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Overview

I SMLS measurement and antenna
concepts

I Design and analysis
I Reflector fabrication and test

I Demonstration reflector fabrication
and test (2009)

I Breadboard reflector and antenna in
current program (2011–13)

I Summary and future work
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Limbsounding Science Requirements and Orbit

I SMLS observes thermal emission from Earth’s
atmospheric limb.
I Parameters/Species measured include

pressure/temperature, geopotential height,
cloud ice, H2O, O3, ClO, HCL, N2O, HNO3,
SO2, CO, HOCl, BrO, and many other trace
gases in the stratosphere and upper
troposphere.

I Frequency bands cover 180–280 GHz and
620–680 GHz (heterodyne radiometers in
mm/sub-mm wavelength regimes)

I SMLS was identified in the 2007 NRC Decadal
Survey for a Global Atmospheric Composition
Mission (GACM)

I Coverage and resolution will be greatly improved
over previous MLS instruments (UARS 1991–7,
Aura MLS 2004–present)

I Understanding in-orbit antenna thermal
performance is key to success of SMLS.

SMLS antenna viewed from Sun in
830 km, 52◦ inclination GACM orbit at
time of worst-case solar heat load
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SMLS antenna concept

I The toric Cassegrain antenna designed for SMLS
provides azimuth-independent scanning over a ±65◦

swath of a conical scan from the 830km GACM orbit.
([Cofield et al., Proc.SPIE 4849, 2002])
I Primary, Secondary and Tertiary surfaces are

generated by rotating conic sections about a
common toric axis in the nadir direction.

I Proper choice of the conic foci and the toric axis
transforms a feed pattern with circular symmetry
into a very narrow vertical illumination of the
Primary.

I The resulting footprint is diffraction limited in the
limb vertical direction and ∼ 20× broader,
independent of azimuth, in the horizontal.

I A small (∼ 10 cm diameter) mirror scans the
beam over the antenna, while a slower ∼ 2◦ nod
of the entire antenna provides the vertical scan.

Footprints of the +10◦ azimuth
pixel on SMLS Primary,
Secondary and Tertiary reflectors
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SMLS finite element models
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(b)(a)I Primary material properties from reflector

fab.
I Aluminum secondary, tertiary,

truss for breadboard
I surface treatments as on Aura MLS
I Notional spacecraft bus (“sunshade”)

I I-deas environment hosts mechanical,
thermal models

I Ray-trace and physical optics models from
UARS, Aura MLS heritage

I Atmospheric retrievals from Aura MLS
heritage
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Exit pupil maps for undistorted receive mode

I Gaussian illumination
I -20 dB edge taper
I 280 GHz (atmospheric retrievals

most sensitive to beam
performance)

I Cumbersome surface models in Code V
suggested alternative optical models
I Optical Path Difference

(OPD = 2n̂ · ~δ cos θi ) model best for
quick evaluation of surface
distortion effect

I Physical Optics formulation most
accurate for electrically small
antennas; easiest to model feed
horns, other mm-wave components

I Transmit mode easier to combine
with atmospheric retrieval model.
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SMLS physical optics model
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I principal ray fans:
1:1→ 20:1 beam

I surface currents
integrated over more
than pixel footprint
for pattern accuracy

I Far-field pattern angular scale from 2002 design

I sidelobe asymmetry results from wavefront errors at edge of azimuth pixel
I same shape for all pixels except near edge
I characterized before launch for atmospheric retrievals
I additional effect of thermal distortions from models and breadboard

measurements.
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Thermal/Structural/Optical model predictions

β

worst-case temperature field

β

deformations exaggerated 5000×
OPD: Primary alone (above); entire antenna (below)
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Demonstration model of Primary Reflector

I Projected GACM SMLS
performance requirements can be
met by composite Primary
I face skins + egg-crate rib

structure
I aluminum mesh/composite

hybrid tunes rib CTE
I NASA Small Business Innovative

Research (SBIR) funding→
cost-saving measures
I Reduced aperture width

I Full SMLS aperture (blue)
I 1/3-width mold (red)
I Preserves diffraction-limited

center pixels
I coarse grain graphite mold
I faceted back skin
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Thermal soak test of demonstration reflector

I Tests in air at Wyle Lab.s chamber,
2009; funded by Earth Science
Technology Office (ESTO)

I 362 photogrammetry targets at
rib/face-sheet junctions

I Soak ∆T exceeds orbit prediction by
∼ 7×; infer effective measurement
accuracy ∼ 2µm

I maintained ∼ 38µm rms from
best-fit-toric through test,
I figure changes appear in toric

coefficients
I Current work refines initial

order-of-magnitude correlation with
FEM

4m

Test Profile
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Thermal soak test correlation with FEM
OPD maps of demonstration reflector in thermal soak test configuration:

prediction measurement
Finite Element Model +100 deg.C
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Correlation analysis: adjust model material properties to match measured OPD changes
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Breadboard Reflector Fabrication Plans

I Through a contract with Vanguard Space Technologies, we are
pursuing a 1.8× 4 meter composite Primary with better surface
accuracy than the SBIR demonstration reflector and thermal
properties meeting SMLS FOV performance requirements in the
expected GACM environment.
I Preliminary quotes have identified vendors for the large mold,

machining to a 680 GHz surface and µm-level surface verification
on a state-of-the-art Coordinate Measuring Machine (CMM).

I Contingencies involve an alignment/assembly truss, re-machining
the SBIR mold, and making the full-width primary in 3 petals.

I Through SBIRs, Vanguard continues to study replication errors
(e.g. “spring-back” after the reflector face skin is cured on and then
released from the mold). In the case of Aura MLS, with a 3 µm rms
mold, such errors resulted in a 5.5 µm rms reflector.

I The current schedule calls for a preliminary design at the end of
year 1, fabrication beginning in year 2, and delivery early in year 3.
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Metrology techniques for SMLS breadboard antenna

I Speckle interferometry measures relative displacement
over entire aperture

I Laser Ranging interferometry sensor measures
absolute position at selected peripheral points.

I Integrate primary with breadboard antenna ca. 2013

I Fabricate truss, remaining optics from Aluminum

I Use dewar, receivers from a prior NASA program

I Measure beam patterns on a near field range
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Summary, Further Work and Acknowledgements

I Conceptual design meets GACM science requirements with
composite primary reflector as on Aura MLS.

I Thermal deformation effects are understood from math models
and 2009 soak test.

I Current research continues SMLS development:
I Thermal Gradient tests; develop using SBIR reflector
I Breadboard antenna: repeat thermal and add RF pattern tests
I Adapt MLS retrieval algorithms; combine with measured/modeled

beam patterns to verify science requirements met
I Research was carried out at the Jet Propulsion Laboratory,

California Institute of Technology, and was sponsored by the
National Aeronautics and Space Administration.

I This work was supported by the NASA ESTO Instrument
Incubator Programs IIP-07, IIP-10 and NASA Small Business
Innovative Research (SBIR) program.
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