
Supervised Remote Robot with Guided Autonomy and Teleoperation
(SURROGATE): A Framework for Whole-Body Manipulation

Paul Hebert1, Jeremy Ma1, James Borders1, Alper Aydemir1, Max Bajracharya1, Nicolas Hudson1
Krishna Shankar2, Sisir Karumanchi1, Bertrand Douillard1, Joel Burdick2

1Jet Propulsion Laboratory, Pasadena, CA
2California Institute of Technology, Pasadena, CA

Abstract—The use of the cognitive capabilties of humans
to help guide the autonomy of robotics platforms in what
is typically called “supervised-autonomy” is becoming more
commonplace in robotics research. The work discussed in this
paper presents an approach to a human-in-the-loop mode of
robot operation that integrates high level human cognition and
commanding with the intelligence and processing power of
autonomous systems. Our framework for a “Supervised Remote
Robot with Guided Autonomy and Teleoperation” (SURRO-
GATE) is demonstrated on a robotic platform consisting of a
pan-tilt perception head, two 7-DOF arms connected by a single
7-DOF torso, mounted on a tracked-wheel base. We present
an architecture that allows high-level supervisory commands
and intents to be specif ed by a user that are then interpreted
by the robotic system to perform whole body manipulation
tasks autonomously. We use a concept of “behaviors” to chain
together sequences of “actions” for the robot to perform which
is then executed real time.

I. INTRODUCTION

With search-and-rescue operations occuring every year in
harmful conditions as a result of natural disasters coupled
with the growing need for in-home care for the growing
population of the eldery, the need for robotics platforms
to perform human-level tasks with commonplace tools is a
growing need in the world today. Completely autonomous
systems can often fail in situations not modeled in software
algorithms. By leveraging the cognitive capabilties of hu-
mans to help guide the autonomy of robotics platforms, in
what is typically called “supervised-autonomy”, much more
can be achieved. Our framework for a “Supervised Remote
Robot with Guided Autonomy and Teleoperation” (SURRO-
GATE) is demonstrated on a robotic platform consisting of
a pan-tilt perception head, two 7-DOF arms connected by a
single 7-DOF torso, mounted on a tracked-wheel base. This
paper presents our unique approach and software architecture
that f nds a nice balance between human teleoperation and
robot autonomy. This paper is organized as follows: Section
II presents related works on the topics of manipulation and
supervised autonomy, Section III describes our approach
and how it differs from other methods, Section IV explains
how our approach has been implemented on a real robotic
platform, Section V shows our framework in action as
demonstrated on three human-level tasks, and Section ??
concludes with our future direction of work.

Fig. 1. The SURROGATE platform consists of two 7-DOF limbs, one
7-DOF torso, two Robotiq, Inc. grippers (both hands are interchangeable
with different style grippers or rubber stubs, depending on the task; the
above picture shows one gripper on one hand, and an optional stub on the
other), a perception head, and a tracked base. Inset image: The perception
head consists of a pan-tilt motor-driven base with a color stereo-camera pair
(2448×2050) and a Velodyne HDL-32E laser scanner mounted on the tilt
plate along with an inertial measurement unit (IMU). Computing is done
by an embedded computer system mounted on the bottom of the tilt plate.

II. RELATED WORK

The state of the art in autonomous manipulation was
highlighted in the DARPA Autonomous Manipulation Soft-
ware (ARM-S) Program [1] which concentrated on dual-
armed manipulation robot on a f xed base. Moving beyond
f xed base robots, the problem of mobile manipulation has
traditionally consisted of both wheeled [2], [3], [4] and
legged robots[5], [6] . There have been numerous examples
of wheel-based mobile manipulation robots which typi-
cally used single arm manipulators. The Stanford AI Robot
(STAIR) [7] consisted of a Segway-like base with a sin-
gle manipulator and hand from various manufacturers. The
HERB robot [2] developed at Carnegie Mellon University
and Intel originally started with a single arm manipulator but
later added a second arm for dual manipulation. Herb’s mode

of mobility was also a Segway-like base. Willow Garage’s
PR2 robot [3] is also a mobile dual-armed manipulation robot
consisting of parallel grippers and an omnidirectional base.
All of these robot will have diff culty transversing rough
terrain unlike the SURROGATE platform. In addition, these
robots have used small arm payloads on the order of 4-7
lbs, whereas the SURROGATE platform can handle an arm
payload of 60-70 lbs.
The problem of “guided autonomy” has received a fair

amount of attention recently as part of the advances in the
DARPA Robotics Challenge trials [4], [6], [5]. Of relevance
from these trials is the approaches of different teams in
communicating the operator’s intent to the robot beyond
joint-level teleoperation. Several teams specif ed operator
intent either as robot-centric commands in terms of desired
end-effector movements in cartesian space (f xtures by CMU
[4]) or in terms of desired object centric commands (affor-
dances by MIT [6]). JPL’s entry to the DRC trials was a
quadruped legged robot (RoboSimian)[5]. In this paper, we
extend RoboSimian’s approach from the DRC and report on
a behavior centric architecture that encompasses language in
terms of end-effector state transitions relative to an object
as an asynchronous hierarchical state machine (described
further in Section III-D). These behaviors stand at a higher
level than direct end-effector cartesian teleop commands as
they encode state transitions as a function of contact sensing.
This enables closed loop execution of tasks and is more
suited for generalization to full autonomy.

III. APPROACH

We present a framework for whole-body manipulation
using a “Supervised Remote Robot with Guided Autonomy
and Teleoperation” (SURROGATE) platform. We discuss
here in detail the perception, pose estimation, modeling,
planning for whole body maneuvers, behavior specif cations,
control, and user interface that comprise the entire system.

A. Perception

The SURROGATE robot is equipped with a perception
head consisting of a high-resolution color stereo-camera
pair, a Velodyne laser-scanner (HDL-32E), and an inertial
measurement unit (IMU) all mounted on a pan-tilt unit.
The perception system module is responsible for 3D map
building, 6-DOF object localization, and pose estimation.
We maintain two voxel-based 3D maps of the environ-

ment, namely the manipulation and long-range perception
map. The manipulation map is utilized to maintain a detailed,
high resolution model of the world. This is used to determine
obstacles in the workspace of the robot. Obstacles are seg-
mented out of the map using the same framework described
in [8] and represented as convex hulls for fast collision
detection during manipulation planning. The manipulation
map is also used to provide detailed situational awareness
to the operator and compute 6-DOF object poses of known
objects in the environment. The object pose is determined
by matching the contours the of known object model against

the contours in the acquired image. To facilitate the ob-
ject detection process and leverage the “guided autonomy”
available from the human operator, a region of interest and
object type is only required as inputs from the user to f t the
object. Together with the manipulation map, this provides
an accurate enough estimate of the object pose to complete
manipulation tasks, such as grasping the J-CAD chemical
detector or turning the circular wheel-valve. The full 3D and
high resolution nature of the manipulation map together with
the real-time requirements of the system often requires the
map size to be limited to the robot’s workspace.
The long-range map uses the same voxel-based represen-

tation though with lower resolution to extend the map into
further distances. Range measurements acquired from the
Velodyne sensor are used to populate this crude map which
gives full 360◦ coverage around the robot. This particular
map is used in mobility planning and overall situational
awareness.
The pose estimation on SURROGATE is primarily stereo-

vision based visual odometry [9] coupled with an INS
solution for orientation provided by the IMU. However, pure
stereo-vision with an IMU proved inadequate in providing
accurate 6-DOF pose of the robot, primarily due to the
majority of manipulation tasks often involving the robot
arms coming into view of the stereo cameras. This has
the undesired effect of either causing occlusions, creating
phantom motions from tracked features on the arm of the
robot, or creating unmodeled high-frequency dynamics of
the robot unable to be captured by the slow framerate of the
cameras. To mitigate this problem, a secondary form of pose
estimation was fused with the existing pose estimator (stereo
camera pair with IMU) on the SURROGATE platform using
lidar point clouds with scan registration.

B. Pose Estimation from Laser Scan Registration
To provide the platform with accurate localization in all

lighting conditions we developed in addition to the viusal
odometry (VO) system, a lidar based odometry system (LO).
LO consists of a real-time implementation of the Iterative
Closest Point (ICP) algorithm [10], in particular the point-to-
plane version of ICP [11]. The implementation is single core,
without hardware acceleration, and can produce a registration
of two full Velodyne scans in 50ms on average. An example
of the LO trajectory is shown in Fig. 2d. Our approach
to lidar-based odometry can be summarized in two simple
steps: a fast approximate nearest neighbor search for point
association followed by a ground/non-ground segmentation
step to lock in certain DOFs of the pose.

a) Fast approximate nearest neighbor search: ICP
takes as an input a pair of scans: a model scan and a test
scan. The model scan is kept f xed while the transform that
allows the alignment of the test scan onto the model scan
is estimated. The f rst step in each ICP iteration consists of
f nding point associations between the test and the model
scan. This is usually implemented as a nearest neighbor
(NN) search and is often the main bottleneck in terms of
speed [12]. Eff cient 3D data structures such as kd-trees or

(a) Velodyne segmentation (b) Before ICP (c) After ICP (d) Velodyne based odometry

Fig. 2. Illustration of Velodyne processing. (a) Segmentation of a single Velodyne scan, colors are mapped to segment ids, the ground was removed for
clarity. The stereo cloud provided by the stereo pair on the sensor head is also shown at the center of the image to illustrate the difference in f eld of
view between the two sensors, which contribute to more robust LO registration compared to VO. (b)-(c) Illustration of ICP registration; in (b) white lines
indicate point-to-plane associations; in (c) the two scans are correctly aligned. (d) Example of LO path in green, the robot came back to the same position
as it started from, the resulting drift was approximately 10cm, over a 10m long trajectory, see Sec. V-D.

oct-trees have been used to limit computation times. These
typically result in NN search times of the order of 100ms for
single test scan matched to a single model scan, in the case of
360◦ Velodyne HDL-32E scans. In our implementation, these
are down-sampled through a simple polar grid, and contain
about 60K points each. The aim here is to perform ICP in less
than a 100ms window so that 10 Velodyne scans per second
can be processed (i.e., run real-time). An ICP function call
typically requires 20 to 30 NN searches. This means that we
aim for NN search times of 5ms or less. To achieve this we
simply voxelize the model scan using a 3D grid. The voxel
size in this grid is def ned by the ICP distance threshold:
the maximum allowed distance between a test point and its
associated model point. Each voxel maintains an average of
the model points in it. A NN search thus simply requires
projecting tests points into the 3D model grid and only
involves index lookups. This is fast and allows to achieve
the targeted computation times of ≤ 5ms.

b) Exploiting segmentation: ICPs behavior is fairly
sensitive to the point correspondences found during NN
searches: ICP may diverge depending on the subset of point
correspondences used to estimate the transform. To increase
the algorithm robustness we exploit the Velodyne segmenter
developed in [13]. This segmenter provides ground and non-
ground segments. Our implementation differs from the origi-
nal algorithm in that the second part of the algorithm, which
aims at segmenting objects once ground points have been
removed, is entirely performed in the range image as opposed
to using an intermediate voxel grid. Neighbor lookups are
thus signif cantly faster, which results in segmentation times
of about 15ms per scan. This is an order of magnitude faster
than the original implementation. Our ICP implementation
leverages the resulting segmentation to f rst align ground
points in the test scan to ground points in the model scan.
In a second phase, while ground alignment is maintained,
only non-ground segments are aligned. Fig. 2b illustrates
point associations selected between non-ground segments
only during this second phase. This segmentation based
approach to alignment implicitly decreases the number of
transform components estimated during each of these two
phases and thus facilitates ICP convergence. The “ground”
phase essentially estimates the roll, pitch and z displacement
of the registration while the ‘non-ground” phase estimates

the remaining components. Overall, the alignment of two
scans takes about 50ms on average: segmentation takes
12ms, normal computations (for point-to-plane distances)
takes 7ms, and ICP takes about 30ms. The output of this
alignment process is illustrated in Fig. 2c.

C. Modeling
Our modeling layer provides several functions to the

system. The f rst function is to provide visual models for
drawing of the robot and object models in the Operator
Control Unit (OCU) interface using OpenGLTM. The second
function is to provide collision detection capability using the
third-party software Bullet. The third function is to provide a
kinematic model such that kinematic quantities can be easily
computed.
A model manager provides the management of this layer,

and maintains the state of the kinematic, geometric, and
physical quantities of not just the robot but also objects and
the environment. For fast collision detection, the robot model
and object models are modeled using primitive objects such
as boxes, cylinders, and spheres. Collision detection with the
world can be done using the Bullet collision detector library
since the perception system produces both bounding boxes
and simplif ed convex hulls of segmented portions of the
world map. The model manager also provides functions for
kinematic requests such as forward and inverse kinematics
(see Section III-E for details), Jacobians, center of mass, and
collision information.

D. Behaviors
In order to pass intent to the robot, the operator of

the SURROGATE platform requests behaviors through the
operator control unit. At the highest level, behaviors can be
requested/constructed by specifying one or a combination
of the following specif cations: desired end effectors, their
poses, robot body pose, and objects in the world reference
frame. Behaviors that operate on objects can be parametrized
by def ning attributes of the object. For example, to specify
the behavior to rotate a valve, the valve can be represented
by a torus’ radius whose central axis also serves to de-
f ne the rotary motion of the rotation behavior. In other
circumstances, for a certain object, a grasping behavior
can predef ne end-effector poses that represent grasp points
based on the object’s geometry. Objects with features, such

‖θ‖ , θ +‖ − ‖ , +‖ − ‖ ,

θ

θ

∗

{ , } ∗

∗

{ ∗ ,θ ∗} =
,θ

{
(θ −θ) (θ −θ)

}

≤ ((,θ),)≤

≤ ((,θ),)≤

≤ ((,θ),)≤

θ
/

∗

θ ∗

∗

() () ()

= (θ) , θ = θ θ

()≤
() ()− ≤ . ∗ (())− ≤

() ()− ≤ (−
‖ − ‖) ()− ≤

θ
θ

allows the operator specify a desired behavior on an object in
the environment potentially outside the reachable workspace
of the robot and plan an entire sequence of mobilty moves
followed by manipulation behavior sequences all in one
request.
2) Tablet OCU: The Tablet OCU is written in C/C++

using the QT library for def ning a number of widgets
that simplify behavior specif cation. The interface itself is
divided into various tabs allowing the user to observe process
health, live robot image feeds, and 3D plan previews of robot
behaviors prior to execution. The interface has been ported
and tested on a Panasonic ToughPad FZ-G1 using the touch
interface to identify objects, specify behaviors, and preview
and execute robot actions. The bottom image of Fig. 5 shows
one tab of the tablet interface as used by an operator to
control the robot.

IV. IMPLEMENTATION
The SURROGATE robot designed and built at JPL is a

mobile manipulation platform. Three 7-DOF limbs following
the limb design used on the JPL RoboSimian platform [5]
were used to make up the two arms and torso of SURRO-
GATE. The left and right limbs are connected via a chest-
plate that sits on the end-effector of the torso. The base of the
torso is mounted to a Qinetiq Talon tracked-wheel base. This
particular design for manipulation and mobility increases the
manipulation workspace of the robot, giving it a particular
advantage in reach and manipulability in comparison to other
robots such as the DARPA Atlas or the PR2 by Willow
Garage.
Each right and left limb have interchangeable end-

effectors: a Robotiq, Inc. three-f ngered gripper or a rubber
stub. The gripper allows for grasping and actuation of man-
made objects (single-handed or dual handed manipulation
tasks) whereas the stub allows for bracing and support of
the robot when traversing over diff cult terrain or reaching
further than the allowable balance polygon. All limbs, torso,
and tracks are driven by Elmo motor controllers communi-
cating over EtherCAT and RS-485 networks. An embedded
computer system is installed on the base of the Qinetiq Talon
base to control all actuation of the robot. The “control”
computer runs a real-time Linux kernel with an Intel Core
i7 processor.
The perception head of the robot is a stand-alone per-

ception system developed by JPL. It consists of two Im-
perx BobCat-B2520 color cameras (2448×2050 resolution)
connected via Camera-Link cables and arranged as a stereo
pair. The stereo-camera pair is connected to a pan-tilt motor-
actuated base to allow for user specif ed “look-at” behaviors
for improved situational awareness. Mounted on top of
the tilt motor is a Velodyne, Inc. HDL-32E laser scanner
spinning at a rate of 10 revolutions per second with up
to 700,000 range points per second covering a 1− 100m
range. This sensor provides long-range obstacle detection
and map building as discussed in Section III-A. Lastly,
an inertial-measurement-unit (IMU) exists on the tilt plate
providing angular rate and accelerations of the perception

Fig. 6. The instrument panel button press test showing an early stage
SURROGATE platform, with the inset image showing the detected f ducial
(green=detected, blue=kinematic) used in visual servoing

head. The cameras, laser-scanner, and IMU data stream are
all synchronized into a common time frame via a micor-
controller unit (MCU). The MCU sends a trigger signal to
synchronize the camera capture between both color cameras
at 10Hz. The trigger signal is based off a pulse-per-second
(PPS) signal that comes from the Velodyne laser scanner.
This signal allows for the synchronization of all laser packets
into the MCU timeframe as well. The 200Hz IMU data
stream is also synchronized off the same MCU trigger
signal to send 20 packets of gyro and acceleration data
for every sync pulse. This allows camera data, laser data,
and IMU data to be represented all in the MCU timeframe,
allowing for synchronous data signals. Finally, an embedded
small form-factor computer is mounted to the underside
of the tilt plate, running an Intel Core i7 processor. This
“perception” computer runs a standard 64-bit Ubuntu-Linux
12.04 install and is responsible for running the algorithms for
stereo vision, visual odometry, lidar odometry, short-range
manipulation mapping, and long-range obstacle mapping –
running nominally at 7.5Hz. Both the “control” computer
and “perception” computer communicate over a dedicated
gigabit network.

V. EXPERIMENTAL RESULTS
Towards the development of the SURROGATE platform

we conducted a series of three unique manipulation tests and
a series of repetitive mobility tests to highlight navigation.
Of the three manipulation tests, the f rst consisted of an in-
strument panel with the goal to push a button that was on the
order of 1cm in diameter. The second test consisted of testing
mobility to navigate a short distance and to apply coarse
manipulation of turning a valve. The third test consisted of
f ne bimanual manipulation of a chemical analysis tool. Of
the mobility tests, each test had the robot manually driven
away from the start location and autonomously commanded
to navigate back to the origin using the mobility framework
described earlier.

A. Manipulation: Instrument Panel Button Press
The f rst test (Figure 6) consisted of a stationary instrument

panel that was part of a battery pack. One of the goals
of this test was to exercise the perception capability of
the system. A considerable drawback to the DRC system

used in RoboSimian was the lack of perception autonomy in
pose estimation of objects. The SURROGATE system still
depends on a user to inform of the particle object type and
the rough region where the SURROGATE system can expect
to f nd it as demonstrated in Figure 5.
Another goal of the system was to exercise visual servoing

of the end-effector as the 1cm diameter button was too
small to achieve open-loop, considering the accumulated
error of the system from the cameras to the end effector.
The perception module detects f ducials at the end effector
to provide an offset between the forward kinematic pose and
the pose detected in the camera frame. This offset is then
used to translate the end effector towards the goal that was
also detected in the camera frame.
A third goal was to exercise whole-body planning. Given

different possible locations of the panel, using each limb
independently would not always guarantee a solution capable
of pressing the button. In addition, as the f ducials are
attached to the end effector, the ability to point the cameras
at the button/end effector throughout the button press action
became crucial to do so.
Once the robot is in front of the panel, the user can select

a region in the camera image where the panel is located at
which point the system automatically detects and places the
model of the battery pack into the world. The user can select
an appropriate behavior to conduct on the instrument panel.
The push behavior is used which consists of linear motion
into the button until a certain force level is experienced.
Once the appropriate button is selected, the behavior planner
decides how to orient the end effector above the button
and the starting joint angles to ensure the linear motion is
feasible. The manipulation planner then plans a trajectory of
the joints to these starting joint angles. This trajectory and
end behavior is sent back to the user to validate the execution.
Once the execution is approved, the robot then executes the
trajectory to the starting behavior joint angles. At the start
of the behavior, the visual servoing provides one additional
correction for the robot to execute. At this point the robot
executes the behavior to push the button5.

B. Manipulation: Valve Turn

The second experiment (Figure 7) had the objective to
turn a valve that was some distance away from the robot.
For this test, the user f rst had to provide a directive with
the goal that was not in manipulation workspace to the
robot. As such, end state planning was used to provide a
goal base pose of the robot. The goal robot is then used by
the mobility planner to plan a path towards. The end state
planner requires the requested behavior sequence (grasp and
then rotate), which ultimately provides a starting end effector
pose of the behavior sequence to the end state search. The
mobility planner then provides a global path to the controller
to follow.

5Video of the instrument panel test can be found at the following URL:
http://www-robotics.jpl.nasa.gov/tasks/taskVideo.
cfm?TaskID=260&tdaID=700064&Video=152

Fig. 7. The robot during mid-valve turn after having navigated towards
the valve.

Once the robot has traversed to the robot goal pose, the
robot pauses and waits for human guided perception region-
of-interest selection. Since the valve is in the workspace of
the robot, the human can now select a region in the camera
image for detecting the valve very similarly to Section V-
A. Once the valve has been f t with the perception module,
the user can now request the behavior sequence (grasp and
then rotate). The behavior planner check feasibility and
determines the best end effector pose and joint angles for
the behavior. The manipulation planner then plans a whole
body trajectory. The trajectory and behavior sequence is set
back to the user to verify and validate. The user then requests
the robot to execute. At the end of the behavior, the user can
then request another behavior (release) to open the hand and
backoff from the valve6.

C. Manipulation: J-CAD Actuation
The third test (Figure 8) consisted of bimanual manipu-

lation of a handheld chemical analysis tool called a J-CAD.
In order to turn on this device, a rain cap is required to
be twisted off. The perception capability is very similar to
Sections V-A and V-B in that the user selects a region in the
camera image in order for the perception module to detect
and localize the J-CAD object.
The task began with the operator selecting a region in

the imagery where the J-CAD is located. Once the J-CAD is
localized, the operator selects the behavior sequence of grasp
and lift. The behavior and manipulation planner determine
the best end effector pose, starting joint angles of the
behavior such that the sequence is feasible, and f nally the
joint angle trajectories to these starting joint angles while
avoiding collision.
Once the robot has grasped and lifted the J-CAD, the

J-CAD could have slightly changed pose and as a result
requires additional visual f tting. The operator can now draw
a line on the image, which def nes the rotational axis of the
twist cap. 3D points are associated with this and construct
a 3D line in the world which represents the Z-axis of the
twist cap. With this axis, the twist behavior is then selected

6Video of the whole-body valve turn test can be found at the
following URL: http://www-robotics.jpl.nasa.gov/tasks/
taskVideo.cfm?TaskID=260&tdaID=700064&Video=152

Fig. 8. Bimanual manipulation of the J-CAD chemical analysis tool by
twisting off the top cap. Inset image shows the ”f xturing” process using
the right hand.

by the operator followed by a specif cation on which hand
would be used to twist and which hand would stay f xed. The
behavior planner samples over this axis about where to grasp
to determine which grasp point enables the most rotation.
With the best grasp point, the manipulation planner f nds the
whole-body trajectories to get to this starting pose. Like the
other tasks, the trajectory and plan is then sent back to the
user for validation. Once executed, the behavior begins to do
a series of go-to-contact actions which essentially ”f xtures”
the J-CAD within the grasp. This was necessary as the cap
was smaller than the f ngers of the Robotiq hand and a
precise grasp was critical to ensure success of the task. After
the J-CAD is grasped, the robot begins to twist by actuating
all the joints in the upper body. On success, the robot then
releases so that the J-CAD can start detecting7.

D. Mobility: Navigation
The mobility tests consisted of f ve separate runs with

the robot placed at a known start location, manually driven
approximately 5m away, and commanded to autonomously
navigate back to the origin while using only the lidar pose
solution described in Section III-B.

Fig. 9. A screenshot showing the robot path taken during one of f ve
mobility test runs, overlaid with lidar point clouds used for pose estimation.

Figure 9 provides a screenshot of the navigation path
taken from one of f ve separate runs on mobility. The
results of the f ve runs resulted in displacements of

7Video of the J-CAD twist can be found at the following URL:
http://www-robotics.jpl.nasa.gov/tasks/taskVideo.
cfm?TaskID=260&tdaID=700064&Video=152

[
12cm 10cm 8cm 9cm 13cm

]
from the origin when

the robot was commanded to return to the origin, with an
average displacement of 10cm. Note that the threshold for
the mobility planner on reaching the goal was 5cm and
the grid size used in the map for planning was 5cm as
well; so in actuality the pose accuracy was likely much
better than 10cm. The paths taken were approximately each
5m long. While these navigation tests were rather simple
exercises, these results capture system level navigation ca-
pabilities since several modules were run to produce these
results, including track control, D-star navigation, perception,
mobility, manipulation, and pose estimation.

VI. ACKNOWLEDGMENTS
The research described in this paper was carried out by the

Jet Propulsion Laboratory, California Institute of Technology.
Copyright 2015 California Institute of Technology. U.S.
Government sponsorship acknowledged.

REFERENCES

[1] D. Hackett, J. Pippine, A. Watson, C. Sullivan, and G. Pratt, “An
Overview of the DARPA Autonomous Robotic Manipulation (ARM)
Program,” Journal of the Robotics Society of Japan, 2013.

[2] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet,
R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. Weghe,
“Herb: a home exploring robotic butler,” Autonomous Robots, 2010.

[3] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein, C. Pantofaru,
M. Wise, L. Mosenlechner, W. Meeussen, and S. Holzer, “Towards
autonomous robotic butlers: Lessons learned with the pr2,” in Int.
Conf. of Robotics and Automation, 2011.

[4] C. Dellin, K. Strabala, G. C. Haynes, D. Stager, and S. Srinivasa,
“Guided manipulation planning at the darpa robotics challenge trials,”
in Int. Symposium on Experimental Robotics, June 2014.

[5] P. Hebert, M. Bajracharya, J. Ma, N. Hudson, A. Aydemir, J. Reid,
C. Bergh, J. Borders, M. Frost, M. Hagman, et al., “Mobile ma-
nipulation and mobility as manipulation–design and algorithms of
robosimian,” in Journal of Field Robotics, 2014.

[6] M. Fallon, S. Kuindersma, S. Karumanchi, M. Antone, et al., “An
architecture for online affordance-based perception and whole-body
planning,” in Journal of Field Robotics, 2014.

[7] M. Quigley, E. Berger, A. Y. Ng, et al., “Stair: Hardware and software
architecture,” in AAAI 2007 robotics workshop, vol. 3, 2007, p. 14.

[8] M. Bajracharya, J. Ma, A. Howard, and L. Matthies, “Real-time 3d
stereo mapping in complex dynamic environments,” in Int. Conf.
on Robotics and Automation - Semantic Mapping, Perception, and
Exploration (SPME) Workshop, Shanghai, China, 2012.

[9] A. Howard, “Real-time stereo visual odometry for autonomous ground
vehicles,” in Int. Conference on Robots and Systems (IROS), 2008.

[10] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Robotics-DL tentative. Int. Society for Optics and Photonics, 1992.

[11] Y. Chen and G. Medioni, “Object modelling by registration of multiple
range images,” Image and vision computing, 1992.

[12] S. Rusinkiewicz and M. Levoy, “Eff cient variants of the icp algo-
rithm,” in Int. Conf. on 3D Digital Imaging and Modeling, 2001.

[13] B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros,
P. Morton, and A. Frenkel, “On the segmentation of 3d lidar point
clouds,” in Int. Conf. Robotics and Automation. IEEE, 2011.

[14] P. G. Backes, “Dual-arm supervisory and shared control task descrip-
tion and execution,” Robotics and Autonomous Systems, vol. 12, pp.
29–54, 1994.

[15] K. Shankar, J. W. Burdick, and N. Hudson, “A quadratic programming
approach to quasi-static whole-body manipulation,” in Workshop on
Algorithmic Foundations of Robotics, WAFR, 2014.

[16] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Trans. on Robotics, 2005.

[17] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point f lter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

