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Abstract

The cost estimation of software development activities is increasingly critical for large scale
integrated projects such as those at DOD and NASA especially as the software systems become
larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet
Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic
spacecraft ever flown (Based on the size of the software). Software development activities are also
notorious for their cost growth, with NASA flight software averaging over 50% cost growth[1]. All
across the agency, estimators and analysts are increasingly being tasked to develop reliable cost
estimates in support of program planning and execution. While there has been extensive work on
improving parametric methods there is very little focus on the use of models based on analogy and
clustering algorithms. In this paper we summarize our findings on effort/cost model estimation
and model development based on ten years of software effort estimation research using data
mining and machine learning methods to develop estimation models based on analogy and
clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II,
linear regression, and K-nearest neighbor prediction model performance on the same data set.

12
Background

This work is part of the NASA Software CER Development Task; a collaboration between JPL and
West Virginia University that is funded by the NASA Cost Analysis Division (CAD). The main
objective of the task is to provide one or more software CER(s) that can be used in the early stages
of the lifecycle and can be used at various levels of the organization including IPAO, Center level
costing offices, and the software implementation organizations. The task is also taking advantage
of the ability to integrate activities being conducted between the NASA software engineering
working group under the NASA OCE and tasks funded by the NASA CAD, as well as getting members
of the cost and software communities to work together in developing cost databases, models and
other supporting work aids.
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Introduction

Accurately estimating software development effort is of vital importance. Under-estimation can
cause schedule and budget overruns as well as project cancellation [2] while over-estimation delays
funding to other promising ideas and reduces organizational competitiveness [3]. Because
improving our ability to estimate, especially early in the lifecycle is critical, there continues to be a
great deal of energy put into the improvement of our current methods as well as developing new
methods of estimation. The development of formalized estimation models began in the late 1950’s
with the PERT scheduling models. For years, the backbone of our estimation methods were
parametric models and detailed bottom up methods. Today, the cutting edge in cost model
development focuses on improving how we incorporate risk and uncertainty and the
implementation of Bayesian, clustering, and analogy methods.

Looking back over the last 50 years a question that arises is - What does it mean to be a good cost
model? First and foremost, a model as well as its predictions should not violate the laws of physics or
the “laws of estimation”. Other considerations of a good model include minimizing information needs
and minimizing the occurrence of large estimation errors. The last two are often at odds with one
another as a reason an outlier appear to exist is a missing explanatory variable. It is frequently
observed that many of our models have too many inputs, causing an increase in user input error. In this
paper we will analyze the performance of five estimation model types that span the set of typical
estimation models using flight software metrics primarily from the NASA CADRe (Cost Analysis Data
Requirements Repository).

The main questions being addressed are

* Is one model better than another?
* Can a model using system data be used to estimate software costs?

The paper is divide into the following sections: History and Evolution of Cost Modeling, Data
Summary, Methodology Summary, Results, Conclusions (of course)

History of the Evolution of Estimation Models

The primary questions or issues being addressed by our cost models and methods has evolved over
time, from “is this even possible” to how to use cutting edge methods for addressing small, noisy,
sparse data sets. Figure 1 (below) provides one way to look at of how our models and methods
have evolved over time, organized by the primary issues or questions that were being addressed.

The 1960’s is a period dominated by estimation methods based on simple analogies and rules of
thumb based on limited or no recorded data. There are even many apocryphal stories of people
constructing a cost model by taking two to three points and just drawing a line with a pencil and
ruler. The first formal models appear in the sixties funded by the US Air Force and Navy. In many
ways, this period can be thought of as the Pre-historic era because finding the original documents is
very difficult. Also, many of the ideas have passed into extinction or evolved into other forms.



Evolution of Model Based Estimation Methods
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Figure 1: Evolution of Estimation Methods and Models

The first formal method was actually PERT, which was introduced in 1959[4] as a method to
analyze the scheduling of tasks required to complete a given project to make the planning of large
and complex projects feasible. While it focuses on schedule, it does introduce the concepts of
schedule slack (corresponds to cost reserves) and the use of uncertainty or probabilistic methods
which would not get incorporated into the standard cost models until decades later.

The earliest regression based models were developed in the early sixties in work conducted for the
US Air Force [5-7]. The formal models were multivariable linear regressions. They started by
interviewing software project managers to identify how they were estimating software effort in
order to identify the parameters that should be incorporated into their model. The parameter space
included many of the model inputs we recognize today though they were defined differently in the
past. Some examples of these parameters include; number of instructions, or today what is known
as physical source line of code, design heritage, reused instructions, and requirements stability.
During the early days of regression based model development, use of the computer was a
constrained resource and expensive, therefore requiring an estimate of the number of actual
computer hours. This is clearly no longer a concern.

In the seventies, the first general purpose models that had the capability of being embodied in tools
were developed. However, there were many ways in which the models were secondary to the first
attempts to identify the parameters or cost drivers that best described the dimensions of the cost
estimation problem. A number of models were developed and started to be used during the
seventies as demonstrated by the formation of professional societies and working groups such as
the International Society of Parametric Analysts3.

3 See http://www.iceaaonline.com/about/origins-of-iceaa/ for a short history of the societies that have evolved into
ICEAA.



Frank Freiman, who was working for the Radio Corporation of America (RCA) at the time, is
credited with developing the first parametric cost tool for industry wide use. Known as “Price H”, it
estimates cost for the acquisition and development of hardware systems. This was spun off as a
separate division called Price Systems in 1976. The model was initially developed in 1969 for
internal use at RCA. A software version (Price S) of the Price tool was completed in 1977 [8-9]. Its
novel feature is the use of software volume as its size input. Software volume is derived from the
number of Source lines of code (SLOC) adjusted for language and a complexity factor.

In the 1970s and 1980s, cost modeling research was focused on parametric estimation as done by
Putnam and others [10-15]. Putnam introduced the SLIM (Software lifecycle Management) model
[16] in the 1970’s. SLIM depends on an SLOC estimate for the project's general size, then modifies
this through the use of the Rayleigh curve model to produce its effort estimates. To our knowledge,
this was the first model to estimate cost, schedule, and size in an integrated manner [16, 17].

Industry “best practice” continues to rely upon a combination of bottom-up and regression-based
models. Qur standard models (SEER, Price, etc.) necessarily take a one size fits all approach. This
results in models with either large estimation variance or the need for a large number of inputs that
are frequently not known in the early stages of the software lifecycle. While there have been many
refinements there have been few major changes in how we estimate cost over the last thirty years.
One of the more significant advances in cost estimation has been the development of the Joint
Confidence Level (JCL) methods and models [21]. JCL works well at PDR but there are issues with
applying this method in the early lifecycle. The JCL approach is also becoming less parametric
model based and more of an extension of network scheduling and earned value (EVM) methods
making them even more difficult to use effectively early in the lifecycle.

There also exists an extensive academic literature on a wide spectrum of software size and cost
estimation techniques which has had very limited impact on real practitioners. Hence, there is a
long history of researchers exploring software effort estimation; e.g. [8, 10, 12-15, 18, 22-28]. In
2007, Jorgensen and Shepperd reported on hundreds of research papers dating back to the 1970s
devoted to the topic, over half of which propose some innovation for developing new estimation
models [24]. Since then, many more such papers have been published; e.g. [29-40]. Many academic
researchers have innovated other methods based on regression trees [27] case-based reasoning
[27], spectral clustering [41], genetic algorithms [42, 43], etc. These methods can be augmented
with “meta-level” techniques like tabu search [29], feature selection [44], instance selection [33],
feature synthesis [39], active learning [34], transfer learning [35], temporal learning [40, 45], and
many more besides

Unfortunately, none of the standard approaches and few of the academic methods really address
the fundamental issue of cost estimation, which is that the vast majority of our data sets are small,
noisy, and sparse. For example, even after all the effort to build the NASA CADRe and the large
number of records that have been entered, it still has many empty cells and many pieces of data
that are questionable. Fortunately, there are two methods that are designed to help us address
these issues and also show promise; Bayesian methods [56] and clustering methods (especially
spectral clustering). In this paper we will summarize our research and results in working with
spectral clustering methods.



Data Summary

The data was collected from various sources.

* Primary source is the NASA CADRe (Cost Analysis Data Requirements) repository Parts A, B and

C

(0]

* System descriptor data was supplemented with data from NASA project websites, project

Data was updated last on March 4, 2015
When available missing data items were obtained from other sources including
contacting project software managers
When verifiable CADRe data was revised with information/data from other sources

reports and Wikipedia articles.

* Software metrics for older missions that predated the were supplemented with data records
from a data collection conducted for the International Space Station that was completed in 1990.
A subset of these records can be found at the PROMISE (Predictor Models in Software

Engineering) website® under the COCOMO directory.

* Contributed Center level data

Table 1 contains a list of the data used in the study including the total number of records for each
variable, which took on various values. For a detailed description of the data collected see Appendices A
(COCOMO Model Inputs) and B (System Parameters). Tables 2 through 7 below summarize the data be

median, average and spread metrics as appropriate to the data.

Number of
Data ltem Projects
Total development effort in work months 28
Logical Lines of code (LOC)
o Delivered LOC 36
o Equivalent LOC 36
0 Inherited LOC (Reused plus Modified reused
lines) 36
o Reused LOC (0-10% modified) 36
COCOMO model inputs (See Appendix A for the
parameter definitions) - Translated from CADRE which
has SEER model inputs because the SEER data items
are very sparse in CADRe 19
System parameters (See Appendix B parameter
definitions)
o Mission Type (deep-space, earth-moon, rover-
lander, observatory) 39
o Multiple element (probe, etc.) 39
o Number of instruments 39
o Number of deployables 39
o Flight Computer Redundancy (Dual Warm, Dual
Cold, Single String) 39
o Software Reuse (Low, Medium, High) 36
o Software Size (Small, Medium, Large, Very
Large) 36

Table 1: Data Summary with Number of Records
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Table 2 shows the number of records found in each mission category, along with median and standard
deviation values for Effort, Lines of Code, and Productivity. Lines of Code and Productivity information is
shown both in Equivalent and Delivered form as Equivalent LOC values are influenced by software
inheritance and Delivered LOC values are not. There are 5 or less data points for both Observatory and
In Situ missions, and at least 11 for Earth/Lunar and Deep Space missions. There appears to be a
threshold in which productivity numbers are no longer significantly affected by increases in effort. It is
seen that Observatory missions show a median effort of 492 and a productivity value of 75, while all
other mission categories have at least 579 work-months worth of effort and productivity values no less
than 149.

Mission Type | # Records | EFFORT (months) | Logical Delivered LOC | Logical Equivalent LOC {m;:;d;:;::t:nthj {Logi::::::v';:;mh}
Median s.D Median s.D Median S.D Median S.D Median S.D
gar'::i 'r'“"a’ 19 579 418 92,050 | 40,104 | 56940 | 41,010 265 1,366 150 71
Observatory 5 492 1,054 | 107,100 | 59,143 | 76,800 | 61,411 74 977 75 698
Deep Space 11 670 866 121,000 | 54,191 | 122,000 | 47,034 179 114 149 9
In Situ 4 1,408 551 246,700 | 164,844 | 199,500 | 220,139 215 80 178 93

Table 2: Effort, Lines of Code and Productivity by Mission Type

Table 3 shows productivity derived from equivalent LOC by mission type and inheritance level; low
(<20%), medium (<80%), and high (>=80%). Inherited code includes code reuse with minor to no
modifications and code that is inherited with <= 50% modifications. All mission categories clearly show
that increases in inheritance result in improved productivity, with observations of at least 150%
increases in productivity rates across all mission categories. Because Equivalent LOC has been adjusted
for inheritance the increase in productivity most likely indicates that for high levels of inheritance the
start-up costs are greatly reduced due to the architecture and development environments also being
reused’.

Low Inheritance (<20%) Medium Inheritance (<80%) High Inheritance (>=80%)
Mission Type Avg. Prod ",'frdo':" RANGE | Avg. Prod M,frgﬁ’" RANGE |Avg. Prod M;rgﬁ’" RANGE
[Earth/Lunar Orbiter 65 65 6565 136 120 | 60245 150 150 | 138-161
Observatory 58 58 4275 95 95 46-144 - - -
Deep Space 66 37 | 37125 | 208 169 | 103321 183 183 | 144221
Tn Situ 187 141 | 105316 215 215 | 215215 - -

Table 3: Equivalent Productivity by Mission Type and Level of Inheritance

Table 4 shows productivity derived from delivered LOC by mission type and inheritance level; low
(<20%), medium (<80%), and high (>=80%). As before, inherited code includes code reuse with minor to
no modifications and code that is inherited with <= 50% modifications. As expected, all mission
categories clearly show that increases in inheritance result in improved productivity. Note that the
projects included in the mission types are different between Tables 3 and 4 because in some cases not
all LOC metrics were available.

3 It could also indicate that the formula used to derive equivalent LOC under estimate the savings.



Low Inheritance (<20%) Medium Inheritance (<80%) High Inheritance (>=80%)
Mission Type Avg. Prod Mperdo':“ RANGE | Avg. Prod MF?F‘;':" RANGE | Avg. Prod MF?F‘;"?" RANGE
Earth/Lunar Orbiter 65 65 65-65 177 160 | 76313 542 542 | 439-644
Observatory 60 60 46-74 145 145 46-244 - N -
[Deep Space 74 37 | 37147 240 183 | 157-360 285 285 245324
Tn STty 172 178 | 87-252 258 258 | 258258 - -

Table 4: Delivered Productivity by Mission type and Inheritance Level

Tables 5, 6 and 7 provide a data summary for other key parameters used in the study. While actual code
counts or estimated percent existed for software size and inheritance, these values were converted to
categories for two reasons. Most notably, the model under development is designed to be used in pre-
Phase A and estimators would only have very approximate idea as to the number of delivered and
inherited LOC.

o Deployables Instruments
Mission Type POy
Median | Range | Median| Range
Earth/Lunar Orbiter 2 0-7 3 1-10
Observatory 2 0-4 4 1-6
Deep Space 2 1-8 3 2-12
In Situ 7 3-10 5 3-10
Table 5: Number of Deployables and Instruments by Mission Type
) Flight Computer Redundancy Inheritance
Mission Type Single String D"a‘l_:::"g' D"';',:::'"s' Median ve':::‘:m Low Medium High Very High Median
Earth/Lunar Orbiter 12 7 0 String 2 2 5 5 High
Observatory 1 4 0 Cold 1 1 2 Low
Deep Space 1 8 2 Cold 2 1 2 3 3 High
In Situ 1 0 3 Warm 2 1 1 Very Low/None

Table 6: Flight Computer Redundancy and Inheritance Category by Mission Type

. Size (Delivered LOC)
Mission Type
Very Small Small Medium Large VeryLarge | Extralarge Median
Earth/Lunar Orbiter 1 6 4 4 Medium
Observatory 1 1 2 1 Medium
Deep Space 2 1 3 3 2 Medium
In Situ 1 1 2 Very lLarge |

Table 7: Software Size Categories by Mission Type

Methodology

Two teams were formed in order to compare traditional cost model development approaches using
regression analysis (JPL) with data mining or machine learning modeling methods (North Carolina State
University). All analysis was performed on the same data set constructed from the CADRe with
supplemental sources summarized above.

Method 1 - At NC State, all methods were evaluated based on leave one out validation and performance
was compared based on the Magnitude of Relative Error (MRE) median and distribution. The only
formal test available is a non-parametric test. The methods evaluated are:

1. COCOMO Il - a parametric model used with the provided parameter settings (Out of the box)



2. COCONUT - a calibration or tuning rig for COCOMO I

3. Knn_1 - a K-nearest neighbor model

4. delLOC - a regression of total development effort on LOC

5. MED_MISSION - a simple summary by mission types using the median as the predicted
effort.

6. PEEKING2 - constructs clusters of projects using spectral clustering algorithms and

estimates by finding the nearest cluster and computing the median between the two nearest
neighbors within that cluster using high level system data

Each of the data mining learners is constructed to meet the requirements of the model being evaluated.
For a detailed discussion of the various learners see [3, 25, 33, 34, 35]. The method that is new in this
study is called PEEKING2 and is a combination of spectral clustering, Principle Components
Analysis (PCA), and nearest neighbor, see Figure 2.

e PEEKING2's featwe weighting scheme changes w; in Equation 3
according to how much an attribute can divide and reduce the vari-
ance of the effort data (the greater the reduction, the larger the w;
score).

o PEEKING2's PCA tool used an accelerated principle component
analysis that synthesises new attributes e;, e, ... that extends across
the dimension of greatest variance in the data with attributes d. PCA
combines redundant variables into a smaller set of variables (so
e < d) since those redundancies become (approximately) parallel
lines in e space. For all such redundancies i, j € d, we can ignore j
since effects that change over j also change in the same way over i.
PCA is also useful for skipping over noisy variables from d- these
variables are effectively ignored since they do not contribute to the
variance in the data.

o PEEKING2's prototype generator clusters the data along the dimen-
sions found by accelerated PCA. Each cluster is then replaced with a
“prototype” generated from the median value of all attributes in that
cluster. Prototype generation is a useful tool for handling outliers:
large groups of outliers get their own cluster; small sets of outliers
get ignored via median prototype generation.

o PEEKING2 generates estimates for a test case by finding its near-
est cluster, then the two nearest neighbors within that cluster (where
“pear” is computed using Equation 3 plus feature weighting ). If these
neighbors are found at distance ny, ng,np < ng and have effort
values Ey, E3 then the final estimate is an extrapolation favoring the
closest one: ng -

n = n; + ng; estimate = [ o | 527

Figure 2: Summary of PEEKING2 Algorithm

Method 2 - At JPL we used standard statistical tests to evaluate the models, F-Test and t-Test results
supplemented with R? and Pred (30).

1. Manually Calibrated COCOMO II - Good old fashioned way
2. Linear and Ln-Linear regressions to evaluate linear and multiplicative models.
Results

Method 1

Method 1 consisted of deriving a local calibration of the COCOMO II model and evaluating all
various combinations of the COCOMO model inputs and the system descriptors.

It was not possible to derive a basic general purpose effort = f(LOC) model even though we had 26
records with both LOC and effort. We have been able to do this for decades on in-house JPL data
but when combining the data with data from other centers and from contractors as reported in the
CADRe the new records appear to have added more noise than information. The models we were
able to derive either violated the laws of logic or were so specialized that they had limited value.
For example, one acceptable model from a statistical basis was effort as a function of LOCew and



LOCinnerited, but only for software that had >10% reuse and excluded rovers and landers. Adding
system descriptors did not improve the explanatory power of the model. Thus, we were not able to
derive a model for software systems that was reliant on the LOC,ew parameter with an R2 above 0.2
or made sense. Regressions on LOCgeliverea were abject failures no matter how many other variables
we introduced.

Local calibration of the original COCOMO Il model was possible. Data use spanned all relevant
spacecraft software data, except for Rovers and NUSTAR. Rovers are fundamentally different from
orbiters and the NUSTAR data always appeared as an outlier in all analysis and we suspect the data
was too flawed to be usable.

The effort multipliers, pvol and acap effort multipliers were excluded in order to maximize the
sample size at 19 records. In order to calibrate A and By, the original effort value, PM was divided
by the product of the 15 remaining effort multipliers and Size0-01x¥5F, These variables were treated
as known values and not observations from a distribution. This simplified the original COCOMO II
model to the following equation: PM_adjusted = A x SizeB

Once the above equation was converted into log space, regression analysis was used to test if
Size(Equivalent Lines of Code), significantly predicted PM_adjusted(adjusted software effort
values). The results of the regression indicated Size explained 62.3% of the variance and
significantly predicted Effort (R* =.63, F(1,14)=25.88, p<0.001). A was estimated as 1.6873, with a
standard error of 0.7981, t-value = 2.114, and Pr(>|t|) = 0.052917. B was estimated to have a value
0f 0.8933 with a standard error of 0.1756, t-value = 5.087, and Pr(>|t|) = 0.000166.

y = DL BI3295% + 1 BE7AD

[ B < 0.0001 [
Ri= 62

n=16

LN Adjusted Effort

0 1 2 3 4 5
LN Equivalent Lines of Code (KLOC)

However, the calibrated parameters while significantly different form zero, are within two standard
deviations of the standard values or the out-of-the-box COCOMO equation. This result was
confirmed in previous studies [57] and in the data mining analysis reported here as well. Hence, we
can safely conclude that for estimating NASA spacecraft flight software, the standard model as
calibrated by the USC team is the best tuning for the COCOMO model. Based on personal experience
with both COCOMO and SEER-SEM at JPL this also implies that the out of box settings for SEER-SEM
also are suitable for estimating NASA flight software costs. However, this needs to be verified with
further studies.



Method 2

The first experiment compared the performance of COCOMO to non-parametric estimation methods.
It only used the 19 records that had data for COCOMO effort multipliers coupled with the systems
parameters for those same records. This is the smallest version of the data set we evaluated. The
nearest neighbor and clustering methods used the system parameters: Mission Type, Secondary
Element, Number of Instruments, Flight Computer Redundancy, Number of Deployables,
Inheritance Category, Reuse Category, and Size categories. Other combinations and forms of the
system parameters were evaluated in earlier runs but this set performed either the best or required
a much simpler set of inputs. For example, models using the actual delivered lines of code were
evaluated and performed better but using delivered lines in a categorical form (small, medium, etc.)
only reduce Median MRE by 2%. It was concluded from this finding that the increased simplicity in
user input greatly offset the small gain in accuracy.

The Experiment 1 results are summarized in Table 8 and Figures 9 and 10. Based on MMRE,
Experiment 1 confirmed the results that “out-of-the-box” COCOMO out performed a local
calibration (COCONUT). The basic summary table even out performed local calibration in the small
data set. The non-parametric models performed as well if not slightly better than COCOMO.

Median
Estimation Model MRE 25th . 75th .

(MMRE) Percentile Percentile
knn_1 (Nearest Neighbor) 32% 14% 80%
PEEKING?2 (Spectral Clustering) 32% 16% 97%
COCOMO2 36% 22% 55%
Mission Type Summary Table 38% 14% 106%
COCONUT A4% 32% 62%

Table 8: Median and Interquartile Range for Parametric vs Non-Parametric Models (N=19)

In Figures 9 and 10 the results appear slightly different. Here it can be seen that the COCOMO
models handle outliers much better than nearest neighbor and spectral clustering. So, while the
non-parametric models do better overall, when they are inaccurate they tend to be extremely
inaccurate, which is a concern.
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Figure 9: Experiment 1 MRE Results
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Figure 10: Experiment 1 MRE Results in Log Scale

The second experiment compared the performance of simple regression models to the non-
parametric estimation methods. It used the 26 records that had data for LOC of effort along with
the systems parameters for those same records. As before, the nearest neighbor and clustering
methods used the system parameters: Mission Type, Secondary Element, Number of Instruments,
Flight Computer Redundancy, Number of Deployables, Inheritance Category, Reuse Category, Size

Categories.

The Experiment 2 results are summarized in Table 9 and Figure 11. Based on MMRE Experiment 2
again indicates that the non-parametric models performed as well as traditional methods and in
some cases better. The LSR results reconfirmed the Method 1 results by performing comparably
but producing similar illogical results that violate common sense. The LSR results either indicate all
we need to know is the new LOC even if there is large percentage of reused code or that we can
actually make money by reusing code, not just reduce costs. Thus, the LSR models are rejected on
first principles. Based on MMRE Nearest Neighbor does appear to outperform Spectral Clustering.
However, Figure 13 and the percent error at the 75t percentile (shown in Table 9) shows that
Nearest Neighbor has much more significant outliers than Spectral Clustering. Another advantage
of Spectral Clustering is that by deriving clusters of similar projects it provides structure that can be
documented, analyzed, and evolved as more and better data becomes available.

Median
Estimation Model {MMI\::E} Perzcset:tile Per71:5et:tile
knn_1 (Nearest Neighbor) 33% 12% 112%
LSR on LOC new 37% 28% 66%
PEEKING?2 (Spectral Clustering) 38% 16% 76%
Mission Type Summary Table 46% 25% 116%
LSR on LOC new and reused 48% 23% 72%

Table 9: Median and Interquartile Range for LSR vs Non-Parametric Models (N=26)
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Figure 13: Experiment 2 MRE Results

The clusters produced in Experiment 2 on 26 records are
1-['Maven', 'MRO', 'JUNOQ']
2-['GRO', 'Kepler', 'HST']
3-['MER FSW R9.0 (includes post launch development)’, 'MSL', 'MPF']
4-['SIRTF', 'Deep Impact FSW', 'Stardust’, 'Genesis']
5-['Cassini', 'GLL', 'LRO"]
6-['Grail', 'GPM Core', 'SMAP']
7-['SDO', 'NUSTAR', 'OCO', 'DS1 total']
8-['TDRS K/L', 'Mars Odyssey', 'Phoenix']

The final model will be built on all 39 currently available records. However, despite working with a
reduced data set, it can be seem that many of the clusters make sense intuitively. Cluster 1 are all
orbiters built by Lockheed Martin and both Maven and Juno have high heritage from MRO. Cluster
2 are all observatories. Cluster 3 are NASA's three Mars rovers. The other clusters have members
that are related, like Stardust and Genesis, but the reason for other members in the cluster is less
obvious. These are driven by commonalities of other system parameters but this has not been
analyzed yet.

Conclusions and Next Steps

The purpose of the task is to develop a software cost model that can be used early in the lifecycle
when knowledge of the system being built is immature. In this paper we are addressing key
questions that are stepping stones in building this model:

* [s one model better than another?

¢ Can amodel using system data be used to estimate software costs?

A major lesson learned was that the data mining method was very advantageous in adding the
ability to evaluate a large number of methods simultaneously. The disadvantage is that it is easy to
lose sight of the logic of the models and what is being estimated.
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The primary conclusions are

1. There are a variety of models whose performance are hard to distinguish (given currently
available data) but some models are better than others

2. If one has sufficient data to run COCOMO or a comparable parametric model then the best
model is the parametric model

3. When insufficient information exists then a model using system parameters only be used to
estimate software costs with only a small reduction in accuracy. The main weakness is the
possibility of occasional very large estimation errors which the parametric model does not
exhibit.

4. While a nearest neighbor model performs as well as spectral clustering based on MMRE,
spectral clustering handles outliers better and provides a structured model with more
capability

5. A major strength of the nearest neighbor and spectral clustering methods is the ability to
work with a combination of symbolic and numerical data

The next step is to develop a tool that embodies the spectral clustering model built on all 39 records.
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COCOMO Model Inputs

Appendix A
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System Parameters with Definitions and Examples

Appendix B
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System Parameters with Definitions and Examples (cont)

Appendix B

43I pue 1SN DO 1801307 ST < adien Auap
dVIAIS PUE UBABI JOTH (e80T 0ST-051 a8.1e1| 'saul| pajesauaid-oine sapnjoxa apod
ddN ‘(s)awnd-yON ‘ounr ‘0gs :Alo8ajed 50T [#91507 051-08 wnipan Jo saul| |ea180] paJani|ap Jo Jaquinu
SIY3 Ul ||ej suoIssiw Jno jo Ajuiolew ayy |e30} BY3 UO paseq apPod Jo saul|
\ ‘0MD ‘119 :safenBue| adfy SOTH [81307 06 > ews paJani|ap ay} jo uonezuodale)
|QWBSSY Ul UM SUOISSIW Jap|o AISoN
ajdwex3 uondisag sanjep 2215 2JEMYOS
$1311gJ0 Yuea pado|anap Jooesjuod Auep ASNaI 2POO 94,99 < ysiHy Aap
sisuqio 2SNDI AP0 %590 Y34
Asejaueld padojansp Jojoesuod Auep : (301>} suopedypow
SENAL 3P0 Y4EE-0T wnipajy| Joulw Jo ou Yyim ssjnpol pasnay
28NaI 2p0d %ET-01 Mo
1SN “Japunyied Jey 28NAI 9P0d %0 > BuoN 03 mo Alap
ajdwex3 uondiasag sanjep asnay
"UOLJEJUSWINIOP AISUIIXD Self
54331940 Yyea Auepy | pue ‘suorssTin om) 1SBa] 1B U1 pasn-al A[[NJSsa00ns Uaaq ser “2ouo )1sea] e 2oeds up A[nyssasons ydiy Aap
umol} sey ‘autf Jonpouid e se padojaaap sem pajLIayUl 3 0) ABMOS "20DUBILI2YUL SPOD 84()] <
“UOTIEOLIpO
siayquo Aejaue|d Auepy JBISPOW 1M Pasn aq Ued apod Jo Ajuolem pue amjoa)IaIe p S paiuayu] A[LI0le]sTes PEI]
pauntoprad pue 2oeds Ul UMO[J SBY PAILISYUL 2 0] AIBMIJOS "20UBILISYUI 3p0D 24,08--05 (%05>) suoizealipow
"pado[oAdp AJmou ST ap0d JO Ajuolew jn IR LI3YU] "AJLIO}OR]ST)ES
dVINS 15819 ‘04D ﬁu:w.nfhm ﬁ__”m hum% _.m_ F—VMO_.W mmﬂ._uu&..up_ﬁz._puw_hﬁ” uhumﬁﬁcmjwuﬂﬂtuﬁﬂ u_”_v_ouu.xumw_.ﬁcm unipaiN PIEITROU UM SAAmpO pShI
"BULIAOUIBUD ATRMPIBY MU JUBDUISIS YHM UM
vedw| daag ‘YIw Mo

Almau A][ediseq s12pod INg SIMIANTYIIL JILMIJOS PAYSI[qRISH "SOUBLISYUI 3P0d 9%461-01

“USPLM
BIEMHOSTAT TSN 0 J3PUBREA JBIN| 01\ oy £ 1eotseq st opoo INq MOT 1O PAILIDYUT 9q TS QIMIIAIYITY  “POUEILIAYLY OPOD ..\“uev 3uoN 03 mo7 LiaA
ajdwex3 uonduasag sanjep asuejliayu)
Swe *§5300NS I0/pue A)3Jes UOISSIW 0} [BANLI aIe Yorym sajqelojdap 10 ‘sonsua)oeIeyd walsis
Jnoqo. x2|dwod ‘uoisuaixa dwel ‘dnpuels SuiSueyo 10 ayesuadwos o) sunpuoS[e jonuod [euonippe annbar Aew Yorym suonoenax xa|dwo)
13A0J ‘UoIIRA3) pUE Uolepul Seq ‘anydeled pue sjuswioldap Auew ‘soousnbos JuswAodap paprerop yim sajqedordap xajdwo)
dnpuels Jaaos ‘uollepul ‘uonoenal pue jusawAojdsp arnmbas Lewr
Seq ‘sanydeied’shelse Jejos ajqedojdag| 0 ‘sjuaas Juawkordap yo Surouanbos awos annbal gorgm sojqelojdap xajdwod Aprerapoy Wwnipan
wooq Ja1awolaudey OISSTULL aTf JO Honwmp Jaguiny
ayy 105 uonisod paojdap sy ur urewal pue aw) auo ajeAnoe Yorym (s)ejqefojdap ajdung
ajdwex3 uondiiasag sanjep sa|qgeho|dag jo Jaquiny

20





