin Shepperd. Special issue on repeatable results in software

15

engineering prediction. Empirical Software Engineering, 17(1-2):1-17, 2012.

[40] Leandro L. Minku and Xin Yao. How to make best use of cross-company data in software
effort estimation? In ICSE’14, pages 446—456, 2014.

[41] Tim Menzies, Andrew Butcher, David R. Cok, Andrian Marcus, Lucas Layman, Forrest
Shull, Burak Turhan, and Thomas Zimmermann. Local versus global lessons for defect
prediction and effort estimation. IEEE Trans. Software Eng., 39(6):822-834, 2013. Available
from

http://menzies.us/pdf/12localb.pdf.

[42] C.J. Burgess and Martin Lefley. Can genetic programming improve software effort
estimation? A comparative evaluation. Information and Software Technology, 43(14).:863-873,
December 2001.

[43] R. Cordero, M. Costamagna, and E. Paschetta. A genetic algorithm approach for the
calibration of cocomo-like models. In 12 COCOMO Forum, 1997.

[44] Zhihoa Chen, Tim Menzies, and Dan Port. Feature subset selection can improve software
cost estimation. In PROMISE’05, 2005.Available from
http://menzies.us/pdf/05/fsscocomo.pdf.

[45] C. Lokan and E. Mendes. Applying moving windows to software effort estimation. In 3rd
International Symposium on Empirical Software Engineering and Measurement, pages 111-122,
2009.

[46] Vasil Papakroni. Data carving: Identifying and removing irrelevancies in the data. Master's
thesis, Lane Department of Computer Science and Electrical Engineering, West Virginia
Unviersity, 2013.

[47] Karel Dejaeger, Wouter Verbeke, David Martens, and Bart Baesens. Data mining
techniques for software effort estimation: A comparative study. IEEE Transactions on Software
Engineering, 38:375-397, 2012.

[48] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. 1984.

[49] Martin Auer, Adam Trendowicz, Bernhard Graser, Ernst Haunschmid, and Stefan Biffl.
Optimal project feature weights in analogy-based cost estimation: Improvement and limitations.
IEEE Trans. Softw. Eng., 32:83-92, 2006.

[50] G. Kadoda, M. Cartwright, L. Chen, and M. Shepperd. Experiences using casebased
reasoning to predict software project effort, 2000.

[51] C. Kirsopp and M. Shepperd. Making inferences with small numbers of training sets. IEEE
Proc., 149, 2002.

[52] Jingzhou Li and Guenther Ruhe. A comparative study of attribute weighting heuristics for
effort estimation by analogy. International Symposium on Empirical Software Engineering, page
74, 2006.

16

[53] Heuristics for analogy-based software effort estimation method aqua+. Empirical Softw.
Engg., 13:63-96, February 2008.

[54] Ingunn Myrtveit, Erik Stensrud, and Martin Shepperd. Reliability and validity in comparative
studies of software prediction models. IEEE Trans. Softw. Eng., 31(5):380-391, May 2005.

[55] Nikolaos Mittas and Lefteris Angelis. Ranking and clustering software cost estimation
models through a multiple comparisons algorithm. /IEEE Trans. Software Eng., 39(4):537-551,
2013.

[56] Christian Smart, Bayesian Parametrics Developing a CER with Limited Data and Even
Without Data, ICEAA 2015 Workshop, Denver, Co. June, 2015. (Best paper)

[57] Karen Lum, John Powell, Jairus Hihn, Validation of Spacecraft Software Cost Estimation
Models for Flight and Ground Systems, Proceedings of the 24th Annual Conference of the
International Society of Parametric Analysts (ISPA), 21-24 May, 2002, San Diego, CA (Best
Paper Award)

17

COCOMO Model Inputs

Appendix A

324D I Y pAIRIT AU Ingap apoa‘pa S[00) AUBMIJOS JO 281 100
756 H0S VIN NdD 2lgejieae jo g, painbai auwn
9656 %08 VIN VY 21qe[rear Jo g, panmbor 1018
RIPAU-N[NW 2A1DRIUL [1eWa A0S [rew *auoyd :orIU0D A0S Juatudojaaap ays-nnuw a8

AeWNS [EUISLO ALWINS [EUISLIO a[npayos
10 95,09 01 Yoeq PAAOW saul|peap aSueyo ou | o) Jo 9,¢/ O} pasow sauijpeap yuawdojaaap pajeroip paos
saur| Jonpoid ardnnu ureafoxd ajdnnur atotu asnar pannbar a8N1
1] UBWNY YSH URD SIOLID AqrlaA0221 AJISE AIL SIOLD 2DUIANUAUODUL WSTI[S 2L SIOLID Aupigerjas pannbai Al

FabuDYyo dourw Jo Riouanbaa]

sAvp 7 5y99m 7 Juow T (Fabunys wolvus fo m.u:w;w.ws....__
%w:wlm mleuw\:b.|5m m|mu:o|:§ Anmeoa uuoperd [oad
sieak g eak | syluow g souauadxe uuoperd xord

(qeak aad sanoum)
%€ BTl %8 Aununuos [auuosiad uoad
20| 152q %ES 9G] 1sIom Anpqedes sowwesgoad dead
swak g mak | Stpuotl 7 asuawadya 12s5-100) pue asensue| Xa)[

aseyd opok> pajuaw
-9M1] yoea 10] Suntodal dAISUIXD -noop jou saseyd 9]042-271] Auew uoneIuAWNIOP noop
0001 00l 0l (Q01S/5914q gQ) 2215 aseqeiep elep
SIS AS pap s)a8

-paquia eonud-aouvunopad 59 | -pim eovpayur aiduns jo asn 8- sjuatAe)s Aum/pear ajduns 59 Axapduwon yonpoad xida
sieak g eak | syuow g 2ouauadxa suoneordde dxoe
%01 1524 %06 - %SE %HEE 1sIom Aupgedes isAjeue deoe

saatdnnu poyyg

SUOTIORINUT SSI[UWRIS aanerado-00 £[earseq SUOTORIUI NIYJIP A1oA UOISANYOD Wed) weay,
paieunua]2 PRAeunura sysu paieulr]a sysu

SYSLI [[B O PAuUy2p SOBLJUL [| ISOW JO PAULIP SORUL JSOW | MI] JO PIULIP SDBLIJUL M3 UONN[OSAI YSLI 10 2INDIANYdIR sy
alI0Jaq aIeMm)Jos

Jeipuey A[ysnoloy) MU JRYMILLOS | JO pury sig) I[Ing J2AU AR am ssaupajuapasaid Jald

C [PAT NIND £ [2A NIND [12421 WIND Aiumewr ssadoxd jeurd
paxe[pauyap

pauyap s[eod [p1oudd A[uo | -212q ued yorym ‘saurfaping awos | Asnotofu ssasoxd juawdopaaap Aupqrxap wawdoaaap X[

:810j08) 9|2y

(9°¢) =pua-ysiy |

(t'g)=wnipay |

(T'1) = pua-moT

_ uonmyaQg

18

System Parameters with Definitions and Examples

Appendix B

1SN

A.Bu ‘3e1S UMOLDY ISE[M
SISl [ONU0D Spnjiye ‘pajlelsal og Aew sousnbes e “§-0) wonelado snonunuos urejUTEw 0}
pasu jou saop ng “1ndwod surd Jo ayes Sunioyuow pue uo pazamod st mndwos dnyoeg

dnyoeq
wiep, - ulis [eng

suoIssiL aoeds daad 150 umop s208 Surns swud uaym dnyoeq
o a3on sjooq pue dn pazamod s1 ‘go Ajjeutou st dnyoeq “szeindwos Sy Juepunpaz sey Perosoeds pIod - Suls [eng
5J3}gJ0 YyHed 1son 1ndmos g3y 1) Ul ASuEpuUNpal ou sey Jemnadedg Buiis a8uis
ajdwex3 uonduasag sanjep Aauepunpay Jandwo) ys4
. "[onuod sum-[eal Jy3n sanmbal
WV IS ‘2dodsajaL 10 pajestjduros st jey) o1fo] [onuos apraoid 1SNUI A\ S S YIIAL I0J JUSWILISUT 20U08 AUy xajdwiod
*SJUSWINISUL 3" "JOIU0Dd AU} [B2I 2500] AJUo Io ou sanmbal pue ajdwrs
SjUBWINIISU| YN 5 LA il 1 AT : pue ajcu! wnipay
A[oAnera st jer) 21307 [onuoos opiacid 1SNt g S.] 9U) Yorgm IoJ JUSIINHSUT 20Ud10s AUy
J933wWwoausey ‘Anawa|a} 2105 pue 3|dwis
aAla0al pue spuewrwos ySnony ssed Ajuo paau s S SUY) YOIyA J0] JuswnnsUl 20ualos Luy
ajdwex3 uonduasag sanjep SjUaWINISU] JO JaquinN
uinyas ‘a8e)s Juadse ue salinbay pue adepuns 1aue|d e WoJy UINJAJ B 3Q PINOM LINaL

a|dwes a|dus e Jo a|dwexa ue s| 1snpJels

ajdwes xa|dwod y ‘yues o3 Suluinial Ing aqoad ajduwis e 31| e si uinias ajdwes ajdwis ¥

uJniad 9jdwes

103 xa|dwoo e jo ajdwexa ue si 1SN 103
a|dwis e jo ajdwexa ue s Japulyyied siep

‘JUDWA|3 13 UE IARY |[IM SI2A0Y pUE SIDPUE| ||y ‘ddUEpIOAR
paezey pue Suipue| uoisizald yum xajdwod Jo Asoysalesy a13sejjeq e yym ajdwis aq ues 1g3

apiyan Suipue
pue juassag AJju3

‘aqoud Ayxa|dwod wnipaw e pey edw|
daag 'aqoid ajdwis e sem suaBAnH-luissed

‘syuawnJisu) xajdwod Aj@jesapow

|eJ3ARS pue ‘|oJ3u0d wu_.._mﬂ__._m |EUISIUI BLUOS aAeY Aew ‘uopnesedas J31}E SPUBLILWOD aAladal
Aew yaiym Joroedwi Auxa|dwod-aleiapoll Y SJUBWINJISUI S WoJ) elep sywsuedy Aldwis

) paseajal acuo puehyiqedes uoneSiAeu pue asueping ou 1o 3)1H) yum Joyedw ajdwis ¢

Joyedw| Jo aqoid

(OYIN) 12310 2uEsUDIBY SJe juawala Auepuodas oN auoN
ajdwex3 uopduasag sanjep juawa|l Aepuolas
-doy Jo yjem ‘|mesd Aew Aayy
(43W) 4an0y uoneso|dx] siejp | ain1ny 8yl Ul INg S|9ayM BABY SIBA0J ||B 31EP O "30EMNS Y] UO aAow o] AJljige ay] sey pue Janoy

Apoq wajsAs Je|os e JO 3IBJINS Y] WO JO NIS-Ul IUBIDS S} SI0P Jey] Yetdaoeds 311040l i

‘uol3e20| |eUISIIO S} WOL) IAOW Jou saop 3| “Apoq

Xjuaoyqd Japuet anels
wayshs Jejdos e Jo 3JeLINS BY) WOJY JO NYIS-UI IIUBIIS 531 S30P Jey) Yeldadeds 1j0qol i
"430q Jo aJnixiw e Jo sAgAjy Jo S4831GJ0 3Q UBD UOSISIW 3S3Y] "Uns ay} Jo
pedwdaag| ploJalse ‘18wod ‘ay)a1es Adejaue|d Aue ‘spiojaue|d ‘Jjaue|d e 5| UDIIBUIISEP BSOYM LOS|S|LL aoeds dsag
Aue sapnjaul Azo8a3ed siy3 0§ ‘1gJo suoow ay} pulkag saod 1ey) Yiesaodes ajoqod Auy
‘UOOW Ppue uns ‘Yuea ay} Jo sp|ay Ayoased ayy Aq pajesus syulod
3|qqnH| 28ueiBe| snolea ayy Je Suljies) yuiea Jo sJa3igio Yyuea aq ued A3y 'sapuanbaly Jo 135 apim Alojenasqo
e ssoJoe Awououise paseq adeds Joddns jey) sadoasa|a) paseq adeds ale sallo}eAIasqO
sHal *2}l| Buo| Aian Joj pausisep pue yipimpueq ysiy Asaa Joddns jey3 sie11qJo yiie3 1BS Wwoda|a)
*AJ3snpul woJy sasng aul| uoianpoad asn uaAs pue
enby ageuay ysiy aney aney ued usyo Aay] ‘saiijales Asey|iw AUBW SE ||3M SB UOIIEIILNLULIOD 1YQO Jeun/yie3
10} pasn Sa}||91es |e12J3Wwod Auew 3y} 03 [B213USPI 10U JI Je|iwis AJaA aie Yeldadeds
353y "sjUILLINSEAW 33U31IS SUlIINPUOI UoOLW JO YHES 3y} JIqJo 1Y) Yeldaoeds Jnoqoy
ajdwex3 uopduasag sanjep adA] uojssiN

s10ydudsaq walshs

19

System Parameters with Definitions and Examples (cont)

Appendix B

43I pue 1SN DO 1801307 ST < adien Auap
dVIAIS PUE UBABI JOTH (e80T 0ST-051 a8.1e1| 'saul| pajesauaid-oine sapnjoxa apod
ddN ‘(s)awnd-yON ‘ounr ‘0gs :Alo8ajed 50T [#91507 051-08 wnipan Jo saul| |ea180] paJani|ap Jo Jaquinu
SIY3 Ul ||ej suoIssiw Jno jo Ajuiolew ayy |e30} BY3 UO paseq apPod Jo saul|
\ ‘0MD ‘119 :safenBue| adfy SOTH [81307 06 > ews paJani|ap ay} jo uonezuodale)
|QWBSSY Ul UM SUOISSIW Jap|o AISoN
ajdwex3 uondisag sanjep 2215 2JEMYOS
$1311gJ0 Yuea pado|anap Jooesjuod Auep ASNaI 2POO 94,99 < ysiHy Aap
sisuqio 2SNDI AP0 %590 Y34
Asejaueld padojansp Jojoesuod Auep : (301>} suopedypow
SENAL 3P0 Y4EE-0T wnipajy| Joulw Jo ou Yyim ssjnpol pasnay
28NaI 2p0d %ET-01 Mo
1SN “Japunyied Jey 28NAI 9P0d %0 > BuoN 03 mo Alap
ajdwex3 uondiasag sanjep asnay
"UOLJEJUSWINIOP AISUIIXD Self
54331940 Yyea Auepy | pue ‘suorssTin om) 1SBa] 1B U1 pasn-al A[[NJSsa00ns Uaaq ser “2ouo)1sea] e 2oeds up A[nyssasons ydiy Aap
umol} sey ‘autf Jonpouid e se padojaaap sem pajLIayUl 3 0) ABMOS "20DUBILI2YUL SPOD 84()] <
“UOTIEOLIpO
siayquo Aejaue|d Auepy JBISPOW 1M Pasn aq Ued apod Jo Ajuolem pue amjoa)IaIe p S paiuayu] A[LI0le]sTes PEI]
pauntoprad pue 2oeds Ul UMO[J SBY PAILISYUL 2 0] AIBMIJOS "20UBILISYUI 3p0D 24,08--05 (%05>) suoizealipow
"pado[oAdp AJmou ST ap0d JO Ajuolew jn IR LI3YU] "AJLIO}OR]ST)ES
dVINS 15819 ‘04D ﬁu:w.nfhm ﬁ__”m hum% _.m_ F—VMO_.W mmﬂ._uu&..up_ﬁz._puw_hﬁ” uhumﬁﬁcmjwuﬂﬂtuﬁﬂ u_”_v_ouu.xumw_.ﬁcm unipaiN PIEITROU UM SAAmpO pShI
"BULIAOUIBUD ATRMPIBY MU JUBDUISIS YHM UM
vedw| daag ‘YIw Mo

Almau A][ediseq s12pod INg SIMIANTYIIL JILMIJOS PAYSI[qRISH "SOUBLISYUI 3P0d 9%461-01

“USPLM
BIEMHOSTAT TSN 0 J3PUBREA JBIN| 01\ oy £ 1eotseq st opoo INq MOT 1O PAILIDYUT 9q TS QIMIIAIYITY “POUEILIAYLY OPOD ..\“uev 3uoN 03 mo7 LiaA
ajdwex3 uonduasag sanjep asuejliayu)
Swe *§5300NS I0/pue A)3Jes UOISSIW 0} [BANLI aIe Yorym sajqelojdap 10 ‘sonsua)oeIeyd walsis
Jnoqo. x2|dwod ‘uoisuaixa dwel ‘dnpuels SuiSueyo 10 ayesuadwos o) sunpuoS[e jonuod [euonippe annbar Aew Yorym suonoenax xa|dwo)
13A0J ‘UoIIRA3) pUE Uolepul Seq ‘anydeled pue sjuswioldap Auew ‘soousnbos JuswAodap paprerop yim sajqedordap xajdwo)
dnpuels Jaaos ‘uollepul ‘uonoenal pue jusawAojdsp arnmbas Lewr
Seq ‘sanydeied’shelse Jejos ajqedojdag| 0 ‘sjuaas Juawkordap yo Surouanbos awos annbal gorgm sojqelojdap xajdwod Aprerapoy Wwnipan
wooq Ja1awolaudey OISSTULL aTf JO Honwmp Jaguiny
ayy 105 uonisod paojdap sy ur urewal pue aw) auo ajeAnoe Yorym (s)ejqefojdap ajdung
ajdwex3 uondiiasag sanjep sa|qgeho|dag jo Jaquiny

20

